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Abstract

Background: In medicine, effect sizes (ESs) allow the effects of independent variables (including risk/protective factors or
treatment interventions) on dependent variables (e.g., health outcomes) to be quantified. Given that many public health
decisions and health care policies are based on ES estimates, it is important to assess how ESs are used in the biomedical
literature and to investigate potential trends in their reporting over time. Results: Through a big data approach, the text
mining process automatically extracted 814 120 ESs from 13 322 754 PubMed abstracts. Eligible ESs were risk ratio, odds
ratio, and hazard ratio, along with their confidence intervals. Here we show a remarkable decrease of ES values in PubMed
abstracts between 1990 and 2015 while, concomitantly, results become more often statistically significant. Medians of ES
values have decreased over time for both “risk” and “protective” values. This trend was found in nearly all fields of
biomedical research, with the most marked downward tendency in genetics. Over the same period, the proportion of
statistically significant ESs increased regularly: among the abstracts with at least 1 ES, 74% were statistically significant in
1990–1995, vs 85% in 2010–2015. Conclusions: whereas decreasing ESs could be an intrinsic evolution in biomedical
research, the concomitant increase of statistically significant results is more intriguing. Although it is likely that growing
sample sizes in biomedical research could explain these results, another explanation may lie in the “publish or perish”
context of scientific research, with the probability of a growing orientation toward sensationalism in research reports.
Important provisions must be made to improve the credibility of biomedical research and limit waste of resources.
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Background

Effect sizes (ESs) are useful to describe associations in stud-
ies that focus broadly on associations between variables [1]. In
medicine, ESs allow the effects of independent variables (includ-
ing risk/protective factors or treatment interventions) on depen-
dent variables (e.g., health outcomes) to be quantified. There
are many different types of ESs [2], but in human biomedical
research, ESs are predominantly derived from risk (or rate) ra-
tios (RRs), odds ratios (ORs), or hazard ratios (HRs) [3]. No longer
confined to the early domains of epidemiological research (such
as epidemiological oncology) [4], use of these estimates is now
benefiting all biomedical research (e.g., environmental epidemi-
ology [5], genetics [6], or interventional research [7]). As there is
no straightforward relationship between P-values and strengths
of association [2], adequate reporting of ESs is strongly recom-
mended by recent statistical guidelines [8]. Given that many
public health decisions and health care policies are based on ES
estimates [9], it is important to assess how ESs are used in the
biomedical literature and to investigate potential trends in their
reporting over time. Consequently, in this study we aim (1) to
describe the global use of ESs in the biomedical literature dur-
ing the last 25 years, (2) to analyze their temporal evolution in
terms of strength and statistical significance, and (3) to identify
and discuss factors associated with potential evolutions.

Data Description

PubMed is the most commonly used database of biomedical
information [10] and was considered the primary source. A
“Knowledge Discovery in Databases” (KDD) process led us to
add the PubMed Central (PMC) database as an additional source
of data, according to the aims and modalities described in the
Knowledge checking subsection of the Methods section.

All PubMed citations were bulk-downloaded in XML format
(2017 release dated 13 December 2016) from the FTP servers of
the US National Library of Medicine (NLM). Among the 26 759
399 citations, 16 820 871 (63%) provided an abstract, and were
thus considered preprocessed data (Additional Fig. S1A–C). A
data mining process was then run to automatically detect ESs
(OR, RR, HR) within PubMed abstracts, along with several char-
acteristics of the abstracts (see details in the Methods).

Analyses

Unless specified, the results presented are related to nonreview
abstractswith 95% confidence intervals (95%CIs). Detailsmay be
found in the flow diagram of the selection process for abstracts
(Additional Fig. S1C and Additional Table S4) and in the Supple-
mentary Methods for identification of type of CI.

Reporting of ESs increased greatly over time

Two point one percent of PubMed abstracts contained at least
1 ES. The relative proportions of ES reports increased markedly
over time (Additional Fig. S2A). More than half of the ESs were
ORs, with a trend for RRs to be substituted by HRs (Additional
Fig. S2B). ESs >1 were still largely predominant, despite an in-
crease of abstracts with all ESs <1, or with a mix of ESs >1 and
ESs <1 (Additional Figs S2C and S3).

