
ORIGINAL RESEARCH
published: 05 March 2018

doi: 10.3389/fgene.2018.00071

Frontiers in Genetics | www.frontiersin.org 1 March 2018 | Volume 9 | Article 71

Edited by:

Roberto Ferreira Artoni,

Ponta Grossa State University, Brazil

Reviewed by:

Julio Cesar Pieczarka,

Universidade Federal do Pará, Brazil

Daniel Pacheco Bruschi,

Universidade Federal do Paraná, Brazil

*Correspondence:

Marcelo de Bello Cioffi

mbcioffi@ufscar.br

Specialty section:

This article was submitted to

Evolutionary and Population Genetics,

a section of the journal

Frontiers in Genetics

Received: 29 August 2017

Accepted: 16 February 2018

Published: 05 March 2018

Citation:

Sember A, Bertollo LAC, Ráb P,

Yano CF, Hatanaka T, de Oliveira EA

and Cioffi MdB (2018) Sex

Chromosome Evolution and Genomic

Divergence in the Fish Hoplias

malabaricus (Characiformes,

Erythrinidae). Front. Genet. 9:71.

doi: 10.3389/fgene.2018.00071

Sex Chromosome Evolution and
Genomic Divergence in the Fish
Hoplias malabaricus (Characiformes,
Erythrinidae)
Alexandr Sember 1, Luiz A. C. Bertollo 2, Petr Ráb 1, Cassia F. Yano 2, Terumi Hatanaka 2,

Ezequiel A. de Oliveira 2,3 and Marcelo de Bello Cioffi 2*

1 Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia,
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The Erythrinidae family (Teleostei: Characiformes) is a small Neotropical fish group with a

wide distribution throughout South America, where Hoplias malabaricus corresponds

to the most widespread and cytogenetically studied taxon. This species possesses

significant genetic variation, as well as huge karyotype diversity among populations,

as reflected by its seven major karyotype forms (i.e., karyomorphs A-G) identified up

to now. Although morphological differences in their bodies are not outstanding, H.

malabaricus karyomorphs are easily identified by differences in 2n, morphology and

size of chromosomes, as well as by distinct evolutionary steps of sex chromosomes

development. Here, we performed comparative genomic hybridization (CGH) to analyse

both the intra- and inter-genomic status in terms of repetitive DNA divergence among

all but one (E) H. malabaricus karyomorphs. Our results indicated that they have close

relationships, but with evolutionary divergences among their genomes, yielding a range

of non-overlapping karyomorph-specific signals. Besides, male-specific regions were

uncovered on the sex chromosomes, confirming their differential evolutionary trajectories.

In conclusion, the hypothesis that H. malabaricus karyomorphs are result of speciation

events was strengthened.

Keywords: fish cytogenetics, multiple sex chromosomes, sex-determining region, sex chromosome turnover,

CGH, intraspecific variability, species complex, speciation

INTRODUCTION

The Erythrinidae family (Teleostei: Characiformes) is a small group of Neotropical fishes
with a wide distribution throughout South America. This family currently consists of three
well-recognized genera—Erythrinus (Scopoli, 1777),Hoplias (Gill, 1903), andHoplerythrinus (Gill,
1895) with at least 15 until now recognized species (Oyakawa, 2003; Oyakawa and Mattox, 2009).
Erythrinids live in diverse habitats, from small lakes and lagoons to large rivers (Oyakawa, 2003).
However, unlike the large migratory Neotropical fishes, they are usually not able to overcome
obstacles such as waterfalls and large rapids, due to their sedentary lifestyle (Oyakawa, 2003).
This situation may have contributed to reduced gene flow between sub-populations in the same
hydrographic basin. Consequently, great genome diversity has been documented within the
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Erythrinidae family, reflected in the noticeable diversity of
karyotypes—particularly in the diploid number (2n), karyotype
structure and sex chromosome systems (reviewed in Bertollo,
2007).

Hoplias malabaricus is the most widespread as well as
cytogenetically investigated taxon, with analyzed populations
from north to south of Brazil, Uruguay, Argentina, and
Suriname. Despite its wide distribution, this taxon is
characterized by low vagility, tending to constitute small
populations, being able to survive under low oxygen conditions
and to adapt to new environments (Rantin et al., 1992, 1993; Rios
et al., 2002). Such characteristics are probably associated with the
significant genetic variation and enormous karyotype diversity
evidenced by the sevenmajor karyotype forms (i.e., karyomorphs
A-G Bertollo et al., 2000; Cioffi et al., 2012). However, despite
rather morphological uniformity of body plan, H. malabaricus
karyomorphs are easily distinguished by 2n, morphology and
size of chromosomes, as well as by different evolutionary stages
of distinct sex chromosome systems, indicating the occurrence
of an unrecognized species diversity (Bertollo et al., 2000;
Bertollo, 2007). Among the seven karyomorphs examined to
date, only those of A and E do not show heteromorphic sex
chromosomes. Indeed, a well-differentiated XY sex chromosome
system occurs in the karyomorph B, while karyomorphs C
and F possess such system in an early state of differentiation
and finally, karyomorphs D and G harbor a X1X2Y and XY1Y2

