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Abstract
Objective. The aetiology and early pathophysiological mechanisms of aortic aneurysm formation are still unknown and
challenging to study in vivo. Positron emission tomography (PET) is a potentially valuable instrument for non-invasive in vivo
pathophysiological studies. No specific tracer to identify the pathophysiological process of aneurysmal dilatation is yet
available, however. The aim of this study was to explore if different PET tracers could be useful to image aneurysmal disease.
Methods and results. Human aneurysmal aortic tissue, collected during elective resection of abdominal aortic aneurysm (AAA)
of asymptomatic patients, was investigated in vitro by means of autoradiography with [68Ga]CRP-binder targeting C-reactive
protein, [11C]DAA1106 targeting translocator protein (18 kDa), [11C]D-deprenyl with unknown target receptor, [11C]
deuterium-L-deprenyl targeting astrocytes, [18F]fluciclatide targeting integrin aVb3, [68Ga]IMP461 and bi-specific antibody
TF2 052107 targeting carcinoembryonic antigen, [18F]F-metomidate targeting mitochondrial cytochrome P-450 species in
the adrenal cortex, and [18F]vorozole targeting aromatase. Of the investigated tracers, only [18F]fluciclatide exhibited specific
binding, whereas the other PET tracers failed to show specific uptake in the investigated tissue and are probably not useful for
the intended purpose.
Conclusion. It seems likely that aVb3 integrin expression in AAA can be visualized with PET and that the aVb3 selective tracer,
[18F]fluciclatide, may be suitable for in vivo molecular imaging of asymptomatic AAA. Additional evaluation of [18F]
fluciclatide and aVb3 integrin expression in AAA will be performed in vitro as well as in vivo.

Key words: [18F]fluciclatide, abdominal aortic aneurysm, autoradiography, inflammation, PET,
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Introduction

The aetiology of degenerative abdominal aortic
aneurysm (AAA) is mostly unknown. One of the
observed features of the arterial wall in aneurysmal
disease is degradation of connective tissue in the
media layer. An increased proteolytic activity of
matrix metalloproteinase, responsible for the degen-
eration of elastic lamellae and extracellular matrix
proteins, has been demonstrated (1,2). Another

observed characteristic is a chronic inflammation
with large amounts of inflammatory cells, T- and
B-lymphocytes, as well as macrophages (3). Further-
more, an increased medial neovascularization at the
aneurysm rupture edge has been demonstrated. With
angiogenesis as the predominant form of neovascu-
larization in atherosclerosis it can be hypothesized that
this process leads to a concomitant increase of aVb3
integrin expression (4,5). Thus, there are multiple
potential molecular targets or pathophysiological
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processes that, together with a suitable biomarker,
could be of diagnostic or prognostic value in the
management of AAA patients.
Methods for studies of the early pathophysiology in

AAA in vivo are scarce. At the end stages of the
disorder, biopsies may be obtained during surgery
for histological investigations. A non-invasive diag-
nostic method that could differentiate between stable
or metabolically active AAA at risk of rupture, based
on knowledge at a molecular level, instead of size,
would be of significant scientific and potential clinical
value.
Positron emission tomography (PET) is a diagnos-

tic imaging tool that provides a possibility for studies
of pathophysiological mechanisms in vivo at the
molecular level without interfering with that process.
Together with computed tomography (CT), provid-
ing anatomical characteristics, the combined use of
PET/CT has become a valuable instrument in various
clinical settings, as well as a powerful research tool.
The aim of this study was to identify one or several

useful PET tracers for the study of asymptomatic
AAAs.