Geographic and thematic disparities in reporting of ESs

Europe and North America were by far the biggest providers of
abstracts with ESs (Fig. 1A), although the number was growing
considerably in Asia (Additional Fig. S2D). There were notable
disparities in ES values among different geographical areas: they

were higher in South America, Africa, and Asia, and lower in Eu-
rope, Oceania, and North America (Fig. 1A). ESs were more likely
to be significant in regions where they were the highest (Fig. 1B,
Additional Table S5). Higher ES values and proportions of signif-
icant ESs were found in fields dealing with infectious diseases
(Fig. 2, Additional Fig. S4).

ESs values are decreasing over time

A major finding was that ES values were decreasing over time.
In Fig. 3A, there is a clear, progressive evolution between the
1990s and the 2010s, with a massive concentration of ES values
nearer to the value 1 at the present time. This result was very ro-
bust, as the decrease was observed with all tested outcomes per
abstract (i.e., minimal, maximal, mean transformed ES values)
(Fig. 3B, C). It also concerned both “risk” and “protective” values
(Additional Fig. S5A, B): overall medians of ES values for “risk”
decreased from ES∼ 2.50 in 1990–1995 to ES∼ 2.11 in 2010–2015,
and those for “protective” values from ES∼ 0.59 to ES∼ 0.63. The
decrease was observed for all types of ESs, when analyzed sepa-
rately (Additional Fig. S5C). It was also consistent with a dimin-
ishing volume of “large” ESs, and a proliferation of “tiny” ESs in
recent years (Additional Fig. S5D). The trend was found in nearly
all fields of biomedical research, with the most marked down-
ward trend concerning genetic phenomena (Fig. 2). It was also
found on nearly all continents (Additional Fig. S5E). ESs from ab-
stracts of reviews showed a modest decrease of ESs (Additional
Fig. S6A), but the decrease was not found in subgroups of ESs
with 90% or 99% CIs (Additional Fig. S6B). Analysis of full-text
PMC articles confirmed the decreasing trend for abstracts and
tables (τ value of –0.44 and –0.21, P < 0.001) but not for Results
sections (τ value = –0.04, P = 0.41) (Additional Fig. S6C).

ESs are becoming more often statistically significant

At the same time as ES values have fallen, the proportion of sta-
tistically significant ESs has increased. Again, this finding was
constant for each outcome considered (i.e., presence of at least
1 statistically significant ES per abstract, or proportion of sta-
tistically significant ESs per abstract) (Fig. 4A, B), for both “risk”
and “protective” ESs, and whatever their type (OR, RR, HR) or
the continent in question (Additional Fig. S7A–D). CIs are now
narrower than in the past (Fig. 3C), while limits near 1 are quite
stable, even slightly farther from 1 for the upper limits of “pro-
tective” ESs: between 1990–1995 and 2010–2015, overall medians
of 95% CI limits evolved from 1.23–4.96 to 1.21–3.54 for “risk”
values, and from 0.32–0.95 to 0.42–0.91 for “protective” values.
There was no evidence of an increasing trend in abstracts of re-
views (Additional Fig. S6D), nor in subgroups of ESs with 90% or
99% CIs (Additional Fig. S6E), but the proportion of statistically
significant ESs in PMC full-text articles also increased (τ = +0.50,
P < 0.001 for abstracts and Results sections) (Additional Fig. S6F).

Factors associated with observed trends

Both decreasing ESs and increasing significance were found in
abstracts with evidence of a multivariate analysis, from Open
Access (OA) journals and fromCore Clinical Journals (CCJ) (Fig. 5).
However, we found some evolutions in the general environ-
ment of publishing: (1) a growing use of multivariate analyses
(Additional Fig. S2E), (2) an increasing appeal for Open Access
publication (Additional Fig. S2F), and (3) a smaller proportion
of abstracts from Core Clinical Journals (Additional Fig. S2G).
These changes could accentuate the observed trends because (1)
ESs from abstracts with multivariate analysis were lower than



Global trends of effect sizes in medical research 3

Figure 1: ESs are subject to geographic disparities. (A) Treemap of medians of ESs (T#3) by continent. All detected ESs were considered for the comparisons between

continents. For each continent, the size of the rectangle is proportional to the absolute number of abstracts with at least 1 detected ES. ESs from abstracts with
cross-continental affiliations (5.2% of abstracts) were counted in each continent concerned. The grayscale indicates median values of ESs (on a linear scale, T#3) by
continent: lighter gray corresponds to lower ES values, and darker gray to higher ES values. In rectangles, different letters correspond to statistically different ESs