multiple sex system, respectively (reviewed in Freitas et al., 2017).
These findings indicate independent origins of sex chromosome
systems as evidenced by whole chromosome painting (WCP)
data (Cioffi et al., 2013). Altogether, H. malabaricus provides a
suited model for evolutionary, cytotaxonomic and biodiversity
analyses (for review see Cioffi et al., 2012).

The development of recent molecular methologies has
allowed a qualitative improvement on chromosome researches
of different biological taxa. Among them, the genomic in situ
hybridization (GISH) and comparative genomic hybridization
(CGH), originally developed for clinical studies (Kallioniemi
et al., 1992), are now successfully applied for several other
purposes, such as the identification of parental genomes in
hybrids/allopolyploids (Bi and Bogart, 2006; Knytl et al.,
2013; Symonová et al., 2013a, 2015; Doležálková et al., 2016;
Majtánová et al., 2016), the detection of sex-specific content on
homomorphic sex chromosomes (Ezaz et al., 2006; Altmanová
et al., 2016; Rovatsos et al., 2016; Freitas et al., 2017) and the
genome comparisons among related species (Valente et al., 2009;
Symonová et al., 2013b; Majka et al., 2016; Carvalho et al., 2017;
Moraes et al., 2017). All these (and many other) studies proved
that GISH and CGH technologies, despite representing rather
“rough” molecular tools, may be successful in providing clues
about the genome evolution, with their resolution being based on

Abbreviations: 2n, iploid chromosome number; CGH, comparative genomic
hybridization; DAPI, 4′,6-diamidino-2-phenylindole; dUTP, 2′-Deoxyuridine-5′-
Triphosphate; FISH, fluorescence in situ hybridization; gDNA, total genomic
DNA; m, metacentric chromosome; NFDM, non-fat dried milk; NOR, nucleolar
organizer region, PCR, polymerase chain reaction; rDNA, ribosomal DNA; SD,
sex determination; sm, submetacentric chromosome; TEs, transposable elements;
WCP, whole chromosomal painting.

the differential distribution of already divergent genome-specific
repetitive DNA classes (Kato et al., 2005; Chester et al., 2010),
as these sequences are generally highly abundant in eukaryotic
genomes and display faster evolutionary rates than the single-
copy ones (Charlesworth et al., 1994; Cioffi and Bertollo, 2012;
López-Flores and Garrido-Ramos, 2012). Hence, in the present
study, we performed analyses including CGH procedures to
explore both inter- and intra-genomic divergences (within the
range defined above) among H. malabaricus karyomorphs. Our
results provided new insigths for better understanding of the
ongoing processes of the karyomorph differentiations, as well as
their sex chromosome systems.

MATERIALS AND METHODS

Individuals and Mitotic Chromosome
Preparations
Analyzed representatives of H. malabaricus karyomorphs
are given in Table 1. The individuals were collected under
appropriate authorization of the Brazilian environmental
agency ICMBIO/SISBIO (License numbers 48628-2 and
10538-1) and deposited in the fish collection of the
Cytogenetic Laboratory, Departamento de Genética e Evolução,
Universidade Federal de São Carlos. Mitotic chromosomes
were obtained by protocols described in Bertollo et al.
(2015). The experiments followed ethical and anesthesia
conducts, in accordance with the Ethics Committee on Animal
Experimentation of the Universidade Federal de São Carlos
(Process number CEUA 1853260315).

Preparation of Probes for Comparative
Genomic Hybridization (CGH)
The total genomic DNAs (gDNAs) from male and female
specimens of all karyomorphs listed in Table 1 were extracted
from liver tissue by the standard phenol-chloroform-
isoamylalkohol method (Sambrook and Russell, 2001). Two
different experimental designs were used for this study, as

TABLE 1 | Collection sites of Hoplias malabaricus karyomorphs, with the

respective localities and sample sizes.

