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A B S T R A C T

Immune dysregulation characterized by T cell exhaustion and high level of inflammatory cytokines is associated
with severe COVID-19. Figuring out the early event of immune dysregulation would provide a potential treat-
ment for COVID-19. Recent evidence indicate that mitochondrial dysfunction participates in the development of
COVID-19 and may be responsible for the dysregulated immune response. Mitochondrial-targeted ubiquinone
(MitoQ), a mitochondrial-targeted antioxidant, shows beneficial effects on various diseases through improving
mitochondrial dysfunction. We hypothesize that MitoQ could act as a potential treatment in COVID-19. MitoQ
may alleviate cytokine storm and restore the function of exhausted T cells in COVID-19 patients through im-
proving mitochondrial dysfunction. In this article, we provide evidence to support the use of MitoQ as a potential
treatment or adjunct therapy in the context of COVID-19.

Background to hypothesis

Coronavirus disease 2019 (COVID-19), caused by severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2), was first reported in
December 2019 in Wuhan, China [1]. The virus has spread rapidly to
other countries and became pandemic. As of May 17, 2020, a total of
4,719,849 confirmed cases of COVID-19 and 313,228 deaths have been
reported across the globe. The clinical manifestation of COVID-19 could
vary from an asymptomatic course to severe pneumonia, multiple organ
injury and mortality [2]. The morbidity and mortality of COVID-19
patients have been reported to be associated with elderly age, male and
the comorbidities such as hypertension, diabetes, cardiovascular dis-
ease and chronic obstructive lung disease [3,4]. Although a lot of
treatments such as chloroquine or hydroxychloroquine, antiviral drugs
including remdesivir, interleukin-6 inhibitor and mesenchymal stem
cell-based therapy are under investigation currently, unfortunately,
none of them has been approved for treatment of COVID-19 [5,6].

Recent studies have indicated that lymphopenia, exhaustion of T
cells (immunodeficiency) and cytokine storm (hyperinflammation) are
hallmarks of severe COVID-19 patients, suggesting that the broken
homeostasis of the immune response plays a critical role in the devel-
opment of COVID-19 [7]. In severe COVID-19 patients, the lymphocyte
counts are markedly decreased with elevated levels of exhaustion
markers and reduced functional diversity [8]. The lymphocyte counts
are inversely correlated with serum IL-6, IL-10 and TNF-α and with

high levels of exhaustion markers such as PD-1, Tim-3, TIGIT [8–10].
Figuring out the early events of the dysregulated immune function may
provide a potential treatment for COVID-19 patients.

Mitochondria play pivotal roles in cell homeostasis. They are the
powerhouse of cells as well as the main source of reactive oxygen
species (ROS) within the cells. Furthermore, mitochondria regulate
innate and adaptive immunity [11]. Mitochondrial dysfunction is ty-
pically characterized by a disturbance of the basic mitochondrial
bioenergetic, antioxidant and regulatory function which results in a
decrease in ATP synthesis, dysregulated cell death processes and in-
creased ROS production[12]. Mitochondrial dysfunction is involved in
the development of various diseases, e.g. diabetes, COPD, ischemia–r-
eperfusion injury and respiratory virus infection [13]. A study by Zhang
et al. showed that SARS-CoV-1 nucleocapsid protein induced apoptosis
of COS-1 cells with mitochondrial dysfunction, which was demon-
strated by increase of ROS and loss of mitochondrial potential [14].
Recent study using master regulator analysis demonstrated that a
member of the mitochondrial complex I is downregulated by SARS-
CoV-2-infection, suggesting the virus may use the strategy of attacking
the host cells through disruption of mitochondria [15]. Another study
of gene expression analysis by single cell RNA seq reported that lung
cell line A549 infected with SARS-CoV-2 upregulated genes in the in-
terferon, cytokines, nuclear factor kappaB (NF-κB) and ROS processes,
while downregulated the genes in the mitochondrial organization and
respiration processes [16]. The above studies indicate that
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mitochondrial dysfunction plays a significant role in the development
of COVID-19 and may be partly responsible for the dysregulated im-
mune response of COVID-19.

Mitochondrial-targeted ubiquinone (MitoQ) is a mitochondrial-tar-
geted antioxidant which consists of the antioxidant quinone moiety
linked to a lipophilic triphenyl phosphonium (TPP) cation by a 10-
carbon alkyl chain [17]. The lipophilic TPP moiety on MitoQ enables it
targetedly accumulate within mitochondria driven by the membrane
potential and sequester the ROS [17]. MitoQ exhibits stronger protec-
tive ability against oxidative stress by ROS compared with other un-
targeted antioxidants [18].