(Kruskal-Wallis pairwise comparisons test). Europe and North America were by far the biggest providers of abstracts with ESs. ES values were higher in abstracts from
South America, Africa, and Asia, and lower in abstracts from Europe, Oceania, and North America. Number of abstracts: 238 954. (B) Histogram of mean and standard
error of proportions of statistically significant ESs per abstract, according to continent. Beneath the bars, different letters correspond to statistically different values
(Kruskal-Wallis pairwise comparisons test). ESs were more likely to be statistically significant in abstracts from South America, Africa, and Asia.

unadjusted ES values (with no difference concerning statisti-
cal significance) (Fig. 5A, B), (2) ES values reported in abstracts
from OA journals were lower than those from non-OA journals
(but with a similar proportion of statistical significance) (Fig. 5C,
D), and (3) ESs from CCJ also decreased but, above all, became
less often statistically significant than in non-CCJ over time
(Fig. 5E, F).

Discussion

Epidemiology has now reached the paradoxical situation where
ESs are decreasing remarkably over time, while these same ESs
are becoming more and more often statistically significant. We
call this surprising phenomenon the in silico effect, by analogy
with the evolution of processors (the size ofwhich has decreased

as their performance has grown) and because the rise of com-
puter science is, at least indirectly, linkedwith this general trend
(advances in statistical methods and software, availability of
huge electronic databases and larger studies, etc.).

The global decrease of ESs could be explained by several
inter-related considerations. First, as already pointed out by
Taubes in 1995, there could be a true rarefaction over time of
undiscovered conspicuous determinants of diseases, such as
smoking or alcohol [11]. We showed that this trend could be ob-
servedworldwide and inmost fields of biomedical research. Sec-
ond, methodological improvements in biomedical research [12]
could also have led to smaller ESs. Most importantly, it is highly
probable that larger sample sizes could lead to smaller effect
sizes (e.g., through better management of confounders), which
are likely to be statistically significant (through an increase in
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Figure 2: Heatmap of the temporal evolution of median ESs (T#3) by research field. ESs were considered at the abstract level, using the mean of ES(s) per abstract

(on a linear scale, T#3). Abstracts were linked to specific research field(s) according to their (MeSH) keywords, so a single abstract could be linked to multiple fields of
research (overall ratio: 801 839/229 581 = 3.49). Research fields (at the right of the figure) were defined from 2main branches of the MeSH Tree (US NLM): [C] “diseases”
and [G] “phenomena and processes.” Numbers in brackets are the total number of abstracts with at least 1 detected ES during the 25-year period in a specific research
field. Three branches (out of 43) with fewer than 1000 abstracts with at least 1 ES were eliminated. Trends were calculated at the monthly level but are represented in

the graph at the yearly level for readability. The grayscale indicates yearly median values of ESs (T#3): lighter gray corresponds to lower ES values, and darker gray to
higher ES values. On the left, research fields are grouped using a hierarchical cluster analysis and represented as a dendrogram: higher ESs are found in fields dealing
with infectious diseases (e.g., microbiological phenomena, virus diseases, bacterial infections and mycoses; see top of the figure). The color scale indicates the τ value
of the evolution of monthly medians of ESs for each research field. Blank rectangles mean nonsignificant trends. Colored rectangles are red (not blue), with variable

intensity indicating a significant monotonic downward trend of ESs in nearly all research fields. The most marked decrease is observed for genetic phenomena (τ =
–0.52, P < 0.001). Number of abstracts: 229 581.

statistical power). Indeed, multivariate analyses are more fre-
quently used as time goes on, which could lead toweaker effects
than those obtained with univariate analyses [13]. Third, cul-
tural effects should also be considered. We found that ESs have
become smaller in contemporary CCJ. “Modest” ESs (i.e.,<RR∼ 3)
are no longer “discredited,” asmayhave been the case in the past
(e.g., by some former editors of Core Clinical Journals) [11], and
slight associations have now become the rule [14]. It is now ac-
cepted, at least in some fields of research, that most true associ-
ations have small effects [15]. Another kind of cultural explana-
tion appears when different geographical areas are examined:
the “five eyes” countries (Australia, Canada, New Zealand, the
United Kingdom, and the United States—the greatest produc-
ers and influencers of biomedical research) [16] and the Scandi-
navian monarchies (Denmark, Sweden, and Norway) are among
the countries reporting the lowest ESs. Interestingly, it has been
shown that scientists from these countries may be more cau-
tious when reporting results, as evidenced by their prominent
use of words implying uncertainty in their abstracts [17]. This
is also consistent with stronger ESs being found in Asian stud-
ies than in the European and American literature, e.g., for gene-
disease associations [18]. The desire to “compete” with Europe
and the United States may be an explanation [14]. Finally, an-
other explanation would be the file drawer effect (i.e., publica-
tion bias) [19, 20], which could mask a more pronounced de-
crease of ESs than the 1 we identified by underestimating the
amount of null or negative effects. The increased rejection rates
and the increased emphasis on risk factors have encouraged ed-
itors and authors to select and present manuscripts with bigger
effect sizes and/or significant differences [19].

