
fphys-13-826811 February 24, 2022 Time: 18:2 # 1

REVIEW
published: 02 March 2022

doi: 10.3389/fphys.2022.826811

Edited by:
Geoffrey A. Head,

Baker Heart and Diabetes Institute,
Australia

Reviewed by:
Makoto Makishima,

Nihon University, Japan
Karin Jandeleit-Dahm,

Monash University, Australia

*Correspondence:
Longhua Liu

liulonghua@sus.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Integrative Physiology,
a section of the journal
Frontiers in Physiology

Received: 01 December 2021
Accepted: 11 February 2022

Published: 02 March 2022

Citation:
Yin L, Wang L, Shi Z, Ji X and

Liu L (2022) The Role of Peroxisome
Proliferator-Activated Receptor

Gamma and Atherosclerosis:
Post-translational Modification

and Selective Modulators.
Front. Physiol. 13:826811.

doi: 10.3389/fphys.2022.826811

The Role of Peroxisome
Proliferator-Activated Receptor
Gamma and Atherosclerosis:
Post-translational Modification and
Selective Modulators
Liqin Yin1†, Lihui Wang2†, Zunhan Shi1†, Xiaohui Ji1 and Longhua Liu1*

1 School of Kinesiology, Shanghai University of Sport, Shanghai, China, 2 Department of Medical Imaging, Shanghai East
Hospital (East Hospital Affiliated to Tongji University), Tongji University, Shanghai, China

Atherosclerosis is the hallmark of cardiovascular disease (CVD) which is a leading
cause of death in type 2 diabetes patients, and glycemic control is not beneficial
in reducing the potential risk of CVD. Clinically, it was shown that Thiazolidinediones
(TZDs), a class of peroxisome proliferator-activated receptor gamma (PPARγ) agonists,
are insulin sensitizers with reducing risk of CVD, while the potential adverse effects,
such as weight gain, fluid retention, bone loss, and cardiovascular risk, restricts its
use in diabetic treatment. PPARγ, a ligand-activated nuclear receptor, has shown to
play a crucial role in anti-atherosclerosis by promoting cholesterol efflux, repressing
monocytes infiltrating into the vascular intima under endothelial layer, their transformation
into macrophages, and inhibiting vascular smooth muscle cells proliferation as well
as migration. The selective activation of subsets of PPARγ targets, such as through
PPARγ post-translational modification, is thought to improve the safety profile of PPARγ

agonists. Here, this review focuses on the significance of PPARγ activity regulation
(selective activation and post-translational modification) in the occurrence, development
and treatment of atherosclerosis, and further clarifies the value of PPARγ as a safe
therapeutic target for anti-atherosclerosis especially in diabetic treatment.

Keywords: PPARγ, atherosclerosis, post-translational modifications, selective modulators, cardiovascular
disease

INTRODUCTION

Atherosclerosis is the hallmark of CVD which is a leading cause of death in type 2 diabetes patients,
and glycemic control is not beneficial in reducing the potential risk of CVD (Libby et al., 2016; Vallee
et al., 2019; Machado-Oliveira et al., 2020). Atherosclerosis is a disease caused by the combination
of high oxidative stress, inflammation (Finn et al., 2012), immune response, lipid deposition,
and genetic traits (Falk, 2006; Yu et al., 2013; Johnson, 2017). Atherosclerosis is initiated by a
large number of abnormally metabolized lipids including apolipoprotein B-containing lipoproteins
(apoB LPs) continuously enter into the vascular intima to trigger an inflammatory response
dominated by macrophages in the vascular wall (Chistiakov et al., 2015; Tabas, 2017), promote the
migration and proliferation of vascular smooth muscle cells (VSMCs) (Durham et al., 2018), cause
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the vascular wall thickening and the lumen narrowing, and finally
develop atherosclerosis (Wang et al., 2015; Bennett et al., 2016).

PPARγ is a ligand-activated nuclear receptor, that regulates
glucose and lipid metabolism, endothelial function, and
inflammation (Lehrke and Lazar, 2005; Janani and Ranjitha
Kumari, 2015). Due to the different selected promoters and
alternative shear modes, the PPARγ gene can transcriptionally
generate two PPARγ transcript variants, and translate into two
isoforms, PPARγ1 and PPARγ2, with PPARγ2 has 30 more
amino acid residues at the N-end (Fajas et al., 1997). PPARγ1 is
expressed nearly in all cells, while PPARγ2 is mainly expressed in
adipocytes and vascular endothelial cells. Nevertheless, PPARγ2
is a more potent transcription activator (Lehrke and Lazar,
2005; Janani and Ranjitha Kumari, 2015). PPARγ plays a crucial
role in anti-atherosclerosis by promoting cholesterol efflux
(Ozasa et al., 2011; Tsuboi et al., 2020), inhibiting monocytes
infiltrating into the vascular intima under endothelial layer
(Namgaladze et al., 2013), and inhibiting their transformation
into macrophages (Zhang and Chawla, 2004; Charo, 2007; Oppi
et al., 2020), inhibiting VSMCs proliferation and migration
(Zhang et al., 2011; Durham et al., 2018). PPARγ has emerged as
one of the most promising therapeutic targets for cardiovascular
complications, and its synthetic ligands (Lim et al., 2015),
such as Thiazolidinediones (TZDs) have also been shown to
have anti-atherosclerosis function (Viles-Gonzalez et al., 2004;
Nakaya et al., 2009). Although their advantages are recognized,
the profiles of numerous adverse effects hinder the continued
use of these drugs.