The hypothesis

We hypothesize that MitoQ could be a potential treatment agent in
COVID-19 through improving mitochondrial dysfunction and restoring
the dysregulated immune response. In this article, we provide evidence
to support the use of MitoQ as a treatment or adjunct therapy for
COVID-19.

Evaluation of the hypothesis

Association of aging and comorbidities of COVID-19 with mitochondrial
dysfunction

Mitochondrial dysfunction is a hallmark of aging which is accom-
panied by increased ROS production [11]. The increased ROS activates
several pathways including NF-κB pathway and results in increased
secretion of pro-inflammatory cytokines and a state called chronic low-
grade inflammation [12]. Mitochondrial dysfunction and chronic low-
grade inflammation are also prevalent in cardiovascular and metabolic
disease including hypertension, obesity and type 2 diabetes [19]. It is
plausible that elderly populations or people with comorbidities (dia-
betes and cardiovascular disease) in a state of mitochondrial dysfunc-
tion are susceptible to SARS-CoV-2 infection and progress to severe
infection. The beneficial effects of MitoQ on aging and cardiovascular
as well as metabolic disease through improving mitochondrial dys-
function and alleviating inflammation have been widely described
[20–23]. For example, MitoQ treatment modulates oxidative stress and
reduces the production of TNF-α in type 2 diabetes [21]. Therefore, we
speculate MitoQ used in the early stage should be effective in halting or
delaying the disease progression in elderly COVID-19 patients or those
with comorbidities.

Association of cytokine storm with mitochondrial dysfunction

ROS are signaling molecules which are responsible for the produc-
tion of cytokines and chemokines. However, ROS over-production, a
characteristic of mitochondrial dysfunction, could mediate hyper-
activation of the immune response termed cytokine storm [24]. ROS
over-production results in activation of NLRP3 inflammasome and in-
crease of IL-1 secretion [25]. Studies have demonstrated that MitoQ
could ameliorate ROS over-production, suppress NLRP3 inflammasome
activation and decrease the inflammatory cytokine (IL-1, IL-6 and TNF-
α) in concanavalin A-induced hepatitis, diabetes, experimental mouse
colitis and sepsis-induced acute lung injury [21,26–28]. In the context
of respiratory syncytial virus (RSV) infection, MitoQ limited RSV in-
fection through reducing mitochondrial ROS production [29]. It is
plausible that MitoQ may alleviate cytokine storm in severe COVID-19
patients.

Association of T cell exhaustion with mitochondrial dysfunction

Mitochondrial dysfunction is regarded to be the early driver for the
development of T cell exhaustion. In the mouse model of chronic LCMV
infection, dysregulated mitochondrial energetics is one of the hallmarks

of exhausted T cells which depends at least in part on elevated PD-1
signaling [30]. In chronic HCV infection, exhausted HCV-specific CD8+

T cells display mitochondrial dysfunction characterized by depolarized
mitochondria, increased ROS production and mass biogenesis, which
rely on P53 upregulation [31,32]. Similar to T cells in patients of
chronic viral infection, T cells in patients of COVID-19 also upregulate
exhaustion markers such as PD-1, Tim-3, TIGIT. Transcriptomic ana-
lysis shows TP53 gene is upregulated in T cells of COVID-19 patients
[33]. Whether mitochondrial dysfunction exists in T cells of COVID-19
needs to be validated. We speculate that elevated PD-1 expression and
upregulated p53 may drive early mitochondrial dysfunction which
further leads to T cell exhaustion in COVID-19 patients. Studies have
reported that manipulation of dysfunctional mitochondria with mi-
tochondrial-targeted antioxidants could rescue the function of ex-
hausted T cells [34]. In chronic HBV infection, exhausted HBV-specific
CD8+ T cells display defective mitochondrial function which can be
reinvigorated by mitochondria-targeted antioxidants MitoQ [34]. It is
possible that MitoQ may prevent T cell exhaustion or restore their an-
tiviral function in COVID-19.

Clinical trials

There have been several clinical trials of MitoQ. In a double-blind,
randomized phase II study of chronic HCV patients, oral administration
of MitoQ showed liver protection effect without toxicity [35]. Another
randomized study elucidated that chronic supplementation with MitoQ
improved vascular function in healthy older adults [22]. The tolerance
and safety of MitoQ have been approved when administered orally for
three weeks without adverse effects and it is now available as a dietary
supplement [12].

Consequences of the hypothesis

Mitochondrial dysfunction may be an early trigger for subsequent
cytokine storm and T cell exhaustion in COVID-19 patients. It is rea-
sonable that MitoQ may alleviate cytokine storm and restore the
function of exhausted T cells in COVID-19 patients through improving
mitochondrial dysfunction. To test the hypotheses further, we re-
commend both the in vitro and in vivo studies investigating the toler-
ance, safety and efficiency of MitoQ on COVID-19.
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