One should not directly interpret this structural trend at the
whole literature level in the same way as has already been de-
scribed at the level of particular topics in biology [21] or in
medical research [22]. Gehr evoked the “fading of reported ef-
fectiveness” in randomized controlled trials [23]. Among several
explanations [21], the “Proteus phenomenon” [24] has been de-
scribed to evoke “rapidly alternating extreme research claims
and extremely opposite refutations” [25]. Decreasing ESs in a
particular topic are likely to lead to a loss of statistical signifi-
cance [21], as observed in several cumulativemeta-analyses [26].
In contrast, while we alsomeasured decreasing ESs, our findings
indicated a clear trend toward a growing proportion of statisti-
cally significant results over time. This result is consistent with
several other trans-disciplinary meta-research results: a trend
toward lower P-values reported in PubMed abstracts between
1990 and 2015 [27], increasing reporting of significant tiny effects
in the literature [28], and an increasing proportion of positive re-
sults [29].

Although the decrease in ESs over time does not seem prob-
lematic in itself, the growing proportion of statistically signifi-
cant results is more intriguing and may reflect the “publish or
perish” context of scientific research. With a growing popula-
tion of researchersworldwide [30], all competing to obtain funds,
and a probable tendency toward placing greater emphasis on
novelty and sensationalism [29], maintaining statistically signif-
icant results may have become the way to “compensate” for the
decrease of ESs. We also found that the growing proportion of
statistically significant results was unaffected by the develop-
ment of Open Access publishing [31] but could be accentuated
by the increasing relative importance of Asian papers.
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Figure 3: ESs are decreasing over time. (A) Heatmap of the temporal evolution of ESs (i.e., odds ratio, relative risk, or hazard ratio) on their original log scale (T#1)
(see details in the Supplementary Methods). All detected ESs (n = 690 196) are considered. ESs <1 were transformed according to the T#1 transformation (inverse
transformation) (Additional Table S3A). ES >1 were not transformed. The vertical axis corresponds to a logarithmic scale ranging from 1 to 100, with 25 regular cutoff
values (ESs that were >100, corresponding to 0.16% of all detected ESs, are not reported on the graph). The color scale indicates the monthly relative proportion of

ESs in each interval: cold colors correspond to lower proportions and hot colors to higher. We can see a trend toward a massive concentration of ES values near to
1 at present. The black dots represent the overall relative proportion of ESs, by year and by interval. We can see that the lowest ESs of the more recent abstracts are
the most numerous ESs overall. (B) Scatter plot of the temporal evolution of monthly medians of ESs on a linear scale (T#3). ESs were considered at the abstract level
(n = 247 339). Three different outcomes were considered: minimal, maximal, and mean of ES(s) of each abstract. The 3 temporal evolutions are decreasing, with τ

values of –0.64 (P < 0.001), –0.59 (P < 0.001), and –0.63 (P < 0.001), respectively. (C) Scatter plot of the temporal evolution of monthly medians of confidence interval (CI)
magnitudes on a linear scale (T#3). CI magnitudes were considered at the abstract level (n = 247 339). Three different outcomes are considered: minimal, maximal,
and mean of CI magnitude(s) of each abstract. The 3 temporal evolutions are decreasing, with τ values of –0.76 (P < 0.001), –0.67 (P < 0.001), and –0.72 (P < 0.001),

respectively.