To develop a safer and better treatment of cardiovascular
complications targeting PPARγ, novel strategies that preserve the
“good” potent insulin sensitization, while reducing or eliminating
“bad”-related side effects should be used. These novel strategies
may include downstream effectors of PPARγ-mediated insulin
sensitization, targeting specific post-translational modification
(PTMs) (Wang and Tafuri, 2003; Brunmeir and Xu, 2018) of
PPARγ, and selective PPARγ modulators (SPPARMs) (Higgins
and Depaoli, 2010; Dunn et al., 2011). PTMs such as
phosphorylation (Yin et al., 2006; Choi et al., 2011; Montanari
et al., 2020), acetylation (Qiang et al., 2012; Kraakman et al.,
2018; Liu L. et al., 2020), ubiquitination (Garin-Shkolnik et al.,
2014), and sumoylation (Pascual et al., 2005) are all involved
in regulating PPARγ activity. These PTMs of PPARγ could
regulate its transcription of downstream genes via changing
protein conformation, regulating protein interactions, or altering
the affinity between receptors and ligands (van Beekum et al.,
2009; Brunmeir and Xu, 2018). PPARγ activation requires ligand
recognition and binding to receptor regulatory receptor mediated
gene transcription (Lehrke and Lazar, 2005; Janani and Ranjitha
Kumari, 2015). The binding site and binding region of the
ligand with PPARγ determine the conformation of PPARγ and
the subsequent changes in cofactor recruitment (Higgins and
Depaoli, 2010; Montanari et al., 2020). The selective PPARγ

modulators (SPPARMs) is thought to improve the safety profile
of PPARγ agonists avoiding TZDs’ adverse reactions.

In this review, we focus on the significance of PPARγ

activity regulation (PTMs and SPPARMs) in the occurrence,
development and treatment of atherosclerotic diseases, and

further clarifies the value of PPARγ as a therapeutic target for
anti-atherosclerosis.

PEROXISOME
PROLIFERATOR-ACTIVATED RECEPTOR
GAMMA AND ATHEROSCLEROSIS

PPARγ has a typical structure of nuclear hormone receptors,
including the N-terminal A/B domain, DNA binding domain
(DBD) and ligand binding domain (LBD) (Lehrke and Lazar,
2005; Chandra et al., 2008; Janani and Ranjitha Kumari, 2015).
Both forms of PPARγ1 and PPARγ2 have a similar structural,
except for PPARγ2 containing an N-terminal extension of 28
amino acids (Chandra et al., 2008). PPARγ usually form a
heterodimer with Retinoid X Receptor α (RXRα Chandra et al.,
2008) and binds to PPRE. When the ligand is not bound,
PPARγ/RXRα mainly binds to some co-repressors, such as
Nuclear Receptor Corepressor (NCoR) or Silencing Mediator
of Retinoic Acid and Thyroid Hormone Receptor (SMRT).
When the ligand binds to LBD, it will change the conformation
of PPARγ, and the co-repressors will be replaced by some
co-activators, e.g., cAMP responsive element binding protein
(CREBP), PPARγ coactivator-1 (PGC-1), Steroid Receptor
Coactivator (SRC), and CBP/P300 (Lehrke and Lazar, 2005;
Chandra et al., 2008). The recruited cofactors vary in their
transcriptional regulatory target genes, and their transcriptional
levels and biological functions will change accordingly.

PPARγ not only participates in fat formation, lipid and glucose
metabolism, but also plays an important role on vascular biology
and inflammation, and the development of atherosclerosis
(Kvandová et al., 2016; Hernandez-Quiles et al., 2021). PPARγ