Methods

PET tracers

A number of tracers, originally intended for use in
other disorders, were evaluated in vitro by means of
autoradiography. Due to the infiltrate with inflamma-
tory cells found in AAA, tracers with different char-
acteristics of this field were tested: [68Ga]CRP-binder
(CRPB), [11C]DAA1106 (DAA), and [11C]D-deprenyl
(DDE). Since angiogenesis has been suggested as a
possible cause of aneurysm formation [18F]flucicla-
tide was tested as well. Some tracers that were devel-
oped at the PET centre were tested on AAA tissue
even though the likelihood of the intended receptors
to be found in AAA tissue was very small: L-[11C]
di-deuteriumdeprenyl (DED), TF2 052107 with
[68Ga]IMP461 (TF2-IMP), [18F]fluorometomidate
(FMTO), and [18F]vorozole (FVOZ).
All tracers were radiolabelled on site at the PET

centre, Uppsala University Hospital, according to
published methods. Some of the tracers were selected
based on the potential of overexpression of certain
receptors or enzymes in AAA tissue compared with
normal aorta. Other tracers were tested merely based
on availability.
[68Ga]CRP-binder (CRPB) (6) is a polypeptide with

a phosphocholine group that has a moderate affinity to
C-reactive protein (CRP) (Kd = 5 mM) (7). CRP is a
protein that responds to inflammation and infections
and can be detected in plasma (8). With the

radiolabelled polypeptide targeting CRP it was
hypothesized that the tissue responsible for the
inflammation can be visualized in vivo. It might
also be that this protein is expressed in inflammatory
parts of AAA affected tissue.
[11C]DAA1106 (DAA) is a ligand targeting the

translocator protein (18 kDa), TSPO, also known
as a peripheral benzodiazepine receptor (PBR), which
is expressed on macrophages (9,10). It can be
expected that macrophages are found in higher
amounts in AAA tissue than in normal aorta. It has
also been shown to be expressed in the brain in a
variety of conditions: after stroke (11), in multiple
sclerotic plaques (10,12), in dementia (13), and in
refractory epilepsy (14). DAA has a high affinity to
TSPO (Kd = 0.043 nM), which is an order of mag-
nitude higher than the commonly used tracers [11C]
PK11195 (15,16) and [11C]PBR28 (17).
[11C]D-deprenyl (DDE) is the inactive isomer of [11C]

L-deprenyl and has an as yet unknown binding site, but
has shownprospects in revealingdifferent inflammatory
states. Thus, it has been useful in the diagnosis of e.g.
whiplash trauma and rheumatoid arthritis (18,19).
Potentially, theunknown inflammatory-relatedbinding
site could also be expressed in AAA tissue.
[18F]Fluciclatide (20) is an integrin receptor ligand,

exhibiting high selectivity and affinity for aVb3
(Kd ~10 nM) (21). Integrin aVb3, also known as
vitronectin receptor, has been shown to be upregu-
lated in angiogenesis (22,23). It is expressed on
macrophages (24), where it seems to be a mere
expression rather than being involved in their activa-
tion (25,26). Angiogenesis is a process expected to be
upregulated in AAA (4) as well as in the vicinity of
platelets (27), osteoclasts (28,29), endothelial cells
(30), and malignant cells, such as in melanoma
(31) and breast cancer (21).
L-[11C]Di-deuteriumdeprenyl (DED) is an irrevers-

ible inhibitor of monoamine oxidase type B (MAO-B)
with high affinity and specificity (32,33). The tracer
has been di-deuteriated in order to reduce the affinity
towards the enzyme and minimize the blood flow
dependency of the compound (34,35). In the diag-
nosis of epilepsy, this PET tracer, targeting astrocytes,
has been of great value (36,37). Additional investiga-
tions of astrocytic invasion in patients with
Alzheimer’s disease have been carried out with this
tracer along with the amyloid-b-specific tracer [11C]
PIB (38,39).
TF2-IMP is a bi-specific antibody coupled to a

hapten. The TF2 052107 is a combined pretargeting
antibody for carcinoembryonic antigen (CEA), which
has a specific target site for the [68Ga]IMP461 (IMP)
PET tracer (40). CEAs are produced during fetal
development and are expressed in a variety of
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carcinomas, and can therefore be used as a biomarker
both in tissue and in blood in those patients. Blood
levels of CEA may also be elevated in other cancer
types. The antibody is used as a pretarget of CEA and
is subsequently visualized by the labelled hapten.
The hapten IMP461(NOTA-D-Ala-D-Lys(HSG)-
D-Tyr-D-Lys (HSG)-NH2) was obtained from
Immunomedics, Inc. (Morris Plains, NJ, USA).
[18F]Fluorometomidate (FMTO) is an analogue to

