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Abstract: Ionic liquid (IL) glasses have recently drawn much interest as unusual media with unique
physicochemical properties. In particular, anomalous suppression of molecular mobility in imi-
dazolium IL glasses vs. increasing temperature was evidenced by pulse Electron Paramagnetic
Resonance (EPR) spectroscopy. Although such behavior has been proven to originate from dynamics
of alkyl chains of IL cations, the role of electron spin relaxation induced by surrounding protons
still remains unclear. In this work we synthesized two deuterated imidazolium-based ILs to reduce
electron–nuclear couplings between radical probe and alkyl chains of IL, and investigated molecular
mobility in these glasses. The obtained trends were found closely similar for deuterated and proto-
nated analogs, thus excluding the relaxation-induced artifacts and reliably demonstrating structural
grounds of the observed anomalies in heterogeneous IL glasses.

Keywords: ionic liquids; glasses; molecular mobility; spin probe; deuteration effect; nanostructure

1. Introduction

Ionic liquids (ILs) exhibit a number of unusual and advanced properties [1–3], making
them prospective media for various chemical processes in many fields of modern science
and technology [4–8]. ILs are suitable for many applications, including electrolytes in bat-
teries [9–12], catalyses [5,13], solvents in liquid–liquid extractions [14–16], pharmaceutics
and medicine [17–20]; they have also attracted considerable attention as reaction media for
many organic reactions [20–27]. The most unusual characteristic of ILs is their nanoscale
self-organization, leading to the formation of heterogeneities [28,29]. There are plenty
of theoretical investigations regarding the effects of molecular self-organization in bulk
ILs [30–37]. It was experimentally proven that charged cationic head groups and anions
tend to aggregate in polar nanodomains, and hydrophobic alkyl chains form apolar nan-
odomains. Experimental approaches such as X-ray diffraction/scattering [38–41], neutron
diffraction/scattering [42,43] and nuclear magnetic resonance (NMR) spectroscopy [44–46]
have provided great development in the knowledge on heterogeneous micro- and nanos-
tructures of bulk ILs. Recently, extensive studies of heterogeneities in IL glasses were
performed using Electron Paramagnetic Resonance (EPR) spectroscopy [47–52]. We devel-
oped and implemented complex approach including continuous wave (CW) EPR, pulse
and time-resolved (TR) EPR [53–61]. Since studied ILs are naturally diamagnetic, spin
probes (stable radicals or photoinduced triplet states) were used for EPR detection. Variable-
temperature CW EPR data show that mobile and immobile local environments coexist
within a broad range of temperatures upon transition from glassy to a liquid state of
imidazolium ILs [53,56,61]. Pulse EPR allows monitoring small-angle wobbling (stochastic
molecular librations) of spin probe that is dictated by a surrounding glassy matrix, as a
function of temperature [62]. It has been found that anomalous suppression of molecular
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mobility is observed near glass transition temperature (Tg) in a series of ILs, typically in a
range from ~(Tg − 60) K to Tg [56]. Since most media become less dense upon temperature
growth, thus favoring more intensive molecular motion, the observed opposite trend was
termed structural anomaly. It was assigned to the structural rearrangements occurring in
solvation shell of a radical probe, and later research unequivocally demonstrated that alkyl
chains are the main cause of these phenomena [61].

Still, the detailed mechanism of these structural anomalies has not been revealed.
One particular remaining question relates to the role of electron spin relaxation in the
observed phenomena. Most anomalies were found to occur at T~140–200 K [56]. It is worth
noting that approximately the same temperature range is characterized by unfreezing of
efficient rotations of CH3-groups in various compounds [63,64]. For instance, Figure 1
compares literature data on temperature dependence of transverse relaxation rate (1/T2) in
logarithmic scale for two nitroxide radicals, one of which contains CH3-groups adjacent
to NO moiety (MTSSL, methane-thiosulfonate spin label, in water/glycerol mixture [63]),
and another one does not (N1 radical, see structure below, in IL [56]). Since MTSSL
contains methyl groups, these groups have a huge impact on the relaxation behavior in
the temperature range where their rotation activates, and the bell-like shape in 1/T2(T)
dependence is pronounced. Such temperature range slightly depends on the structure of
the radical, but it is present for every nitroxide containing CH3 group(s) adjacent to NO
moiety [65].
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Figure 1. Temperature dependence of spin echo dephasing rates, 1/T2, for N1 dissolved in ionic
liquid [Bmim]BF4 (black squares, adapted from Ref. [56]) and for MTSSL in water/glycerol (1:1)
mixture (green circles, adapted from Ref. [63]) measured at the maximum of echo-detected spectrum,
position I in Figure 2a below.