Among the limitations of this study is the incomplete repre-
sentation of different possible metrics of ESs [2]: RRs, ORs, and
HRs are not the only way to report measures of associations. Al-
though it is mathematically conceivable to standardize other ES
metrics (e.g., to convert Cohen’s d, Hedges’ g, and correlation co-
efficient to odds ratio following standard transformations [32],
as already done in other meta-research [33]), we could not per-
formdatamining on all existingmetrics with sufficient accuracy
to guarantee the best measurement quality. However, it is rather

unlikely that the in silico effect would be specific to particular
metrics.We also did not filter out analyses in regard to RR/OR/HR
thatwere expressed per unit of continuous variable, but this lim-
itation should not have any effect on temporal trends. One could
argue that the heterogeneity of the data that forms the basis of
the analysis makes it impossible to infer the meaning of these
trends. ESs reflect the effects of continuous, categorical, or bi-
nary measures and include risk factors for diseases, treatment
effects of new drugs vs placebo, genetic effects, effects of risk
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Figure 4: Proportions of statistically significant ESs have increased with time in 247 339 abstracts. (A) Scatter plot of the temporal evolution of monthly proportions
of abstracts with at least 1 statistically significant ES. There is a monotonic upward trend: τ value = 0.65 (P < 0.001). (B) Scatter plot of the temporal evolution of the

monthly mean of proportions of statistically significant ES per abstract. There is a monotonic upward trend: τ value = 0.77 (P < 0.001).

scores, etc. However, considering the biomedical literature as a
whole is the only way to assess macro-trends in the way ESs are
reported. Given that practical interpretation of ESs has not re-
ally changed over time, it is important to identify such trends.
Other limitations are related to the data available in XML files of
PubMed abstracts, and to the automatic nature of the data min-
ing process: both these considerations prevented us from carry-
ing out in-depth analysis of results in relation to sample sizes,
e.g., quality of studies or conflicts of interest.

Potential implications

In this era of alternative truths and bullying of the press, the
public and politicians need a science of epidemiology that is
credible and trustworthy. Echoing Taubes [11], it is still impor-
tant for epidemiology to avoid becoming an “unending source
of fear,” with too many studies having too little real impact
on public health. The medical and research community should
acknowledge forces and constraints that influence the design
of studies and the way their results are interpreted, because
they have significant impact on health decisions and policies.
We suggest that biomedical researchers should be skilled in
meta-research in order to take a bird’s eye view of science [34].
More than ever, efforts to improve the credibility of biomedi-
cal research and limit waste of resources must be continued
[35]. This implies important provisions, described by Ioannidis
[36], among others, such as the adoption of replication culture,
changes in the way statistical methods are designed and used
in the reporting and interpretation of results [37], and modifi-
cations in the reward system of science [38], to name but a few.
From our results, we can add the consideration to be accorded to
Core Clinical Journals when making health decisions and poli-
cies: the importance of their role both in maintaining quality
of research and in filtering articles of clinical or scientific impor-
tance seems to be growing. Finally, intensifying transdisciplinar-
ity with the humanities would help epidemiologists to provide
research that would be regarded in terms of its “potential uses
andmisuses in serving and affecting the human condition” [39].

Methods

We followed a KDD approach. The KDD process is iterative and
involves several steps, combining automated methods with hu-
man decisions [40]. The following subsections describe all fi-
nal iterations. The overall process is described in Additional Fig.

S1A–C. Algorithms and statistical scripts are explained in the
Supplementary Information and are downloadable [41].

Data mining

Using an iterative process, we developed an algorithm aimed
to automatically detect the 3 main types of ESs (OR, RR, HR) in
PubMed abstracts. As terminology was poorly standardized, we
iteratively refreshed a list of ES terms frequently used in biomed-
ical research, e.g., “RR,” “OR,” “HR,” “relative risk,” “odds ratio,”
“hazard ratio,” “aRR,” “aOR,” “aHR,” etc. (Additional Table S1).
We also filtered numeric values not likely to be ES values and
checked for polysemy of acronyms. The algorithm [41] was tai-
lored to detect the full wording of all medical abbreviations hav-
ing reported values that could be confused with those of ES
terms using the same abbreviation (e.g., “respiratory rate” for RR,
“ovulation rate” for OR, “heart rate” for HR) (Additional Table S1).

Each attempt to improve the detection of ESs was tested for
diagnostic performance on random samples of 200 abstracts,
and iterations were validated if both sensitivity and specificity
were improved. At the final iteration, a sensitivity greater than
95% and a specificity of 99.9% (interobserver κ > 0.97) were
reached (SupplementaryMethods, Additional Table S2, and Sup-
plementary File 1 for performance testing).