Hoplias

malabaricus

karyomorphs

Locality N References

Karyomorph A Pântano River (SP) 08♂ 06♀ Cioffi et al., 2009

Karyomorph B Doce River (MG) 07♂ 08♀ Cioffi et al., 2010

Karyomorph C Bento Gomes River

(MT)

11♂ 09♀ Cioffi and Bertollo,

2010

Karyomorph D UFSCar reservoir:

Monjolinho Stream (SP)

10♂ 07♀ Cioffi and Bertollo,

2010

Karyomorph F São Francisco River

(MG)

12♂ 11♀ Freitas et al., 2017

Karyomorph G Aripuanã

(MT)—Aripuanã River

12♂ 11♀ Oliveira et al., 2018

AM, Amazonas; SP, São Paulo; MT, Mato Grosso; MG, Minas Gerais States.
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outlined in Figure 1. In the first set of experiments (inter-
karyomorph genomic comparisons), the gDNA of karyomorph
B male specimens was chosen as a reference due to its well-
differentiated XY sex chromosomes and used for hybridization
against metaphase chromosomes of the other karyomorphs
(Figure 1A). For this purpose, male-derived gDNAs of each
karyomorph A, C, D, F and G were labeled with digoxigenin-
11-dUTP using DIG-nick-translation Mix (Roche, Mannheim,
Germany), while male-derived gDNA of karyomorph B was
labeled with biotin-16-dUTP using BIO-nick-translation Mix
(Roche). For blocking the repetitive sequences in all experiments,
we used unlabeled C0t-1 DNA (i.e., fraction of genomic DNA
enriched for highly and moderately repetitive sequences),
prepared according to Zwick et al. (1997). Hence, the final
probe cocktail for each slide was composed of 500 ng of male-
derived gDNA of karyomorph B, 500 ng of male-derived DNA
corresponding to one of the comparative karyomorphs, 15 µg
of female-derived C0t-1 DNA of karyomorph B and 15 µg of
female-derived C0t-1 DNA from the respective comparative
karyomorph. The probe was ethanol-precipitated and the dry
pellets were resuspended in hybridization buffer containing
50% formamide, 2 × SSC, 10% SDS, 10% dextran sulfate and
Denhardt’s buffer, pH 7.0. In the second set of experiments
(Figure 1B) we focused on intra-karyomorph comparisons,
with special emphasis on molecular composition of putative,
nascent or well-differentiated sex chromosomes. In this case,
male-derived gDNAs of all karyomorphs were labeled with
biotin-16-dUTP and female gDNAs with digoxigenin-11-dUTP
by means of nick translation as described above. The final
hybridization mixture for each slide (20 µl) was composed
of male- and female-derived gDNAs (500 ng each), 25 µg of
female-derived C0t-1 DNA from the respective karyomorph
and the hybridization buffer described above. The chosen ratio
of probe vs. C0t-1 DNA amount was based on the experiments
performed in our previous studies in fishes including erythrinids
(Symonová et al., 2013a,b, 2015; Carvalho et al., 2017; Freitas
et al., 2017; Moraes et al., 2017; Yano et al., 2017; Oliveira et al.,
2018) and corroborated the ratio used in other related fish studies
(e.g., Valente et al., 2009). According to our experiences, this
ratio reflects high stringency towards repetitive DNA blocking
and yet avoids the probability of improper probe dissolution in
the hybridization buffer, which would otherwise cause artifacts.

Fish Used for CGH
The CGH experiments followed the methodology described in
Symonová et al. (2015), with modifications. Briefly, prior to
hybridization, slides were aged at 37◦C for 2h, followed by an
RNAse A (90min, 37◦C) and then pepsin (50µg/ml in 10mM
HCl, 3min, 37◦C) treatments. Chromosomes were subsequently
denatured in 75% formamide (pH 7.0) in 2 × SSC (74◦C,
3min), and then immediately cooled and dehydrated through
70% (cold), 85%, and 100% (RT) ethanol series. The hybridization
mixture was denatured at 86◦C for 6min, cooled at 4◦C (10min)
and then applied on the slides. The hybridization was performed
at 37◦C for 72 h. Post-hybridization washes were carried out
once in 50% formamide in 2 × SSC (pH 7.0) (44◦C, 10min
each) and three times in 1× SSC (44◦C, 7min each). Prior

to probe detection, the slides were incubated with 3% non-
fat dried milk (NFDM) in order to avoid the non-specific
binding of antibodies. The hybridization signal was detected
using Anti-Digoxigenin-Rhodamin (Roche) and Avidin-FITC
(Sigma). Chromosomes were counterstained and mounted in
antifade containing 1.5µg/ml DAPI (Vector, Burlingame, CA,
USA).

Microscopic Analyses and Image
Processing
At least 30 metaphase spreads per individual were analyzed
to confirm the 2n, karyotype structure and CGH results.
Images were captured using an Olympus BX50 microscope
(Olympus Corporation, Ishikawa, Japan), with CoolSNAP and
the images were processed using Image Pro Plus 4.1 software
(Media Cybernetics, Silver Spring, MD, USA). Chromosome
morphology was classified according to Levan et al. (1964).