To avoid effects of CH3 groups, in our recent studies (including this one) we used N1
radical without methyl groups (see structure below) [63,66,67]. However, elimination of
methyl groups from radical might not completely exclude all effects of this kind. Indeed,
the cations of IL, which surround radicals, have terminal CH3 groups in the vicinity of
radical NO group; therefore, this mechanism might still hypothetically contribute to the
manifestation of anomaly. This issue is relevant, because in the pulse EPR approach,
the molecular mobility in glasses is measured indeed via electron spin relaxation of the
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embedded probe [62]. Therefore, it is vital to reliably disentangle (i) spin relaxation
induced by molecular mobility of the probe (that characterizes local density and structure of
heterogeneity) from (ii) spin relaxation induced by rotation of CH3-groups in surrounding
alkyl chains of IL cations. The relaxation rate of the second process (ii) has a characteristic
dependence on temperature with a maximum at T~150 K [63], whose shape is generally
similar to the dependence of molecular mobility observed by EPR. Several theoretical
speculations can be drawn to disentangle two contributions (i) and (ii). The most convincing
idea is that relaxation due to mechanism (ii) should be isotropic (i.e., independent of
the spectral position) and thus irrelevant for the implemented methodology (vide infra).
However, the most transparent experimental verification of mechanisms (i) vs. (ii) might be
accomplished by comparing pulse EPR data for protonated and deuterated ILs. The driving
force of (ii) is dipolar couplings between the electron of a radical and nuclei of ILs. Since
deuteron has a ca. 6.5 times smaller gyromagnetic ratio than the proton, replacement of
CH3 groups by CD3 groups should significantly suppress the magnetic relaxation induced
by rotations of these groups [68,69].

The effects of deuteration of a radical’s CH3-groups on its phase relaxation have been
described in detail in many studies [70,71]. However, the superior way is to replace these
methyl groups with cyclohexane groups, which are not able to rotate (N1 radical, see
below). Excluding methyl groups of solvent, IL cations, is, of course, not possible, and their
deuteration is the only way to distinguish between processes (i) and (ii).

Therefore, in this work we synthesized two deuterated imidazolium-based ILs, [Bmim]BF4
and [Bmim]Br, and one pyridinium-based IL, [BuPy]BF4, investigated the molecular mobil-
ity in their glasses by EPR and compared the obtained results with those for protonated
analogs. This experimental study allowed first assessment of the role of methyl groups of
IL cations in the observed anomalies.

2. Results and Discussion

Scheme 1 shows the structures of ILs in deuterated and protonated forms studied
in this work, along with the structure of nitroxide radical used as a spin probe. We did
not succeed in replacing all protons with deuterium in ILs. However, in the case of
[Bmim]-like ILs we obtained different isotopomers to check the influence of -CH3 groups
in imidazolium ring on radical relaxation, as well as to additionally detail the morphology
of matrix surrounding the spin probe. Following the same logic, the pyridinium-based IL
with non-labile protons in the ring was prepared. Two anions BF4

− and Br− were selected
to exclude relaxation mechanism from rotating fluorine nuclei that have gyromagnetic
ratio close to proton [69] and thus might also have an impact on the studied processes.