has anti-atherosclerotic effects through the following aspects
(Figure 1): (1) PPARγ regulates the expression of cell adhesion
molecules, such as inducible nitric oxide synthase (Chen et al.,
2001), intracellular cell adhesion molecule-1(ICAM-1), vascular
cell adhesion molecule-1(VCAM-1) (Babaev et al., 2005), and
inhibit endothelial cells activation and attenuation of monocyte
chemoattractant protein 1 (MCP-1), matrix metalloproteinase
9 (MMP9), and metallopeptidase inhibitor 1 (TIMP-1) which
induced monocyte migration across endothelial cells (Verrier
et al., 2004; Calabrò et al., 2005); (2) PPARγ activates the
PPARγ/liver X receptor α (LXR-α) pathway to stimulate the
expression of cholesterol efflux-related genes– ATP binding
cassette transporter A1 (ABCA1) (Akiyama et al., 2002) and Acy1
Coenzyme A: Cholesterol Acyltransferases (ABCG1) (Sueyoshi
et al., 2010; Srivastava, 2011), accelerates the efflux of cholesterol
from macrophages (Liu D. et al., 2020; Oppi et al., 2020),
therefore inhibits the formation of foam cells (Li et al., 2004;
Zhang et al., 2021); (3) PPARγ inhibits the expression of pro-
inflammatory factors, such as TNF-α (Zhang et al., 2014), IL-
6, IL-18 (Chen et al., 2008), and induces the macrophages
differentiation into an anti-inflammatory M2 phenotype (Oppi
et al., 2020). And the expression of M2 markers, such as MR,
AMAC1, and IL-10 levels correlate positively with the expression
of PPARγ (Bouhlel et al., 2007). Therefore, PPARγ can improve
the inflammatory response of cardiovascular cells, inhibit
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FIGURE 1 | PPARγ attenuated atherosclerosis through different aspects, including alleviating endothelial dysfunction, promoting cholesterol efflux, inducing M1-M2
transition, inhibiting VSMC migration and proliferation and stabilizing the fibrous cap and plaque.

plaque formation, and maintain plaques stability. (4) PPARγ

inhibits VSMCs proliferation and migration by suppressing
TLR4-mediated inflammation (Gu et al., 2019) and ultimately
attenuates intimal hyperplasia after carotid injury (Meredith
et al., 2009; Osman and Segar, 2016). Meanwhile, PPARγ prevents
the degradation of cyclin-dependent kinase inhibitors (CDKIs)
and p27 induced by growth factors, and inhibits the formation of
cyclin-dependent kinase complex (Cyclin-CDK), thereby inhibits
proliferation, migration, and apoptosis (Law et al., 2000; Fu et al.,
2001). (5) PPARγ inhibits the expression of MMP-9 and MMP-
2 that can decompose collagen and fibers in macrophages (Luo
et al., 2007; Reinhold et al., 2020), reduces the fragility of the
fiber cap and enhances the stability of the plaque. Therefore,
the functional regulation of PPARγ is of very important for the
prevention and treatment of atherosclerosis.

POST-TRANSLATIONAL MODIFICATIONs
OF PEROXISOME
PROLIFERATOR-ACTIVATED RECEPTOR
GAMMA AND ATHEROSCLEROSIS

The PPARγ transcriptional activity regulates in diverse ways,
including protein expression levels, ligands, and transcriptional
cofactors. PTMs of proteins can alter protein conformation,
regulate protein interactions, and alter the affinity between
receptors and ligands, thus regulating the transcription of
downstream genes (Brunmeir and Xu, 2018).

Phosphorylation
The phosphorylation regulation of PPARγ is one of the main
ways to regulate its activity (Montanari et al., 2020). With
different stimuli, PPARγ could be phosphorylated at different
sites and resulting diverse biological effects (Choi et al., 2011).

Cyclin-dependent kinase (CDK) (Choi et al., 2010, 2011;
Laghezza et al., 2018) and mitogen-activated protein kinase
(MAPK) (Yin et al., 2006; Yang et al., 2013; Ge et al., 2018) are
involving in the phosphorylation of PPARγ, and the main sites
include Ser273 (245 in isoform 1) (Dias et al., 2020; Hall et al.,
2020) and Ser112 (Ser82 in isoform 1) (Figure 2A; Ge et al.,
2018). CDK5-mediated phosphorylation of PPARγ S273 results
in a decrease in its transcriptional activity and adipogenesis. One
of TZDs’ major side effects is due to its activation of PPARγ

in adipose tissue, and high-fat diet increased CDK5-mediated
of PPARγ phosphorylation, which was negatively associated
with TZDs’ insulin sensitization in humans. Meanwhile PPARγ

phosphorylation can up-regulate lipid uptake of CD36 and SR-
A1 related proteins, inhibit cholesterol efflux ABCA1 and ABCG1
related proteins, induce the expression of TNF-α, IL-1β and other
inflammatory factors, and promote the formation of foam cells
to accelerate the process of atherosclerosis (Choi et al., 2010,
2011; Banks et al., 2015). PPARγ phosphorylation by CDK5 may
contribute to its dissociation with PGC1α and TIF2 coactivators
but interaction with SMRT and NCoR corepressors (Dias et al.,
2020). NCoR can regulate the phosphorylation of PPARγ on Ser
273 by stabilizing CDK5 (Li et al., 2011). Mice with fat cell NCoR
knockout (NCoR−/−) improves glucose tolerance and insulin
sensitivity and reduces macrophage infiltration and inflammation
(Ribeiro Filho et al., 2019). As from CDK5 studies, compounds
can be designed to alter specific PTMs of PPARγ to partly prevent
disturbed fat metabolism while retaining anti-diabetic potency.
CDK9/CDK7-mediated phosphorylation of S112 can increase
the transcriptional activity of PPARγ and promote adipocyte
differentiation (Iankova et al., 2006; Li et al., 2017; Ge et al., 2018).

