
Research Article
Identification of Inflammation-Related Genes and Exploration of
Regulatory Mechanisms in Patients with Osteonecrosis of the
Femoral Head

Tong Li , Cheng Huang, Jinhui Ma, Ran Ding, Qidong Zhang, and Weiguo Wang

Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China

Correspondence should be addressed to Weiguo Wang; jointwwg@163.com

Received 24 June 2022; Revised 11 August 2022; Accepted 26 August 2022; Published 22 September 2022

Academic Editor: Yi-Qing Qu

Copyright © 2022 Tong Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Osteonecrosis of the femoral head (ONFH) is a disabling orthopedic disease, which is impacted by infiltration of
immune cells. Thus, the aim of the current research was to determine the inflammation-related biomarkers in ONFH.
Methods. GSE123568 dataset with control and steroid-induced osteonecrosis of the femoral head (SONFH) samples were
downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were detected by
limma R package and weighted gene co-expression network analysis (WGCNA) was used to explore the co-expression genes
and modules. We obtained inflammation-related genes (IRGs) from the Molecular Signatures Database (MSigDB). Then, the
IRGs associated with SONFH (IRGs-SONFH) were screened out and analyzed by Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis. A protein-protein interaction (PPI) network was established using the
Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and hub genes were identified by the MCODE
algorithm. Based on the hub genes, we constructed a lncRNA-miRNA-mRNA network. Results. We identified 535 DEGs
between control and SONFH samples. The WGCNA clearly indicated that the brown module was most significantly associated
with SONFH. We identified 25 IRGs-SONFH through WGCNA module genes, DEGs and IRGs. A total of 4 hub genes (CD14,
CYBB, NOD2, and TLR1) were identified by Cytoscape. Receiver operating characteristic (ROC) curve analysis determined
that the expressions of the four genes could distinguish SONFH from controls as evidenced by the area under the curve (AUC)
greater than 0.7. Finally, we constructed a competitive endogenous RNA (ceRNA) network which included 67 lncRNAs, 1
miRNA (hsa-miR-320a), and 1 mRNA (NOD2). Conclusions. Our study identified 4 hub genes as potential inflammation-
related biomarkers of SONFH. Moreover, we proposed a ceRNA network of lncRNAs targeting hsa-miR-320a, hsa-miR-320a,
and NOD2 as a potential RNA regulatory pathway that controls disease progression in ONFH.

1. Background

Osteonecrosis of the femoral head (ONFH) is characterized by
the death of bone due to the circulatory disruption of the fem-
oral head with traumatic or nontraumatic factors [1]. As a large
range of diseases requires steroid usage, steroid-induced osteo-
necrosis of the femoral head (SONFH) accounts for a large pro-
portion of ONFH [2]. There are approximately 8.12 million
nontraumatic ONFH cases in the population aged 15 years
and over in China, among which SONFH counts for 47.4%
[3]. Association Research CirculationOsseous (ARCO) classifi-
cation system [4] was developed for accurate staging, which is

essential for successful treatment. As the early symptoms of
ONFH are not obvious, patients are often diagnosed at the
advanced stage (ARCO stage III-IV). Therefore, novel diagnos-
tic biomarkers and therapeutic targets are urgently needed to
provide for intervention and treatment of SONFH patients.

In previous studies, inflammation has been shown to play
an indispensable role in the development and progression of
SONFH. Li et al. identified 8 candidate serum biomarkers of
SONFH and found they were significantly involved in
immune regulation and inflammation [5]. Real-time imaging
probes showed the accumulation of elevated neutrophils and
macrophages in the tissue of osteonecrosis in a mouse model
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[6]. Necrotic bone stimulated macrophage-inflammatory
response through activation of a pattern recognition receptor
(PRR) Toll-like receptor 4 (TLR4) and upregulation of the
downstream transcription factors, including Nuclear factor-
kappa B (NF-κB) and monocyte chemotactic protein 1
(MCP-1), for inflammatory proteins [7, 8]. In other studies,
the levels of pro-inflammatory cytokines interleukin (IL)-9,
IL-17, IL-23, and IL-33 produced by T cells have been reported
to be associated with ONFH [9–12]. In addition, the activation
of specific B cells and elevated levels of serum Tumor necrosis
factor α (TNF-α) were associated with the development of
ONFH [13]. Moreover, neutrophil granulocyte levels and
percentage of neutrophil granulocytes were related to
ONFH [14].