To study the molecular mobility in IL glasses, we employed the same approach as that
used in our previous works [54,56,61], originally developed by Dzuba and colls [62,72,73]
(see Supporting Information for details). Briefly, we investigate small-angle stochastic
molecular librations (wobbling) of spin probe located in glass. Several previous studies,
which employed radical probes of various structures, have shown that glassy matrix
effectively translates its own librational motion onto the embedded probe, thus, the mobility
of probe describes the molecular mobility of the glass itself [74,75]. The wobbling of radical
modulates magnetic interactions and effectively induces transverse electron spin relaxation
with characteristic decay time T2. For nitroxides at X-band, the main relaxation pathway
is caused by electron–nuclear (hyperfine) interactions, whereas the anisotropy of g-tensor
can be neglected. Due to the anisotropy of the hyperfine interaction between the unpaired
electron and 14N nucleus, the T2 depends on field position across the EPR spectrum. The
difference of the relaxation rates (1/T2 values) measured at two characteristic spectral
positions (Figure 2a) can be expressed as L~ 1/T2

(II) − 1/T2
(I)) = 1011(α2)τc, where (α2) is

the mean-squared amplitude of librations and τc is their characteristic time [56,76]. The
temperature dependence L(T) essentially characterizes the molecular mobility and local
rigidity of the matrix surrounding the spin probe.
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Figure 2. (a) Illustrative echo-detected spectrum with indicated field positions I and II where T2 was measured, B is the
magnetic field. (b–g) Temperature dependence of T2

−1 recorded in corresponding spectrum position for protonated and
deutered ILs listed in Scheme 1. (h–j) Temperature dependence of the motional parameter L for nitroxide radical N1 in
ILs, see text for details. Vertical dashed lines show the corresponding Tg values for each IL: Tg = 188 K for [Bmim]BF4 [56],
Tg = 223 K for [Bmim]Br [77] and Tg = 197 K for [BuPy]BF4 [56].
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Figure 2 shows the pulse EPR data for three studied ILs [Bmim]BF4, [Bmim]Br and
[BuPy]BF4 in deuterated and protonated forms (the latter were obtained in our previous
research [56]). Figure 2b–g shows the inverse T2 relaxation time recorded in the spectral
positions I (b–d) and II (e–g), Figure 2h–j reports the L(T) functions, which are proportional
to the difference of inverse T2 values (see above).

First, it is clear that the anomaly is present in the deuterated glass for all studied ILs.
The position of local minimum in L(T) remains roughly the same and closely coincides
with the Tg temperature of corresponding IL, as is depicted by dashed line. The amplitude
of L(T) in the anomalous region T~150–180 K, where molecular mobility decreases with
temperature, is slightly smaller in deuterated ILs. However, it is clear that both deuterated
and protonated ILs manifest closely the same L(T), whereas small deviations might arise
from the errors of processing the original relaxation data for deuterated IL (see SI for
details). It is important to note that the anomaly is also present in 1/T2 vs. T dependences
for protonated and deuterated ILs, which means that the temperature-driven librations
more strongly contribute to the overall relaxation in this range than the temperature-
independent nuclear spin diffusion. Moreover, one can notice that the absolute values of
1/T2 for deuterated ILs are significantly lower than those in protonated ones. The faster
relaxation in the protonated matrix is due to an additional contribution from protons, which
by their nature have a larger and more anisotropic magnetic moment than the deuterium
nuclei. However, this explanation can be feasible only for comparison between similar ILs
but not between different ones, because we cannot exclude the impact of nanostructuring
around the spin probe. For example, our previous research with squalene [54], which has a
lot of protons, showed slower relaxation compared to some ILs. Importantly, the results for
ILs with different deuteration degrees are almost identical. Therefore, protons located in
imidazolium ring have a negligible impact on the spin relaxation of radical probe. This
indirectly confirms the surrounding of alkyl tails around spin probe, which was earlier
proposed in the literature [35,38,44,78], as well as in our previous studies [53,54].

Our recent research has shown that structural anomaly in glassy matrix is governed
by alkyl chains of a proper length; in addition, the matrix should have a proper Tg to
allow alkyl chains reveal their dynamical behavior [61]. Recently the anomaly has been
observed as well in other compounds apart from ILs, for example in common ethanol.
Since fully deuterated ethanol is easily available, we investigated the structural anomaly
in this glass as well. Figure 3 shows data for ethanol similar to those reported for ILs in
Figure 2. Obviously, similar trends upon deuteration are observed for ethanol and for
ILs (see above): the relaxation becomes longer in deuterated glass, but the anomaly L(T)
remains. The d6-ethanol glass is completely free of protons, therefore, there is no doubt
that deuteration has only minor effects on the shape of the curve.