the more commonly used [11C]metomidate. It is
useful in the visualization of adrenal cortical masses
such as incidentalomas, adenomas, and primary and
metastatic cortical carcinomas (41–43).
[18F]Vorozole (FVOZ). Vorozole, 6-[(4-chlorophenyl)

(1,2,4-triazol-1-yl)methyl]-1-methylbenzotriazole, is
a selective and potent non-steroidal aromatase
enzyme inhibitor (44). [18F]Vorozole (45) is an
analogue with similar affinity to aromatase
(Kd = 0.21 nM) (46), an enzyme that converts andro-
gen to estrogens. Aromatase inhibitors are used in the
treatment of postmenopausal women with early-stage
or advanced hormone-sensitive breast cancer. It has
previously been labelled with the radionuclide 11C
and used for visualization of aromatase distribution in
the brain, especially the amygdala (46–48).

Experimental design

Human AAA tissue: The study was approved by the
Regional Ethics Committee of Uppsala/Örebro (Dnr
2007/052). Three male patients operated on for
asymptomatic AAA, aged 65, 68, and 74 years,
were investigated. The AAA diameters were 52, 56,
and 66 mm. Biopsies obtained from the anterior
segment of the AAAs were 10 � 10 mm thick and
consisted of the full thickness of the aortic vessel wall.
They were embedded in Tissue-Tek� OCT� Com-
pound (Sakura Finetek, Alphen aan den Rijn,
The Netherlands), immediately cryo-fixed on dry
ice and isopentane in the operating room, and stored
at –70�C.

Tracer syntheses: The tracers used were, apart from
[18F]fluciclatide, synthesized according to standard
procedures at the PET Centre, Uppsala University
Hospital. [18F]Fluciclatide was synthesized according
to an established method in a FASTlab and provided
by Uppsala Imanet AB/GE Healthcare.

Frozen tissue autoradiography: Glass slides with sec-
tions of AAA tissue, 20–25 mm thick, were incubated
in a buffer solution containing a known concentration
of the radioligand, as well as with their blocking

substances with the same concentration but including
an excess of a blocking substance, for assessment of
non-specific binding (Table I). After incubation,
slides were washed in cold buffer followed by a brief
wash in distilled water, dried, and exposed to phos-
phor imaging plates for at least three radionuclide
half-lives. Non-blocked and blocked samples were
exposed under the same plate. The plates were
then scanned in a Phosphor Imager Model 400S
using 100 mm pixel width (Molecular Dynamics,
Sunnyvale, CA, USA), and the digital images were
analysed using software ImageQuant 5.1 (Molecular
Dynamics).

Image analysis

Autoradiograms were analysed using ImageQuant,
and regions of interest (ROIs) were drawn manually
on the digital images, delineating the whole segment
of aortic tissue. Average pixel values were calculated,
and the specific binding was determined as the dif-
ference between uptake with radioligand alone and
that in the presence of an excess of blocking
compound.

Results

Only [18F]fluciclatide displayed specific uptake
(Figure 1), i.e. 88% of the uptake was blocked by
co-incubation with excess of unlabelled fluciclatide,
whereas the other tracers, CRP-binder, DAA, DDE,
DED, TF2-IMP, FMTO, and FVOZ, did not display
any specific uptake.