Bioinformatics has been used to identify hub genes,
interaction networks, and pathways of SONFH to improve
diagnosis and treatment. Early studies identified biomarkers
of SONFH based on weighted gene co-expression network
analysis (WCGNA) and differentially expressed genes
(DEGs) screening and further revealed their correlation with
immune infiltration [15, 16]. Competitive endogenous RNA
(ceRNA) networks can reveal potential mechanisms of dis-
ease in transcriptional regulatory networks, while no study
has been conducted to analyze it in osteonecrosis.

In the present study, we proposed to identify novel
inflammation-related biomarkers and evaluate its diagnostic
value in SONFH on the basis of GSE123568 dataset. The
DEGs screening, WCGNA, and inflammation-related gene
(IRG) expression were used to identify the gene network sig-
nature and IRGs associated with SONFH (IRGs-SONFH).
Then, the IRGs-SONFH was analyzed by Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis, and the protein-protein interaction (PPI)
was constructed. Subsequently, 4 hub genes were screened
out and verified by quantitative reverse transcription poly-
merase chain reaction (qRT-PCR). Finally, we constructed
a ceRNA network to get a deep understanding of the patho-
genesis of ONFH on the basis of the predicted results of
microRNAs (miRNAs) and long non-coding RNAs
(lncRNAs). The research process of this study is shown in
Figure 1.

2. Methods

2.1. Data Source. Microarray RNA expression dataset of
GSE123568 was downloaded from the Gene Expression Omni-
bus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The
GSE123568 dataset was generated from samples of peripheral
serum in 30 SONFH patients (steroid-induced femoral head
necrosis samples) and 10 non-SONFH patients as controls.
The dataset was based on the platform GPL15207 ([Prime-
View] Affymetrix Human Gene Expression Array). The array
data for GSE89587 included the miRNA expression profiles
of 10 ONFH patients (traumatic femoral head necrosis sam-
ples) and 10 controls to construct a ceRNA network. 200 IRGs
were obtained from the HALLMARK_INFLAMMATORY_
RESPONSE gene set in the Molecular Signature Database
(MSigDB) (https://www.broadinstitute.org/msigdb) [17].

2.2. Identification of DEGs. The limma, a package in the R
language, was used to identify DEGs with the cut-off point
of adjusted p-value (false discovery rate) <0.05 and |Log2fold
change| >1. Heatmap and volcano plots of DEGs from the
databases were constructed with Pheatmap and ggplot2 R
packages.

2.3. Construction of Weighted Gene Co-Expression Networks.
The R packageWGCNA [18] was used to analyze the gene co-
expression network of the GSE123568 dataset. First, the sam-
ples were clustered and the outliers were removed. Second, to
construct a scale-free network, the soft threshold of β=18 was
chosen with the function pickSoftThreshold. Based on the
selected soft threshold, the adjacency matrix was converted
to topological overlap matrix for constructing the network,
and the gene dendrogram and module color were established
by utilizing the degree of dissimilarity. Then, the correlations
between modules and SONFH were calculated using the
WGCNA package. Therefore, modules with high correlation
coefficient were considered candidates relevant to SONFH
and were selected for subsequent analysis. The intersection
of DEGs, genes in key modules, and IRGs were carried out
using the “VennDiagram” R package and were defined as
IRGs-SONFH, which were used for subsequent analysis.