MAPK can phosphorylate PPARγ in the AF1 region (PPARγ2
Ser112, PPARγ1 Ser82), inhibiting the ligand binding and
changing the recruitment of co-factors, and then change
the transcriptional activity (Yin et al., 2006; Yang et al.,
2013; Ge et al., 2018). MAPK-mediated phosphorylation of
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FIGURE 2 | Post-translational modification of PPARγ regulates atherosclerosis. (A) Both phosphorylation of PPARγ at S112 by CDK7/9 or MAPK and
phosphorylation of PPARγ at S273 accelerates foam cell formation and atherosclerosis through different signaling pathway, some PPARγ agonist (WSF-7, SR1664)
can block cdk5 mediated Ser273 phosphorylation. (B) Acetylation of PPARγ at K268/K293 increases atherosclerosis through upregulating ABCA1, ABCG1, and
NcoR but inhibiting PRDM16,while deacetylation of PPARγ at K268 and K293 alleviates atherosclerosis, while PPARγ agonist rosiglitazone (Rosi) could deacetylate
PPARγ at K268/K293. (C) Sumoylation of PPARγ at K107 promotes VSMCs proliferation and migration, but sumoylation of PPARγ at K395, such as by Rosi, has
anti-inflammation effect.

PPARγ, which promotes the formation of foam cells by
macrophages exposed to ox-LDL (Yin et al., 2006). Growth
factors can phosphorylate PPARγ by the MAPK signaling
pathway and reduce the transcriptional activity of PPARγ

(Yin et al., 2006), such as epidermal growth factor (EGF)
and platelet-derived growth factor (PDGF) (Osman and Segar,
2016). In addition, Choi et al. (2015) recently described the
phosphorylation of Y78, is also important for the cytokine and
chemokine gene expression’s regulation. PPARγ phosphorylation
can alter its transcriptional activity, and the blockage of PPARγ

phosphorylation is related to improve insulin sensitization (Choi
et al., 2014). However, PPARγ phosphorylation mediated by
different enzymes, conformational changes at different sites can
cause the recruitment response of different cofactors, its role in
atherosclerosis and its mechanism need to be further studied, and
also provide ideas for the drug design of PPAR ligand.

Acetylation
Acetylation of PPARγ is a ligand- independent activation of
PPARγ. Qiang et al. (2012) showed that five lysine residues (K98,
K107, K218, K268, and K293) could be acetylated, of which two
K268/K293 could be deacetylated by TZD rosiglitazone (Rosi)
via activation of the NAD (Nicotinamide adenine dinucleotide)-
dependent deacetylase sirtuin-1 (SIRT1) deacetylase (Figure 2B;
Kraakman et al., 2018). PPARγ is acetylated by p300 or CBP (Kim
et al., 2006), and it may play an important role in lipid synthesis
(Tian et al., 2014). Acetylation of PPARγ at K268/K293 increases
atherosclerosis through upregulating ABCA1, ABCG1, and NcoR
but inhibiting PRDM16, while deacetylation of PPARγ at K268
and K293 alleviates atherosclerosis.

PPARγ deacetylation on K268 and K293 induces brown
remodeling of white adipose tissue and reduces the adverse
effects of TZDs while maintaining insulin sensitization (Qiang
et al., 2012; Liu L. et al., 2020). Deacetylation of PPARγ

can selective regulation the target genes, it could inhibit aP2,
Cd36, upregulation genes ucp1 and adipsin on lipid oxidative
genes cpt1a (Kraakman et al., 2018). PPARγ deacetylation
improves endothelial function with diabetes treatment. The

aortic arch lesion size was reduced in 2KR (K268 and K293)
LDLr−/− mice, the expression of iNOS, Nox2, and IL-6 in
endothelial cells were decreased, while the side effects of TZD,
including fluid retention and bone loss were reduced (Liu L.
et al., 2020). Deacetylation of PPARγ inhibits the cholesterol
efflux PPARγ/LXRα/ABCA1 pathway (Cao et al., 2014; Yang
et al., 2015), increased production of proinflammatory M1
macrophages and promotes the development of inflammatory
response (Chen et al., 2008, 2010), leading to the onset and
development of atherosclerosis. From a mechanistic perspective,
deacetylated PPARγ preferentially interacts with PRDM16 and
disrupts the binding of the transcriptional corepressor NCoR
(Qiang et al., 2012). Therefore, manipulating PPARγ acetylation
is a promising therapeutic strategy to anti-atherosclerosis.