The algorithm automatically recognized the type of ES, its
value, and the values of upper and lower limits of its CI (Sup-
plementary Methods). Other characteristics of the citation that
the ESwas drawn fromwere retrieved: PubMed identifier (PMID),
±PMC identifier (PMCID), month/year of publication, authors’
affiliation country(ies), Medical SubHeadings (MeSH) keywords,
detection of a multivariate analysis (yes/no), OA publication
(yes/no), publication in a CCJ (yes/no), CI level (i.e., 90%, 95%, or
99%), and type of publication (“review”: yes/no).

Given the small number of abstracts indexed per year [27]
before 1990 and the as-yet incomplete indexing of abstracts from
2016, only the 1990–2015 period was considered. This process
led to the generation of a comprehensive database of 814 120 ES
values (fully available in GigaDB [41]).

Data transformation

By nature, OR/RR/HR values are expressed on a logarithmic scale
(between 0 and 1 for “protective” values, and between 1 and
+∞ for “risk” values). The logarithmic transformation of these
ESs has the useful property of being normally distributed [42],
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Figure 5: Factors associated with observed trends. Scatter plots of the temporal evolution of monthly medians of ESs (A, C, E) or mean proportions of statistically
significant ESs per abstract (B, D, F), according to presence (yes/no) of the following factors: a multivariate analysis (A, B), the Open Access status of the article (C, D) or
the “Core Clinical Journal” status of the article (E, F). The full line represents the temporal trend for abstracts with evidence of the factor, and the dotted line without

evidence of the factor. ESs were considered at the abstract level. The outcome was the mean of ES(s) of each abstract (on a linear scale, T#3). (A) ESs from abstracts
with multivariate analysis were generally lower than values from abstracts without multivariate analysis during the 25 year period (P < 0.001, Mann-Whitney test).
(B) There was no statistical difference between the 2 categories regarding statistical significance during the 25-year period (P = 0.59, Mann-Whitney test). Number of

abstracts: 136 724 and 110 615 abstracts with and without multivariate analysis, respectively. (C) ESs from Open Access abstracts were generally lower than values
from non–Open Access abstracts during the 25-year period (P < 0.001, Mann-Whitney test). (D) There was no statistical difference between the 2 categories regarding
statistical significance during the 25-year period (P = 0.57, Mann-Whitney test). Number of abstracts: 92 040 Open Access and 155 299 non–Open Access abstracts.
(E) ESs from CCJ abstracts were generally lower than values from non-CCJ abstracts during the 25-year period (P < 0.001, Mann-Whitney test), especially from around

the year 2000 onwards. (F) There was no difference between the 2 categories regarding statistical significance during the 25-year period (P = 0.08, Mann-Whitney test).
However, we can see that the curves cross around 2005. When the period between 2005 and 2015 was considered, ESs from CCJ abstracts were less often statistically
significant (P < 0.001, Mann-Whitney test).

and the absolute value of the ln-transformed ESs provides a
standardization of “protective” and “risk” values. Depending on
whether ES values were normalized and/or standardized, 4 dif-
ferent transformations were defined (rationale and mathemati-
cal explanations in Additional Table S3a).

Data analysis

Outcomes
We defined 3 types of ESs: ORs, RRs, and HRs.
Original ESs values were categorized as:

- “protective” if <1, “risk” if >1, “neutral” if =1;
- “large” [43] when ≤0.2 or ≥5, and “tiny” [28] if between 0.95
and 1.05;

- statistically significant if the CI did not encompass 1.

As multiple ESs are often found within a single abstract, for
analyses at the abstract level, ES values were condensed in dif-
ferent ways (Additional Table S3B):

- minimal andmaximal ES values per abstract (i.e., the nearest
value to 1 and the farthest value from 1, respectively);

- mean of ES values per abstract (after logarithmic transforma-
tion);

- magnitude of CIs (minimal, maximal, and mean per abstract
after logarithmic transformation);

- presence of at least 1 statistically significant ES value in the
abstract (yes/no) and proportion of statistically significant
ESs per abstract.
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Primary analyseswere confined to non-reviews to avoid over-
representation of some ES values, and to ESswith 95%CI to allow
magnitude comparisons of CIs.

Analysis plan
An iterative analysis plan was designed for the 3 aims of the
study. Specific objectives were listed (Additional Table S4).