2.4. KEGG and GO Enrichment Analysis. Functional annota-
tion of IRGs-SONFH was presented with the R package
“clusterProfiler” [19], containing GO and KEGG pathway
analysis. GO terms were comprised of the biological process
(BP), cellular component (CC), and molecular function
(MF) [20] and were used to identify the biological properties
of genes and gene sets in all organisms. The KEGG enrich-
ment analysis was performed to obtain the associated
enrichment pathways. Adjusted p-value <0.05 was consid-
ered statistically significant.

2.5. Construction of PPI Network. The Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) database
(https://cn.string-db.org/cgi/input?sessionId=bbRkt711IuEL
&input_page_active_form=multiple_identifiers) [21] was
used to construct a PPI network of the above genes. Next,
we downloaded the interaction information and optimized
the PPI network with Cytoscape software (https://www
.cytoscape.org) [22] for better visualization. The MCODE
plug-in in Cytoscape was used to identify significant gene
clusters and obtain hub genes. The hub genes were evaluated
using the geometric mean of semantic similarities in CCs
and MFs by applying the “GOSemSim” package in R soft-
ware [23]. Corrplot package was used to analyze the correla-
tion of hub genes.

2.6. qRT-PCR. The serum samples of 24 patients with femoral
neck fracture and 24 patients with SONFH were acquired for
qRT-PCR to verify the predictive analysis results. Total RNA
was extracted from the serum samples using TRIzol, and then,
its concentration and purity were assessed by nanodrop. RNA
samples from total RNA were reverse-transcribed to cDNA,
and qRT-PCR was performed using the SuperScript III RT
(ABI-Invitrogen, 11752050). β-Actin was used as an internal
normalization standard. The 2−ΔΔCt method was utilized to
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determine the relative expression of each selected gene
between SONFH and controls. Sequences of primers used in
the study are shown in Table 1. Student’s t-test was used to
compare the differences between the 2 groups.

2.7. The Receiver Operating Characteristic (ROC) Curve
Analysis and Expression Analysis. In the GSE123568 dataset,
30 SONFH samples and 10 control samples were utilized to
plot ROC curves, from which we obtained their area under
the ROC curves (AUC) through the “pROC” package.
ROC curve is a helpful tool to evaluate the efficiency of gene
diagnosis. The hub genes with AUC>0.7 were deemed use-
ful for disease diagnosis.

Expression levels of hub genes between SONFH and nor-
mal samples were shown using boxplots. The boxplots of hub
gene expression were drawn using the “ggplot2” in R package.

2.8. Correlation Analysis between Hub Genes and Infiltrated
Immune Cells. Immune infiltration analysis was performed
by using the ssGSEA algorithm. Correlation analysis
between crucial genes and 28 immune cells was calculated
via the Spearman method, and the results were visualized.
Correlation analysis was conducted to determine the rela-
tionship between hub genes and differential immune cells.

2.9. Small-Molecule Drug Prediction and Gene Set Enrich
Analysis (GSEA). The latent drugs for hub genes were pre-

dicted through the Drug-Gene Interaction Database
(DGIdb) (https://dgidb.org/search_interactions) [24]. We
used the R package “clusterprofiler” to conduct GSEA on
hub genes. The chosen reference gene set was downloaded
from the MSigDB. A p-value < 0.05 was considered statisti-
cally significant.

2.10. Prediction of Networks Mutually Regulated by miRNAs
and Transcription Factors (TFs). The upstream TFs and
miRNAs were predicted using the miRNet database

Microarray dataset selection from GEO
(GSE123568)

DEGs identification in dataset

Inflammation-related genes DEGs related to SONFH

IRGs-SONFH

PPI network Correlation analysis

Functional similarity analysis 

Hub genes and immune cells

GSEA analysis 

Drug-gene networks
Key miRNA and TFs

Construction of ceRNA regulatory network
(GSE89587)

4 Hub genes
(NOD2, CYBB, TLR1, and CD14)

Verification by ROC

Verification by qRT-PCR

Enrichment anaysis
(GO, KEGG)

WGCNA

Figure 1: Flowchart of data processing. GEO: Gene Expression Omnibus; DEG: differentially expressed gene; WCGNA: weighted gene co-
expression network analysis; SONFH: steroid-induced osteonecrosis of the femoral head; IRG: inflammation-related gene; GO: Gene
Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; PPI: protein-protein interaction; ROC: receiver operating characteristic;
qRT-PCR: quantitative reverse transcription polymerase chain reaction; GSEA: Gene Set Enrich Analysis; miRNA: microRNA; TF:
transcription factor; ceRNA: competitive endogenous RNA.