RESULTS

Inter-Karyomorph Genomic Relationships
In each experiment, both genome-derived probes showed
rather equal binding to all chromosomes, with preferential
localization in the centromeric and pericentromeric regions of
most chromosomes and in terminal parts of some of them
(yellow signals, i.e., combination of green and red), indicating the
shared repetitive DNA content in such regions. The hybridization
pattern in karyomorph A displayed stronger binding of the A-
derived probe to the centomeric or telomeric regions of several
chromosomes, while the B-derived probe that co-hybridized
to these regions, produced signals of less intensity. Moreover,
several exclusive A-specific markings appeared mostly in distal
chromosomal regions (Figures 2A–D). Similar situation was
observed also in karyomorph C (Figures 2E–H), where the
majority of the accumulated blocks was shared by both probes,
including those in the pericentromeric regions of the XY
chromosomes, but several signals and especially those located
in the terminal region of the long arms of the largest m pair
were found to be accumulated with C-specific probe only.
In karyomorph D, stronger binding of the D-derived probe
was highlighted in many centromeres, in addition to some
telomeric segments (Figures 2I–L). Remarkably, both genomic
probes equally stained the heterochromatic block displayed by
the neo-Y chromosome. In the karyomorph F, besides the
shared binding pattern to majority of heterochromatic blocks,
the F-derived probe yielded specific signals on the chromosomal
pair bearing NOR-like regions (Figures 2M–P). In addition,
the male-specific region on the nascent Y chromosome of this
karyomorph displayed some affinity to B-derived male probe,
despite being preferentially labeled with the F-male specific
one (Figures 2N,O). In comparison to that, the male-specific
region of karyomorph G, covering the entire short arms of
the Y1 chromosome, was stained almost exclusively by the G-
derived probe, while the B-derived probe produced only faint and
dispersed signals in this region (Figures 2Q–T). In a similar way,
the G-specific probe showed predominant binding to terminally
located repetitive blocks on a few other chromosomes.
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FIGURE 1 | The experimental designs used in this study. In the first one (A), gDNA of karyomorph B male specimens was used for hybridization against chromosomal

background of the other karyomorphs (except for karyomorph E), focusing on inter-karyomorph comparisons. In the second set of experiments (B) male- and

female-derived gDNAs of each karyomorph under study were hybridized together, focusing on the intra-karyomorph comparisons, with special emphasis on the

molecular composition of putative, nascent, or well-differentiated sex chromosomes.

Intra-Karyomorph Genomic Relationships:
Detecting Male-Specific Regions
Experiments performed on female chromosome spreads of
karyomorphs B, C, D, F, and G showed the absence of identifiable
sex-specific segments.

Regarding karyomorph A, no exclusive male-specific
regions were identified on male chromosome complement
(Figures 3A–D). In male chromosome spreads of karyomorph
B, CGH enabled to recognize male-specific region located
terminally on the long arms of the Y chromosome
(Figures 3E–H). In karyomorph C, unlike the biased
accumulation of repetitive DNAs in the X pericentromeric
region (Cioffi and Bertollo, 2010), a slight binding preference
for the male-derived probe to the pericentromeric region
of Y chromosome was evidenced (Figures 3I–L). Female-
derived probe produced only a faint hybridization signal in
such region, while both probes matched equally the large
heterochromatic segment located in the pericentromeric part of
the X chromosome. Accordingly, CGH procedure failed to detect
any sex-specific region on male chromosomes of karyomorph D
(Figures 3M–P). In karyomorph F, a prominent interstitial band

on the metacentric Y chromosome was also enriched with male-
specific sequences, although a concurrent faint hybridization
signal produced by the female-derived probe was also apparent
(Figures 3Q–T). CGH on male preparations from karyomorph
G unmasked a clear male-specific region covering the short arms
of Y1 chromosome (Figures 3U–X). The summary of observed
intra-karyomorph CGH patterns is given in Figure 4.

DISCUSSION

Genomic Diversity Among Karyomorphs
Sex chromosome systems in H. malabaricus display only
male heterogamety and therefore inter-karyomorph genomic
comparisons between males were supposed to be informative
in indicating their interrelationships. Hence, the male-derived
gDNA of reference karyomorph B was probed on chromosomes
of karyomorphs A, C, D, F, and G. Even though the B-
derived probe showed lower affinity to chromosomes of other
karyomorphs, the overall pattern of these experiments was
relatively similar. In all experiments, both genome-derived
probes showed preferred accumulation to chromosome regions

Frontiers in Genetics | www.frontiersin.org 4 March 2018 | Volume 9 | Article 71

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Sember et al. Genomic Divergence in Hoplias malabaricus