Statistical analyses
Descriptive analyses involved calculations of frequency dis-
tribution, percentages, means, and tabular statistics for the
reporting of ESs (both by type of ES and all taken together
for readability purposes). The monotonic upward or downward
trend of monthly medians of ES values over time was assessed
using the Mann-Kendall (MK) test [44]. ES comparisons between
classes of binary variables were tested using Mann-Whitney
statistics. A Kruskal-Wallis pairwise comparison (using Dunn’s
test for multiple comparisons) was achieved to compare val-
ues across continents. The significance level of statistical tests
was set at P <0.001. Statistics and graphics for data visualization
were produced using R 3.2.3 (Vienna, Austria, 2015; R Project for
Statistical Computing, RRID:SCR 001905). A “loess” fitted curve
[45] was added to scatterplots in order to visualize temporal
trends.

Knowledge checking [40]

Systematic reviews and other types of CI
Complementary analyses on temporal evolution of ESs were
conducted on 2 subgroups not included in the primary analy-
ses: ESs detected in citations identified as “review” and ESs with
CI at 90% or 99% (Additional Fig. S2H, I).

PMC database
As an abstract may not be fully representative of the full-text
article, we extended the datamining process to full-text articles;
64 829 citations with a PMCID number were thus selected from
the comprehensive database. XMLdata fromcorresponding PMC
articles (25 868 available articles) were then downloaded, and a
similar data-mining strategywas applied to the Results sections:
135 542 values were detected; 589 743 ESs were also detected
within tables and analyzed separately [41].

Availability of source code and requirements

Project name: PubMed ES Detector Source code available
at: https://github.com/gigascience/paper-monsarrat2017 &
http://dx.doi.org/10.5524/100385.

Operating systems: platform independent
Programming language: Perl
License: GNU GPL v3

Availability of supporting data and materials

Further supporting data are available in the GigaScience repos-
itory, GigaDB [41]. The dataset contains the comprehensive
database of detected ESs in Pubmed, the database of detected
ESs in PubMed Central, and snapshots of the source code of the
program that helped to generate these databases. Three spe-
cific modules were developed: ES˙detector.pm, Load module.pm
and Mesh detector.pm. The flow diagram of the program can be
found in Additional Fig. S1.

Additional files

Additional information may be found in the Supplementary In-
formation pdf file.

The Supplementary Methods contains additional informa-
tion about the data mining method, programming algorithm,
performance tests of the algorithm, and definition of citation
characteristics.

Additional Table 1: check for polysemy of terms re-
lated to types of ESs. The algorithm checked for the pol-
ysemy of acronyms. Through the MediLexicon online
database of pharmaceutical and medical abbreviations
(http://www.medilexicon.com/), all potential synonyms were
identified by text mining on the entire abstract. All the terms
considered are presented below. From regular expressions,
some variations were considered to increase the detection of
ES acronyms: presence or absence of plural, hyphen, or spaces.
The presence of any of these terms in an abstract oriented the
data mining process toward a more restrictive procedure in
order to minimize the “false positive” rate.

Additional Table 2: Examples of “undetectable” ESs, false-
negative ESs, and false-positive ESs.

Additional Table 3: Mathematical transformations and main
outcomes.

Additional Table 4: Summary table of the analysis plan.
Additional Table 5: Geographical analysis.
Additional Figure 1: Overview of the “Knowledge Discovery

in Databases” (KDD) approach used in this study: the different
steps that compose the KDD process, the flowchart of the al-
gorithm for PubMed data mining, and the flow diagram of the
selection process for abstracts.

Additional Figure 2: Descriptive analysis of the comprehen-
sive database and descriptive analysis of ESs in abstracts.

Additional Figure 3: Histogramdistribution of the effect sizes.
Additional Figure 4: Heatmap of the temporal evolution of

proportion of statistically significant ESs per abstract: disparities
among fields of research.

Additional Figure 5: Descriptive analysis of ES values in ab-
stracts for protective and risk values, type of ESs, tiny and large
effects, and geographical areas.

Additional Figure 6: Descriptive analysis of ES values and sig-
nificance from reviews, according to confidence intervals, from
PMC full texts.

Additional Figure 7: Descriptive analysis of ES significance
in abstracts for protective and risk values, type of ESs, tiny and
large effects, and geographical areas.

Supplementary File 1 contains additional information about
performance testing: kappa, sensitivity, and specificity.

Supplementary References
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