Thus, we conclude that the anomalous suppression of molecular mobility in ILs near
their glass-transition temperatures is a structural phenomenon, not an artifact induced by
rotation of methyl groups of solvent activated in approximately the same temperature range.
Note that, in principle, the same ‘relaxation-induced artifact’ might originate from rotation
of own methyl groups of the radical probe; however, we deliberately used a dedicated
spirocyclohexane-substituted nitroxide N1 in this work, which is free from methyl groups
adjacent to NO moiety, and because of that has favorable relaxation properties [63,66,67].

The conclusion on structural grounds of the observed anomalies in IL glasses agrees
well with that of our previous study, where a different type of spin probe—triarylmethyl
(TAM) radical—and different methodology for L(T) measurement were employed [58].
Despite TAM being much larger that the N1 radical and having drastically different
structure and shape, the L(T) curves were found very similar using both probes, implying
that the relaxation (and thus L(T)) is truly dictated by the librations of glassy environment.
Interestingly, in recent works of Dzuba and colleagues, similar L(T) shapes with a clear
maximum were obtained for tumbling radicals attached to the surface (i.e., not in glassy
media) [79]. The observation of such saturation near room temperature was explained by
violating the applicability of Redfield relaxation theory, when (α2)τc becomes large due
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to semi-free large-amplitude motion of the radical. It would be hypothetically possible
that in case of glassy ILs radical probes also exhibit similar large-scale tumbling, leading
to an anomalous L(T) shape. However, the coincidence of the L(T) shapes obtained using
nitroxide and TAM radicals requires similar values of their (α2)τc, which seems a very
unlikely coincidence for such different molecules. Therefore, with the help of experimental
data obtained in the present work, we substantiate structural grounds for the observed
L(T) anomalies in IL glasses.
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3. Materials and Methods

All deuterated ILs were synthesized following the procedure described in the Sup-
porting Information (SI). We succeeded in obtaining two isotopomers of Bmim cations (d9-
and d12-versions).

The spiro-cyclohexane-substituted nitroxide N1 was kindly provided by Dr Igor
Kirilyuk, NIOCh SB RAS. It was dissolved in the corresponding IL in 1 mM concentrations,
and the solution was placed in an EPR quartz tube with a 3.8 mm outer diameter.

EPR measurements were performed using a commercial Bruker Elexsys E580 spec-
trometer at the X-band. The spectrometer was equipped with an Oxford Instruments
temperature control system (4–300 K). The echo-detected EPR spectra and phase memory
times were recorded using the standard two-pulse echo sequence with pulse lengths being
typically 100 ns for π and 50 ns for π/2.

The electron spin echo envelope modulation (ESEEM) was strongly manifested in
spin-echo decay of deuterated samples at closely deuteron Larmor frequency (ESEEM for
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the protonated samples was much weaker for the same pulse lengths used). Therefore, the
extraction of corresponding T2 values in deuterated samples required the fitting procedure
accounting for ESEEM, which is described in Figure S1 and text of SI.

4. Conclusions

In this work we have provided unequivocal experimental evidence that the observed
anomalous molecular mobility near Tg in imidazolium-based ILs is not a relaxation-induced
artifact arising from a rotation of CH3-groups in IL cations. Using deuterated ILs and
comparing the results with protonated analogs, we safely ruled out the possibility that tem-
perature dependence of transverse relaxation might mimic the suppression of molecular
mobility. On the basis of new experimental data and previous pulse/CW EPR studies [61],
the observed anomalies should be assigned straight to the structural rearrangements of
alkyl chains and increase of local density in apolar domains constituted by these chains.
This is an interesting and unique phenomenon, which would be imposed onto any solute
molecule localized in such apolar nanodomains. Moreover, recently we have demonstrated
that similar structural anomalies are inherent also to certain non-IL solvents, such as phtha-
lates, which are able to form glasses stable in a broad temperature range [61]. Therefore,
deeper understanding of such structural anomalies revealed in the present work is of
fundamental importance and might also have a variety of implications in the future.

Supplementary Materials: The following are available online: Details on Chemicals. Synthesis of
deuterated ionic liquids. The NMR spectral data of ionic liquids. Spin-echo decay simulation.
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