Table 1: Primer information.

Target name Primer

β-Actin
F GACAGGATGCAGAAGGAGATTACT

R TGATCCACATCTGCTGGAAGGT

NOD2
F TTGCCTAGTTCTGGAAGGCTG

R CCTCTTCCCCCATCAAAGCC

CYBB
F GCAGGAAAGGAACAATGCCG

R CATTATCCCAGTTGGGCCGT

TLR1
F GCCACCCTACTGTGAACCTC

R ATGAGCAATTGGCAGCACAC

CD14
F ACAGGTGCCTAAAGGACTGC

R GATTCCCGTCCAGTGTCAGG
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(https://www.mirnet.ca) [25]. Subsequently, the results were
visualized using Cytoscape software.

2.11. CeRNA Network Construction. To predict the regula-
tory relationship among mRNAs, lncRNAs, and miRNAs,
lncRNAs were predicted using miRNet. Briefly, differentially
expressed miRNAs (DEmiRNAs) in GSE89587 with the
threshold criterion of adjusted p value (false discovery rate)
<0.05 and |Log2fold change| =0 were screened using the
limma package of the R software program. Then, they were
intersected with the miRNAs predicted by the hub genes to
get the final target miRNAs. Target lncRNAs matched by

target miRNAs were retrieved from the miRNet database.
The ceRNA regulatory network of lncRNA-miRNA-mRNA
was visualized using Cytoscape software.

3. Results

3.1. Identification of DEGs. In our study, 535 DEGs were
identified between SONFH samples and control samples.
Among them, 299 were upregulated and 236 were downreg-
ulated (SONFH vs. control). The volcano plot and heat map
of gene expression are shown in Figures 2(a) and 2(b).
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Figure 2: The volcano plot and heat map of gene expression. (a) Volcano plot of GSE123568, mRNAs. (b) Heat map analysis of GSE123568,
mRNAs. Differentially expressed mRNA molecules were screened under the cut-off criteria adjusted p value (false discovery rate) <0.05 and
|Log2fold change|>1. The 10 most significantly upregulated genes and the most significantly downregulated genes were selected for heat map
visualization.

4 BioMed Research International

https://www.mirnet.ca


20

G
SM

35
07

25
7

G
SM

35
07

25
9

G
SM

35
07

25
2

G
SM

35
07

25
5

G
SM

35
07

26
7

G
SM

35
07

25
3

G
SM

35
07

25
4

G
SM

35
07

26
9

G
SM

35
07

28
1

G
SM

35
07

29
0

G
SM

35
07

27
7

G
SM

35
07

27
4

G
SM

35
07

28
0

G
SM

35
07

27
9

G
SM

35
07

26
5

G
SM

35
07

26
6

G
SM

35
07

25
8

G
SM

35
07

27
0

G
SM

35
07

27
2

G
SM

35
07

28
4

G
SM

35
07

26
4

G
SM

35
07

26
8

G
SM

35
07

27
6

G
SM

35
07

28
8

G
SM

35
07

27
5

G
SM

35
07

28
2

G
SM

35
07

26
1

G
SM

35
07

27
3

G
SM

35
07

28
6

G
SM

35
07

26
2

G
SM

35
07

27
8

G
SM

35
07

28
9

G
SM

35
07

26
0

G
SM

35
07

26
3

G
SM

35
07

28
7

G
SM

35
07

27
1

G
SM

35
07

28
3

G
SM

35
07

28
5

G
SM

35
07

25
1

G
SM

35
07

25
6

40

60

80

100

H
ei

gh
t

120

140

160
Sample clustering to detect outliers

(a)