Discussion

The natural course of AAA is to expand gradually and
increase in diameter in order eventually to rupture,
with a mortality rate as high as 90% (49). The only
parameter to determine the time of intervention today
is the diameter, usually obtained with ultrasound
investigations. In order to intervene at an early phase
of the pathology further knowledge on the pathophys-
iology is needed.
With PET/CT technology pathophysiological pro-

cesses at the molecular level can be detected in vivo,
which makes it a potentially important research tool to
elucidate the mostly unknown mechanisms behind
aneurysmal disease. If these processes can be identi-
fied and imaged they could serve as a proof of concept
when evaluating different interventions to prevent
growth and rupture. It has previously been shown
in vivo that the chronic inflammation observed in the
wall of large asymptomatic AAAs does not have
sufficient metabolic activity to be detectable by
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[18F]-fluorodeoxyglucose (FDG) PET, [11C]
PK11195, or [11C]D-deprenyl (50-52). This was
also verified in this in vitro study, as neither [11C]
DAA1106 nor [11C]DDE showed any substantial
binding to AAA tissue.
A limitation of the study is that some of the tested

tracers were designed for a totally different specific
target, e.g. TF2-IMP. Even though there are no clear
indications of CEA receptors in AAA, we found it
interesting to test them in an exploratory fashion. The
fact that CRPB has such a low affinity (Kd = 5 mM)
might be the cause of the negative results. Thus, there
might be CRP receptors in the tissue, although at a
too low a concentration to be detectable. CRP has
previously been found by immunohistochemical
means in smooth muscle cells, foam cells, and macro-
phages in arteriosclerotic aortas (53). Until a CRPB
tracer with higher affinity has been developed it is,
however, not possible to use CRP as an in vivo target
for use in AAA patients.
Macrophages are known to be present in AAA

tissue, and as [11C]DAA is a TSPO tracer it might
be anticipated that this tracer is a good candidate for
visualizing AAA. We have previously shown that the
[11C]PK11195 is not capable of detecting the TSPO
receptor in vivo in patients with asymptomatic AAAs
(52), but even though [11C]DAA has higher affinity
than [11C]PK11195, it was not possible to visualize

TSPO in AAA with [11C]DAA. To our knowledge no
immunohistochemical analysis for detection of TSPO
antibody on AAA has been performed. It would be of
great interest to investigate a TSPO tracer with even
higher affinity than [11C]DAA.
DDE is a tracer with an as yet unknown target

receptor, but it has previously been shown to signal for
chronic inflammation in vivo (18,19). However, the
inflammation in AAA tissue is not active enough for
the DDE tracer to become sufficiently taken up.
The DED tracer targets astrocytes, which has been

useful in diagnosing Alzheimer’s disease (38) and
epilepsy (36,37), while TF2-IMP signals for CEA
(40). FMTO visualizes adrenal cortical tumours
(41–43), and FVOZ targets the enzyme aromatase
(44). The likelihood is low that AAA tissue would
have receptors for astrocytes, CEA, mitochondrial
cytochrome P-450 species found in the adrenal cor-
tex, or aromatase, but it cannot be entirely ruled out.
The fact that these tracers (DED, TF2-IMP, FMTO,
and FVOZ) did not signal in AAA tissue makes it
unlikely that they are suitable for imaging of the
pathophysiological processes of asymptomatic aneu-
rysmal dilatation, at least in their current forms.
There was a substantial specific uptake of [18F]

fluciclatide, which targets the integrin aVb3, an indi-
cator for angiogenesis. Pathological processes in the
vasa vasorum and angiogenesis as a cause of AAA
formation have previously been suggested (54), and
the increase of neovascularization has been demon-
strated with immunohistochemical methods (55).
With a PET tracer targeting integrin aVb3 it might
be possible to show an increased angiogenesis in vivo.
It would then be of interest to study patients with small
AAAs and thus to investigate a possible role of chan-
ged angiogenetic activities in the formation of AAA.

Conclusion

The integrin-specific tracer [18F]fluciclatide might be
useful in the detection of angiogenesis in asymptom-
atic AAAs. Further in vivo molecular imaging studies
of asymptomatic AAAs with [18F]fluciclatide are war-
ranted, and additional in vitro studies of novel PET
tracers may reveal new imaging possibilities.
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