Sumoylation
PPARγ sumoylation with SUMO1 modification of K107 (K77
in PPARγ1) (Figure 2C), and ubiquitin carrier protein 9
(Ubc9) and PIAS1 (protein inhibitor of activated STAT1) are
involved as PPARγ specific E2 binding enzymes and E3 ligases,
respectively (Lim et al., 2009). Sumoylation of PPARγ K107
inhibits its transcriptional activity, and is enhanced by the K107
mutation (K107R). PPARγ sumoylation at K107 position strongly
inhibited VSMCs proliferation and migration (Katafuchi et al.,
2018), and reduced neointimal formation after balloon injury
(Lim et al., 2009). Desumoylation at K107 in PPARγ may
inhibit serum-stimulated VSMCs proliferation (Lim et al., 2009;
Osman and Segar, 2016), might play an important role against
atherosclerosis. Moreover, K107R improves insulin sensitivity
without body weight gain or adiposity (Wadosky and Willis,
2012; Pourcet et al., 2013). However, some studies have shown
that K107 sumoylation plays an important role in the anti-
inflammatory response triggered by apoptotic cells, possibly by
stabilizing the co-inhibitor NCoR on the target gene (Jennewein
et al., 2008; Lu et al., 2013). The sumoylation modification
of PPARγ1 inhibits the M2 polarization of macrophages by
inhibiting the transcription of Arg-1 (Haschemi et al., 2011).
Pascual et al. (2005) shows that the PPAR agonist TZD can
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exert anti-diabetic and anti-atherosclerotic effects through the
NF-kB inflammatory pathway, the first response is associated
with TZD-mediated SUMO1 modification of K365 (K395 in
PPARγ2) followed by targeted regulation of the PPAR co-cofactor
NCoR. The exact biological role of the two modifications in
anti-inflammatory responses, especially the potential functional
overlap, remains to be determined. Nevertheless, targeting
PPARγ sumoylation may provide a novel mechanism for anti-
atherosclerosis.

Ubiquitination
Ubiquitination modification cannot only regulate the
proteasome-mediated degradation of target proteins, but
also serve as a “scaffold” to recruit other proteins to form
signal complexes. PPARγ undergoes conformational changes
after binding to the ligand. On the one hand, Makorin RING
finger protein 1 (MKRN1) (Kim et al., 2014) and Seven in
absentia homolog 2 (SIAH2) (Kilroy et al., 2012) services as
PPARγ E3 ligases, targeting PPARγ for proteasomal degradation.
Ubiquitination of PPARγ on K184 and K185 inhibits its activity
in mature 3T3-L1 adipocytes (Kilroy et al., 2012; Kim et al.,
2014). On the other hand, it can also recruit the binding
of ubiquitination-related enzymes and induce proteasome-
dependent degradation, thereby negatively regulating the
transcriptional activity of PPARγ. Rosiglitazone reduces the
inflammatory response in diabetic plaques, less ubiquitin,
proteasome 20S, TNF-α, and NF-κB, ubiquitin-proteasome
activity with diabetic plaque NF-κB-mediated inflammatory
response is involved (Marfella et al., 2006). This study strengthens
the earlier findings on PPARγ regulation through modulation of
its stability. Currently, the use of ubiquitination modifications
for the regulation of PPARγ transcriptional activity is still
controversial (Watanabe et al., 2015). It has been reported
that the ubiquitin-proteasome pathway can mediate the
protein renewal of PPARγ (Li et al., 2016), a process that is
required for the efficient transcription of its downstream genes,
while the ubiquitin activase inhibitor E1 inhibitor, and the
proteasome inhibitor MG-132 can cause a decrease in PPARγ

transcriptional activity.

SELECTIVE PPARγ MODULATORS AND
ATHEROSCLEROSIS

PPARγ ligands are generally lipid-derived compounds with
natural and synthetic properties, and different ligands have
different affinity-binding receptors and activate the receptors.
Synthetic ligands TZDs reduce atherosclerosis in certain mouse
models (Martens et al., 2002). However, severe side effects
associated with TZD use, such as weight gain, fluid retention,
bone loss, cardiovascular disk, etc., restricts the use of TZDs
(Zinn et al., 2008). In order to maximize the PPAR-mediated
insulin sensitization and to minimize the occurrence of related
adverse reactions, the concept of “selective PPAR regulator
(selective PPARγ modulators, SPPARMs)” was proposed and
developed (Higgins and Depaoli, 2010; Camejo, 2016). In
contrast to rosiglitazone, SPPRAMs has similar or different PPAR

receptor binding sites, or has different affinity or specificity of
recruitment receptor cofactors, or a range of target genes where
PPAR are biased and selective for regulating transcription. The
currently found SPPRAMs that associated with atherosclerosis
mainly consists of three types: partial PPARγ agonist, dual PPAR
α/γ agonist, and non-agonist PPARγ ligand.