G
SM

35
07

25
7

G
SM

35
07

25
9

G
SM

35
07

25
2

G
SM

35
07

25
5

G
SM

35
07

26
7

G
SM

35
07

25
3

G
SM

35
07

25
4

G
SM

35
07

26
9

G
SM

35
07

28
1

G
SM

35
07

29
0

G
SM

35
07

27
7

G
SM

35
07

27
4

G
SM

35
07

28
0

G
SM

35
07

27
9

G
SM

35
07

26
5

G
SM

35
07

26
6

G
SM

35
07

25
8

G
SM

35
07

26
2

G
SM

35
07

27
0

G
SM

35
07

27
2

G
SM

35
07

28
4

G
SM

35
07

26
4

G
SM

35
07

26
8

G
SM

35
07

27
6

G
SM

35
07

28
8

G
SM

35
07

27
5

G
SM

35
07

28
2

G
SM

35
07

26
1

G
SM

35
07

27
3

G
SM

35
07

28
6

G
SM

35
07

27
8

G
SM

35
07

28
9

G
SM

35
07

26
0

G
SM

35
07

26
3

G
SM

35
07

28
7

G
SM

35
07

27
1

G
SM

35
07

28
3

G
SM

35
07

28
5 G
SM

35
07

25
1

G
SM

35
07

25
6

140

100

H
ei

gh
t

60

20

Group

Sample dendrogram and trait heatmap

(b)

0
1

1

2

3

4
567891012 1416 182022 2426 2830

2

3

4
567 8910 12 1416 1820 222426 2830

–0.5

0

1000

2000

3000

M
ea

n 
C

on
ne

ct
iv

ity

4000

0.0

Sc
al

e f
re

e t
op

ol
og

y 
m

od
el

 fi
t, 

sig
ne

d 
R2

0.5

5 10 15
So� threshold (power) So� threshold (power)

Scale independence Mean connectivity

20 25 30 0 5 10 15 20 25 30

(c)

Figure 3: Continued.

5BioMed Research International



3.2. Construction of Co-Expression Networks. The sample
clustering tree indicated that there was no abnormal sample
(Figures 3(a) and 3(b)). After calculation, the best soft-
thresholding power was set at 18 (Figure 3(c)). Finally, each
module was assigned a color, and a total of 9 modules in
GSE123568 (Figure 3(d)) were identified in this study. Fur-
thermore, the result of the module-feature relationship
revealed that the brown module had the highest correlation
with SONFH (cor =0.68, p=1e−05, Figure 3(e)). Thus, 850
genes in the brown module were selected for further
exploration.

3.3. Identification of IRGs-SONFH and Functional
Enrichment Analysis. Then, we took the intersection of
DEGs, genes in key modules, and IRGs and identified 25
IRGs-SONFH (Figure 4(a)). To explore the function of 25
IRGs-SONFH in SONFH, the GO terms are shown in
Figure 3. In BP analysis (Figure 4(b)), IRGs-SONFH mainly
participated in response to molecules of bacterial origin,

neutrophil activation, response to lipopolysaccharide, cellu-
lar response to biotic stimulus, and cellular response to mol-
ecule of bacterial origin. In CC analysis (Figure 4(c)), IRGs-
SONFH significantly participated in the membrane micro-
domain, membrane raft, secretory granule membrane, endo-
cytic vesicle, and phagocytic vesicle. MF analysis showed
that IRGs-SONFH significantly participated in amide bind-
ing, peptide binding, immune receptor activity, pattern rec-
ognition receptor activity, and lipopolysaccharide binding
(Figure 4(d)). KEGG analysis was performed to explore the
pathways of these 25 IRGs-SONFH. The KEGG terms of
IRGs-SONFH are shown in Figure 4(e). As shown, these
IRGs-SONFH were mainly enriched in lipid and atheroscle-
rosis, tuberculosis, neutrophil extracellular trap formation,
TLR signaling pathway, and legionellosis.