FIGURE 2 | Mitotic chromosome spreads of Hoplias malabaricus males after CGH—interkaryomorph comparison. Male-derived genomic probe from karyomorph B

mapped against male chromosomes of karyomorph A (A–D), karyomorph C (E–H), karyomorph D (I–L), karyomorph F (M–P), and karyomorph G (Q–T). First column

(A,E,I,M,Q,I): DAPI images (blue); Second column (B,F,J,N,R): hybridization pattern using the male-derived probe (red) of each analyzed karyomorph; Third column

(C,G,K,O,S): hybridization pattern using the male-derived probe of karyomorph B (green). Fourth column (D,H,L,P,T): merged images of both genomic probes and

DAPI staining. The common genomic regions of both compared karyomorphs are depicted in yellow. Bar = 10µm.

previously identified as C-bands and C0t-1 DNA hybridization
sites (Born and Bertollo, 2000; Cioffi and Bertollo, 2010;
Cioffi et al., 2010, 2011a), documenting their repetitive DNA
content. However, despite less intense, hybridization signals
were also apparent along the rest of chromosomal material.
Our findings are in line with the general patterns observed in
previous GISH/CGH-based reports (e.g., Traut and Winking,
2001; Valente et al., 2009; Koubová et al., 2014; Altmanová et al.,
2016) in the sense of biased hybridization in heterochromatic
regions and point to the fact that even high amount of C0t-1 DNA
is insufficient to outcompete highly repetitive (heterochromatic)
regions. Given that the resolution of the CGH procedure

predominantly relies on the presence of species-specific (or sex-
specific) repetitive sequences, together with the evolutionary
distance of the compared genomes (Kato et al., 2005; Chester
et al., 2010), our overall results indicate that karyomorphs
of H. malabaricus are closely related, but with divergences
among their genomes, yielding a range of non-overlapping
karyomorph-specific signals. Remarkably, the B-derived probe
displayed the lowest degree of hybridization correspondence
with karyomorphs D and F, suggesting the ongoing processes of
sequence divergence. These findings are indicative of ongoing
evolutionary processes driving the divergence and possibly also
speciation within H. malabaricus populations, facilitated by the
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FIGURE 3 | Mitotic chromosome spreads of Hoplias malabaricus males after CGH—intra-karyomorph hybridizations. Male- and female-derived genomic probes

hybridized together for each karyomorph. First column (A,E,I,M,Q,U): DAPI images (blue); Second column (B,F,J,N,R,V): hybridization pattern of the female-derived

probe (red) of each analyzed karyomorph; Third column (C,G,K,O,S,W): hybridization pattern of the male-derived probe (green) of the respective karyomorph. Fourth

column (D,H,L,P,T,X): merged images of both genomic probes and DAPI staining. The common genomic regions for male and female are depicted in yellow.

Bar = 10µm.

sedentary lifestyle of these fishes (as discussed in detail further in
the text).

An array of molecular and cytogenetic methods, including
DNA barcoding and phylogeographic approaches, have already
led to the hypothesis that H. malabaricus likely represents a

“species complex,” with several undescribed species (Bertollo
et al., 2000; Santos et al., 2009; Cioffi et al., 2012; Marques
et al., 2013). Furthermore, different karyomorphs with a
sympatric or syntopic occurrence were found to lack any hybrid
forms, as proven by cytogenetic and RAPD (random amplified
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FIGURE 4 | Sex chromosomes of H. malabaricus karyomorphs B, C, D, F and

G after CGH procedures. First column: DAPI images; Second column:

hybridization pattern using the female-derived probe (red); Third column:

hybridization pattern using the male-derived probe (green); Fourth column:

merged images of both genomic probes and DAPI staining. Common genomic

regions for male and female are depicted in yellow.

polymorphic DNA) analyses (Dergam et al., 1998, 2002; Bertollo
et al., 2000), yet a sporadic case of hybridization followed by an
elevation of the ploidy level was already reported (Utsunomia
et al., 2014).

When compared to other members of the Erythrinidae family,
similar degree of cytotaxonomic diversity can be found in
Erythrinus erythrinus and Hoplerythrinus unitaeniatus groups
(Bertollo, 2007; Cioffi et al., 2012; Rosa et al., 2012; Martinez
et al., 2015, 2016), while—in stark contrast—theHoplias lacerdae
species complex exhibits highly conserved karyotype structure
(Blanco et al., 2011; de Oliveira et al., 2015). It is likely that the
chromosomal diversity inside some Erythrinidae species might
be associated with their species-specific lifestyles. In this sense,
becauseH.malabaricus, E. erythrinus, andH. unitaeniatus appear
to constitute small and restricted populations, with low vagility
(Blanco et al., 2011), they experience a higher rate of stochastic
fixation of chromosome rearrangements and, consequently, an
elevated evolutionary genome dynamism that might contribute
to speciation and/or local adaptation processes (see King, 1993;
Faria and Navarro, 2010 for an exhaustive discussion). It is
therefore remarkable that the three H.malabaricus karyomorphs
with more restricted geographic distribution, i.e., the B, D and

G ones, possess morphogically recognizable sex chromosomes
(Bertollo et al., 2000; Cioffi et al., 2012).