Partial Peroxisome Proliferator-Activated
Receptor Gamma Agonist
In fact, partial PPARγ agonist is different from the classic TZDs,
with rosiglitazone as the “full agonist.” It is generally believed that
20–60% of rosiglitazone efficacy is a partial activator (Table 1),
such as GQ-177 (Silva et al., 2016), S 26948 (Carmona et al.,
2007), WSF-7 (Zhang et al., 2020) lobeglitazone (Lim et al.,
2015), and INT131 (Xie et al., 2017). LDLr−/− mice treated with
GQ-177 can significant decrease the VLDL, LDL fractions and
increase mean HDL, Glut4 levels, increased the expression of
apoA1, CD36, ABCA1, SR-B1, and ABCG5 in hepatic, contrary
to rosiglitazone, GQ-177 did not affect fat accumulation and
bone mineral density (Silva et al., 2016). It was shown that TZDs
facilitated the transport of BM-derived circulating progenitor
cells to adipose tissue and their differentiation into multilocular
adipose cells (Crossno et al., 2006). Meanwhile, Hu et al. (2021)
found RANKL from bone marrow adipose lineage cells promoted
osteoclast formation and bone loss. S26948 improves lipid
parameters (LDLs, VLDL) and reduces atherosclerotic lesions
in ob/ob male C57BL/6 mice (Carmona et al., 2007). WSF-7
upregulated PPARγ-responsive genes, such as adiponectin and
Glut4, inhibits PPARγ phosphorylation at Ser273 by obesity
and enhances insulin sensitivity in 3T3-L1 Adipocytes (Zhang
et al., 2020). Lobeglitazone inhibits the VSMCs proliferation
and migration, reduces the vascular cells adhesion, NF-kB
p65 translocation, and improves circulating factors related to
atherosclerosis, then reduced neointimal formation significantly
in balloon injury rat carotid arteries in ApoE−/− mice (Lim
et al., 2015; Song et al., 2021). In the presence of pro-
inflammatory stimulation, Lobeglitazone effectively inhibited
expression of pro-inflammatory gene expression in macrophages
and adipocytes (Sohn et al., 2018). The latest study has found
that macrophages targeted PPARγ activator Lobeglitazone could
rapidly stabilize a coronary artery-sized inflammatory plaque
(Song et al., 2021). Both non-clinical and clinical studies have
demonstrated that INT131 have the potential to separate insulin-
sensitizing actions and undesirable side effects in Patients With
Type 2 Diabetes (DePaoli et al., 2014), and it also has the potential
to decrease free fatty acids, increase HDL-C (Dunn et al., 2011).
However, there is still no relevant study on the effect of INT131
on atherosclerosis.

Full agonist-TZDs forms a key hydrogen bond with the
side chain of Y473 on helix 12, mainly interacts with residues
from arm I in the ligand binding pocket, to enhance the
binding affinity of coactivators/weaken corepressors, inducing
transcriptional activation (Brust et al., 2018). Unlike full agonist
TZDs, some partial agonists have different binding mode, such
as GQ-177 interacts through hydrophobic contacts with residues
from arm II (Barros et al., 2010), lobeglitazone makes additional
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TABLE 1 | Selective PPARγ modulators associated with atherosclerosis.

Class Compound Target gene Function Mechanisms References

Partial PPARγ

agonist
GQ-177 apoA1, ABCA1, SR-B1 ABCG5,

ABCG8, and HDL-c
Inhibits the progression of
atherosclerotic lesions. not affect fat
accumulation, bone mineral density.

Hydrophobic contacts with
residues from arm II.

Silva et al.,
2016

S 26948 LDLs, VLDL, LPL, aP2↓, UCP1 Promotes cholesterol transfer and
reduce lesions surface.

No-recruit DRIP205 or PCG-1α. Carmona et al.,
2007

WSF-7 Adiponectin and Glut4↑ Enhances insulin sensitivity, Reduce the
fat accumulation.

Inhibits PPARγ Ser273
phosphorylation.

Zhang et al.,
2020

Lobeglitazone hsCRP, MCP-1, ABCA1, leptin↓ Inhibits VSMC proliferation, Powerful
anti-inflammatory effect.

Additional hydrophobic
contacts with the �-pocket.

Lim et al., 2015

Dual PPAR α/γ
agonist

GQ-11 Mcp-1,VLDL-C↓HDL-C, Apoa1↑,
ABCA1, Sr-b1, IL-10↑

Ameliorated insulin sensitivity, promotes
cholesterol transfer, no body weight
gain.

Hydrogen bond with the PPARγ

residue Ser289 at helix 3.
Silva, 2018

P633H ACO, aP2, Not reported with atherosclerosis. Not reported. Chen et al.,
2009

C333H TG, T-CHO, FFA Reduces blood lipid and glucose
concentration

Not reported. Xu et al., 2006

LT175 Glut4, Adipoq, Fabp4,NCoR1,
CD36↓

Modulating lipid and glucose
metabolism, avoiding weight gain

Impaired the recruitment of
CBP coactivator

Gilardi et al.,
2014

Compound 3q VCAM-1, MCP-1, CD36,
P-selectin↑

Increases atherogenesis. Not reported. Calkin et al.,
2007

Tesaglitazar SAA, NFκB, ICAM-1, MCP-1↓ Reduce LDL-C, less peripheral edema
and body weight gain; heart failure and
myocardial ischemia

Acetylation/deactivation of
cardiac PGC-1α

Zadelaar et al.,
2006

Non-agonist
PPARγ

SR1664 Not affect aP2, Glut4, Lpl,CD36 Anti-diabetic, without promoting fluid
retention or altering bone formation

Directly block Cdk5 dependent
phosphorylation of PPARγ

Ser273, do not stabilize helix 12

Choi et al.,
2011

UHC1 TNF-α, LPS, IL-1β, IL-6, MCP-1,
IL-10↑

Inhibits the inflammatory responses in
adipocytes and macrophages.