Intra-Karyomorph Genomic Diversity and
Male-Specific Sequences
Based on data available from the last comprehensive fish
karyotype overview (Arai, 2011), so far only 5% of karyologically
analyzed actinopterygian fish species possess heteromorphic sex
chromosomes. However, this is very likely an underestimation,
with many other well-differentiated or even nascent sex
chromosome systems still awaiting their discovery, especially
when taking into account that homomorphic (i.e., cytologically
indistinguishable or hardly detectable) sex chromosomes are
thought to be frequent in fishes (Mank and Avise, 2009; Schartl
et al., 2016). Within the Erythrinidae family, three different
simple or multiple sex chromosome systems in advanced and/or
nascent evolutionary stages have been reported among both E.
erythrinus and H. malabaricus karyomorphs (reviewed in Cioffi
et al., 2012), where males possess always the heterogametic sex.

Within H. malabaricus group, karyomorph A is characterized
by 2n = 42 for both males and females, without an apparent
sex chromosome system, while karyomorph B, though also with
2n = 42 for both sexes, exhibits a well-differentiated ♀XX/♂XY
sex chromosome system. In this case, the subtelocentric large
X chromosome is clearly distinguished from the small-sized
metacentric Y, in addition to presence of a conspicuous
heterochromatic block distally located on its long arms (Born
and Bertollo, 2000; Cioffi et al., 2010). Previous repetitive DNA
mapping and WCP data indicate that such sex chromosome
system is likely derived from a proto-sex chromosome (the 21st
pair of karyomorph A) due enrichment in several types of DNA
repeats confined to only one of the homologs, namely the X
chromosome in karyomorph B (Cioffi et al., 2010, 2011a,c, 2013).
However, CGH procedures did not reveal any sex-specific region
in karyomorph A, probably due to low level of sex-specific
repetitive DNA divergence or due the small size of the sex-
determining region, remaining below the detection limit of the
CGH method (that ranges approximately between 2 and 3 Mbp;
Schoumans et al., 2004). Theoretically, alternate mechanisms
of sex determining region creation such as, e.g., epimutation-
coupled recombination suppression (as eloquently discussed in
Ezaz and Deakin, 2014) cannot be entirely ruled out and these,
again, may have gone undetected through CGH. Finally, the
possibility that the sex-determining region in this karyomorph
is completely absent seems equally likely. However, the frequent
changes of master sex determining genes repeatedly observed in
fishes, especially in XX/XY systems (Heule et al., 2014; Martínez
et al., 2014), favor the former view as the new non-recombining
region is needed to be established again. In support of this view,
in several another fish species, the sex determining regions might
be very tiny (reviewed in Schartl et al., 2016), with the extreme
case of fugu genome, Takifugu rubripes, where the Y-specific sex-
determining gene differs from the homologous region on the X
chromosome by a single non-synonymous substitution (Kamiya
et al., 2012). Moreover, even in the platyfish, Xiphophorus
maculatus, with genetically defined sex chromosomes, no visible
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differences between X and Y were evidenced after CGH (Traut
and Winking, 2001), similarly to what had been occasionally
observed in some other animals (Koubová et al., 2014; Altmanová
et al., 2016; Green et al., 2016; Gazoni et al., 2018). In yet
another case, however, CGH proved to be resolute even in sex
chromosomes of a very young age (Montiel et al., 2017). Finally,
we cannot entirely exclude the possibility that bright fluorescence
from major rDNA loci located on several chromosomes of the
karyomorph A complement, most probably including the pair
no. 21, could disable the detection of the hypothetical sex-
determining region in its vicinity. Maybe a finer-scale approach
such as BAC FISH mapping of specific candidate genes identified
based on utilization of recent genome sequencing approaches and
corresponding bioinformatic tools, togehter with other related
“state-of-the-art” technologies may shed more light on this issue
(for examples in fishes, see: Reichwald et al., 2015; Portela-Bens
et al., 2017; Sutherland et al., 2017; Liu et al., 2018).

A male-specific region confined to a distal part of the long
arms of Y chromosome was identified in the karyomorph B
corresponding to the location of a constitutive heterochromatin
block previously described (Born and Bertollo, 2000). The
position of this region is noteworthy since a large NOR is
found in the corresponding homologous region on the X
chromosome, leading to the considerable size difference between
both sex chromosomes (Born and Bertollo, 2000). Therefore,
we are dealing here with an unusual situation, resembling
the findings in weakly electric fish Eigenmannia virescens (de
Almeida-Toledo and Foresti, 2001; Henning et al., 2008) or
in the snake eel Ophisurus serpens (Salvadori et al., 2018),
where the accumulation of rDNA and other repetitive DNAs
occurs also on the X instead of Y chromosome. In our specific
case, the sex-specific region is present on the corresponding
C-positive but NOR-negative (Born and Bertollo, 2000; Cioffi
et al., 2010) region on the Y chromosome. It is likely that the
differential accumulation of repetitive DNA sequences might
have decreased the recombination rate between the sex pair due
to their delayed pairing during meiosis (Griffin et al., 2002).
Alternatively, the co-amplification of the NOR region with other
repetitive DNA sequences on the X chromosome can be viewed
as a consequence of the whole differentiation process of the sex
pair, helping to buffer the absence of functional rDNA copies
on the Y chromosome. In fact, it is noteworthy that the NOR
on the X chromosome is always genetically active (Born and
Bertollo, 2000). The growing number of reports pointing to sex
chromosome-specific NORs (see Kawai et al., 2007; Badenhorst
et al., 2013; Yano et al., 2017 for references) possibly indicates that
such regions might have played a more relevant role in nascent
sex chromosome evolution than currently known.

In karyomorph C (2n = 40, for both sexes), the nascent
and morphologically undifferentiated XY sex chromosomes
were formerly evidenced by a small accumulation of repetitive
DNAs occurring exclusively on the X chromosome (Cioffi and
Bertollo, 2010). Here, it is likely that these newly emerging
sex-related elements have not had the necessary evolutionary
time to evolve and hence accumulated low proportion of
tentatively Y-specific sequences Despite that, we cannot rule
out that some differentiation in the hybridization pattern of

both genomic probes in the pericentromeric region of the
nascent Y chromosome is caused by a copy number variation of
interspersed repetitive sequences between the sex chromosomes.
Finally, it is worth mentioning that B-derived gDNA probe
displayed strong binding to this region (on both X and Y) in the
inter-karyomorph experiment (see Figures 2F–H), suggesting
certain degree of shared sequences, but the extent of overlap with
C-derived probe was not absolute.

Karyomorph D (2n = 40 in females/39 in males) is
characterized by a X1X2Y multiple sex chromosomes system,
where the neo-Y originated via a tandem fusion between
the nascent Y chromosome and one autosomal homolog
corresponding to the pair No. 20 of karyomorph C (Bertollo
et al., 1997; Cioffi and Bertollo, 2010). Indeed, such origin
was also confirmed by additional data from inter-karyomorph
chromosome painting and mapping of several repetitive
DNA classes (Cioffi et al., 2009, 2011b,c). Previous studies
on male meiosis showed stabilized pachytene sex trivalents,
as well as asynapsis in the region of presumed sequence
divergences (Bertollo and Mestriner, 1998), thus pointing to
a putative sex-specific region. In favor of this scenario, Rosa
et al. (2009) reported noticeable alterations in location of
constitutive heterochromatin and 18S rDNA sites on the neo-Y
chromosome, indicating that pericentric inversions probably
have also taken place in the early process of the sex-specific
chromosome differentiation. However, although in karyomorph
C, a slight binding preference for the male-derived probe to
the pericentromeric region of Y chromosome was observed,
our CGH data did not reveal any conspicuous Y-specific region
in the neo-sex chromosome system of karyomorph D. In this
sense, while in karyomorph D the recombination arrest and the
establishment of the stable multiple sex chromosomes was most
likely achieved by chromosomal rearrangements, in karyomorph
C the accumulation of repetitive DNA sequences seems to have
a central role in triggering the differentiation of the nascent XY
sex system (Bertollo et al., 1997; Cioffi and Bertollo, 2010).