Directly block cdk5 mediated
PPARγ K395 phosphorylation

Choi et al.,
2014

MSDC Insulin sensitization, regulate the lipid
metabolism

Target Mitochondrial pyruvate
carrier2 (MPC2).

Colca et al.,
2018

hydrophobic contacts with the �-pocket. There are also some
partial agonists having similar binding sites to TZDs, but the
recruiting cofactors were different. For example, INT131 activates
PPARγ, but does not recruit the cofactor MED1 (key factor in
regulating adipogenesis) (Lee et al., 2012; Xie et al., 2017), S26948
is unable to recruit DRIP205 or PCG-1α (Key genes in regulating
gluconeogenesis), so that it selectively reduces blood glucose
without the obvious adverse effects of adipogenesis (Carmona
et al., 2007; Sohn et al., 2009). Compared to rosiglitazone,
Lobeglitazone strongly blocks the phosphorylation of PPARγ

at Ser245, but the pharmacological effects of this translational
modification change need further studied (Jang et al., 2018).
Although the exact mechanism beyond these effects remains to
be determined, partial agonist might represent a new class of
therapeutic molecules for the treatment of atherosclerosis.

Dual Peroxisome Proliferator-Activated
Receptor α/γ Agonist
Dual PPARα/γ agonist has been focusing on the activation of
both PPARα and PPARγ, which may provide a wider range of
metabolic benefits. Studies have shown that most of the Dual
PPARα/γ agonist play an active role in anti-atherosclerosis, such
as GQ-11 (Silva, 2018), P633H (Chen et al., 2009), C333H

(Xu et al., 2006), LT175 (Gilardi et al., 2014), and Tesaglitazar
(Zadelaar et al., 2006; Chira et al., 2007; Table 1). GQ-11
improved insulin sensitivity and enhanced Glut4 expression
in the adipose tissue, meanwhile the levels of MCP-1were
reduced and the levels of IL-10 were increased. Furthermore, it
also upregulation of Apoa1 and ABCA1 gene expression, then
reduced triglycerides and VLDL cholesterol and increased HDL
cholesterol in LDLr−/− mice (Silva et al., 2018). P633H can be
accompanied by the upregulation of ACO and aP2 expression
in db/db and KK-Ay mice, and is targeted to regulate PPARα

in the liver and PPARγ in adipose tissue, respectively (Chen
et al., 2009). C333H efficiently reduced blood lipid and glucose
concentration in db/db mice (Xu et al., 2006). LT175 activates
PPARγ in adipocytes, increases the expression of PPARγ target
gene Glut4 and Adipoq in 3T3-L1 adipocytes and in a mouse
model. Moreover, LT175 can also activate PPARα in the liver,
trigger triglyceride and fatty acid catabolism, and achieve to
eliminate the side effects of some conventional PPAR agonists
(Gilardi et al., 2014). However, such effects are not clear in
human situation. Tesaglitazar reduces atherosclerosis, reduces
macrophage inflammation, number of adhesion monocytes and
nuclear factor activity of the vessel wall (Zadelaar et al., 2006).
However, some Dual PPARα/γ agonist such as compound
3q may accelerate atherosclerosis, it may related to the
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increase expression of the vascular endothelial activation and
inflammation markers, such as P-selectin, MCP-1, VCAM-1, and
CD36, that are also associated with plaque complexity (Calkin
et al., 2007). Dual agonists such as Tesaglitazar also showed
better insulin sensitization effects as well as the prevention
of atherosclerosis progression in clinical studies, but due to
adverse side effects, including heart failure and myocardial
ischemia, it has been discontinued in phase III clinical trials
(Yamaguchi et al., 2014).

The PPARγ agonists shown to increase adipogenesis and
body weight, whereas PPARα agonists counteract these effects
by decreasing food intake and fat deposits. However, both its
PPAR binding mode and its downstream targeting will change
accordingly. LT175 impaired the recruitment of CBP coactivator,
Tesaglitazar is accounted for by inhibition of both expression
and acetylation/deactivation of cardiac PGC1α both in healthy
C57BL/6 and diabetic db/db mice. Consistent with other partial
agonists, GQ-11 only hydrogen bond with the PPARγ residue
Ser289 at helix 3, which could reflect in weak PPARγ agonistic
activities, and also interacts and weakly activates PPARα (Silva,
2018). Most of the dual PPARα/γ agonists, although they can
improve insulin resistance as the full agonists, and do not have
similar weight gain, negative bone effects, but it will appear
adverse effects on the urothelial, renal, and cardiovascular system
(Kaul et al., 2019; Chen et al., 2021). For the adverse side
effects of PPARγ agonists in fluid retention, most studies have
shown that this effect was due to increased reabsorption of
sodium and water by the renal tubules, but the role of specific
renal unit segments and sodium carriers was unclear. PPARγ-
induced EGF receptors and non-genomic trans-activation of
downstream extracellular signal-modulating kinases (ERKs) may
augment sodium reabsorption in the proximal tubule (Beltowski
et al., 2013). TZDs-like compounds significantly inhibited PPARγ