Karyomorphs E, F, and G were supposed to be closely
related (Bertollo et al., 2000). Although the karyomorph E
(2n = 42) was not sampled in this study, our results confirmed
previous findings in karyomorphs F (Freitas et al., 2017) and
G (Oliveira et al., 2018). More specifically, karyomorph F
(2n = 40, for both sexes) was found to exhibit a nascent XY
sex chromosome system, where the male-specific content was
highlighted as a prominent interstitial heterochromatic block on
the large metacentric Y chromosome, coincident with several
microsatellite motifs and retrotransposons (RTEs) (Freitas et al.,
2017, present study). Importantly, as the faint hybridization
signal produced by the female-specific probe was allocated also
within this region, we witness here a bit similar situation to
that found in karyomorph C. If we admit that slightly preferred
accumulation of male-exclusive sequences in pericentromeric
region of the Y chromosome in males of karyomorph C might
be related to the early stage of sex-determining region formation,
the observed pattern in karyomorph Fmay reflect a later phase of
similar process. At this stage, the accumulation of repetitive DNA
in the Y-specific region in karyomorph F probably involves also
the portion of sequences that are common for both sexes.
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In contrast to karyomorph F, the sex chromosome system
found in karyomorph G (2n = 40 in females/41 in males)
is characterized by presence of XY1Y2 chromosomes, where
the unusual acrocentric Y1 element carries the male-specific
region, enriched with several different types of repetitive DNAs
including 5S rDNA (Oliveira et al., 2018), hence strengthening
the view discussed above. As initially proposed by Bertollo et al.
(2000) and confirmed by the recent findings (Oliveira et al.,
2018), the emergence of sex chromosomes in karyomorph G
proceeded through a tandem fusion involving chromosomes
from two different pairs that might be tentatively assigned
to specific pairs in karyomorph E—a hypothetical ancestral
karyotype to both F and G karyomorphs. Importantly, while
the tandem fusion was fixed in heterozygous condition in
karyomorph G as only one homolog from each pair underwent
this rearrangement (hence resulting in unpaired large-sized
metacentric X chromosome complemented with the remaining
unfused Y1 and Y2 chromosomes in males), in karyomorph
F both homologs from the mentioned pairs gave rise to two
large-sized metacentric chromosomes, the X and Y ones (Freitas
et al., 2017; Oliveira et al., 2018, this study). Noteworthy, the
XY1Y2 system of the karyomorph G differs from the X1X2Y
neo-sex chromosomes of karyomorph D in the way that a sex-
determining region is clearly detectable by CGH only in the
former case, indicating a different evolutionary stage between
such sex systems. All these findings in karyomorphs F and
G, i.e., (i) shared homology between their sex chromosomes,
pointing to a common origin through tandem fusion and (ii)
lack of homology between multiple sex chromosomes found in
karyomorphs D and G, are supported also by recent Zoo-FISH
experiments (Oliveira et al., 2018).

In summary, our findings support trends in teleost fishes
concerning the independent and repeated evolution of sex
chromosomes regardless their phylogenetic relationships (Devlin
and Nagahama, 2002; Woram et al., 2003; Schartl, 2004; Mank
et al., 2006; Mank and Avise, 2009; Cioffi et al., 2013). It has
been shown that the sex chromosome systems and/or the stage
of their differentiation may differ evidently not only among
closely-related species, but also among different populations of
the same species (Takehana et al., 2007; Ross et al., 2009; Zhou
et al., 2010; Cioffi et al., 2012; Cnaani, 2013). Such an exceptional
sex chromosome variability could be possibly associated with
the high plasticity and dynamics of teleost genomes (Ravi
and Venkatesh, 2008), a feature usually assigned to a specific
whole-genome duplication (TSGD) that occurred at the base
of teleostean radiation (Hurley et al., 2007). As a consequence,
duplicated redundant copies of different genes might have
evolved into master sex-determining genes (Matsuda et al.,
2002; Nanda et al., 2002), thus leading to emergence of distinct
sex chromosomes in different evolutionary lineages (Schartl,
2004; Mank and Avise, 2009). The outstanding pace of sex

chromosome turnover is, however, commonly observable also in
other cold-blooded vertebrates such as amphibians and reptiles,
hence a number of alternative hypotheses about the evolutionary
forces standing behind this phenomenon have already been
proposed (for recent reviews and in depth discussion, see
Mank and Avise, 2009; Kitano and Peichel, 2012; Kikuchi and
Hamaguchi, 2013; Bachtrog et al., 2014; Brykov, 2014; Pokorná
et al., 2014; Pennell et al., 2015; Schartl et al., 2016). In a broader
context, handful of studies have provided direct evidence that the
emergence of sex chromosomes, or even the sex chromosome
turnover itself, might play a major role in reproductive isolation
promoting evolutionary divergences and eventually speciation
(e.g., Kitano et al., 2009; Nguyen et al., 2013), which is evidently
the case for H. malabaricus.

CONCLUSION

Our data provided additional layer of evidence about the status
of the taxon H. malabaricus and corroborated previous studies
in the conclusion that it includes taxonomically distinct species.
The CGH procedures proved to be very useful in detecting the
hidden biodiversity in this fish group, as they have opened novel
views and widen our understanding of the ongoing processes of
inter-karyomorph genome differentiation, as well as the amazing
variety of sex chromosome systems inside this fish group. Besides,
our approach not only uncovered themale-specific regions on the
sex chromosomes, but also confirmed different trajectories of the
sex chromosome evolution. Future studies using high throughput
sequencing will be applied in microdissected sex chromosomes
for furthering our understanding of sex determination
in this species complex and its possible link with the
speciation process.
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