phosphorylation in Ser112 while telmisartan did not (Kolli
et al., 2014). Thus, telmisartan did not have a significant effect
on osteoclast differentiation and osteogenesis. Dual PPARα/γ
Tesaglitazar activation inhibits SIRT1-PGC1α axis and causes
cardiac dysfunction. It was showed that this cardiac dysfunction
was associated with reduced PGC1α expression. These effects are
related to competition between PPARα and PPARγ to regulate
Ppargc1a gene expression and to reduce cardiac SIRT1 expression
(Kalliora et al., 2019). PGC1α is a regulator of mitochondrial
function in thermogenic tissues, such as brown fat. Lehman
et al. (2000) also found cardiac-specific overexpression of PGC1α

in mice lead to uncontrolled mitochondrial proliferation in
cardiomyocytes, resulting in loss of sarcomere structure and
dilated cardiomyopathy. Inhibiting PGC1α on dual PPARα/γ
activation is potentially as a key event that mediates the
cardiotoxic effect, which would provide a guide for design of
future PPAR agonists.

Non-agonist Peroxisome
Proliferator-Activated Receptor Gamma
Ligand
Non-agonist (Antagonists) PPARγ ligand, also known as PPAR
modulators, exhibit high affinity but do not activate PPARγ.

The Antagonists consists of two main categories, and one is
known as PPARγ phosphorylation inhibitors, such as SR1664
(Cariou et al., 2012; Dias et al., 2020) and UHC1 (Choi
et al., 2014). Taken SR1664 as an example, it has basically
no transcriptional activation effect on PPARγ, but has a high
affinity with PPARγ and belongs to a phosphorylation inhibitor,
blocking the CDK5-mediated phosphorylation of PPARγ in
Ser273 (Laghezza et al., 2018; Dias et al., 2020). SR1664 did not
stimulate lipid accumulation or adipogenesis gene expression
(such as aP2, Glut4, Lpl, CD36) in differentiating fat cells. UHC1
blocking CKD5-mediated PPARγ phosphorylation at position
K395 in LBD, reducing macrophages inflammatory factor LPS-
induced nitric oxide (NO) production both in vitro and in
HFD-fed mice (Choi et al., 2014; Ribeiro Filho et al., 2019).
Comparison with conventional full agonists, these antagonists
do not stabilize helix 12 and display negligible changes in
activation, but make unfavorable interactions with F282 on helix
3 (Asteian et al., 2015). Another class of PPAR modulators is
relatively special, with structurally TZDs analogs, but with little
effect on PPARγ, represent the compound as MSDC. It have
been showed a potential therapeutic avenue for treating non-
alcoholic steatohepatitis, improve the insulin resistance effect,
regulate the lipid metabolism (Colca et al., 2018). However,
the current study of atherosclerosis has not been reported.
Its target of action was reported as a line Mitochondrial
pyruvate carrier 2 (MPC2), which is the mitochondrial target
of thiazolidinediones (mTOT) (Vigueira et al., 2017). Although
not directly stimulated to PPARγ, but still has the potency of
insulin sensitization.

CONCLUSION AND PERSPECTIVE

PPARγ plays a crucial role in anti-atherosclerosis, PPARγ-
mediated anti-atherosclerosis depends on the basic expression
level and activity level of PPARγ. At the same time, PPARγ

transcription activity is no longer the only criterion, and the
mode of action of the compound and PPARγ is the key to
PPARγ activity. Both protein post-translational modification
and selective modulators are different modes of PPARγ activity
regulation. The mode of action between the compound and
PPARγ determines the intensity and breadth of PPARγ-mediated
transcriptional activation.

However, there are still many questions to be solved,
such as the proteases involved in various post-translational
modifications, and the protein interactions and downstream
target genes regulated by these modifications are still unclear.
In addition to the identified post-translational modifications,
novel modification patterns or modification sites are still to
be discovered. Different post-translational modifications may
also interact and form closely related network, which provides
a strong guarantee for the fine control of protein functions.
The post-translational modifications of proteins are usually
reversible, while the de-modification of PPARγ is relatively
lagging behind. Transcriptional alteration of post-translational
modifications is an innovative idea of new agonist, and
only phosphorylation is partially applied to PPARγ agonist,
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deacetylation and sumoylation has not been involved. How
to selectively activate partial downstream targets of PPARγ to
protect from atherosclerosis and relative metabolic diseases as
well as reducing adverse effects deserve further investigation.
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