3.4. Identification of Hub Genes. The PPI network between
IRGs-SONFH was established using the STRING database;
the interactions of 25 IRGs-SONFH are displayed in
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Figure 5: Identification, correlation analysis, and functional similarity analysis of hub genes. (a) The PPI network between 25 IRGs-SONFH.
Each node represents a protein, while each edge represents one protein-protein association. (b) A total of 4 hub genes were identified by
MCODE plug-in Cytoscape. (c) Results of correlation analysis between the 4 hub genes. (d) Results of functional similarity analysis of
the 4 hub genes.
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Figure 5(a). 4 hub genes (CD14, CYBB, NOD2, and TLR1)
were identified by MCODE plug-in Cytoscape (Figure 5(b)).

3.5. The Correlation Analysis between Hub Genes and the
Functional Similarity Analysis of Hub Genes. The correlation
between these 4 hub genes was investigated using the corr-
plot package; CD14 and TLR1 had the strongest correlation
(r =0.85) (Figure 5(c)). We analyzed the functional similarity
of these hub genes by the “GOSemSim” package in R. The
results showed that 3 hub genes, including CD14, NOD2,

and TLR1 (similarity score > 0.5), had higher functional
similarity (Figure 5(d)).

3.6. Validation and Efficacy Evaluation of Hub Genes. We
explored the expressions of these genes between SONFH
and control samples in GSE123568 and found that those
genes exhibited higher expression levels in SONFH
(Figure 6(a)). In addition, the relative expressions of the
above four hub genes were investigated by qRT-PCR. As
shown in Figures 6(c)–6(f), the relative expressions of
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Figure 6: Validation and efficacy evaluation of the 4 hub genes. (a) The 4 hub genes exhibited higher expression levels in SONFH than
controls in GSE123568. (b) ROC curves of the 4 hub genes showed high sensitivity and specificity for SONFH diagnosis. (c–f) Results
qRT-PCR showed that the relative expressions of CD14, CYBB, NOD2, and TLR1 were also significantly increased in peripheral blood of
SONFH patients compared to controls.
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Figure 8: GESA results of the 4 hub genes. (a) CD14; (b) CYBB; (c) NOD2; (d) TLR1.
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CD14, CYBB, NOD2, and TLR1 were also significantly
increased in the peripheral blood of SONFH patients com-
pared to controls. Furthermore, we executed a ROC curve
analysis to calculate their sensitivity and specificity for the
diagnosis of SONFH (Figure 6(b)). The AUC values of
CD14, CYBB, NOD2, and TLR1 were 0.847, 0.753, 0.767,
and 0.847, respectively, demonstrating that these genes have
high sensitivity and specificity for SONFH diagnosis.

3.7. Correlation Analysis of Hub Genes and Immune Cells. To
further understand the role of these genes in immune infil-
tration, we used Spearman’s correlation analysis to deter-
mine whether these hub genes were related to immune cell
infiltration. Correlation analysis showed that 4 hub genes
including CD14, CYBB, NOD2, and TLR1 had significantly
positive relationship with type 1 T helper cell, T follicular
helper cell, regulatory T cell, plasmacytoid dendritic cell,
neutrophil, natural killer T cell, natural killer cell, monocyte,
memory B cell, myeloid-derived suppressor cell, mast cell,
macrophage, immature dendritic cell, immature B cell,
gamma delta T cell, eosinophil, effector memory CD8 T cell,
effector memory CD4 T cell, central memory CD4 T cell,
central memory CD8 T cell, and activated dendritic cell
(Figure 7).

3.8. GSEA. The function of our hub genes was explored via
GSEA. Genes in the high-expression cohorts of CD14 and
TLR1were all highly enriched in leishmania infection, Toll-
like receptor signaling pathways, and Fc gamma R-mediated
phagocytosis (Figures 8(a) and 8(d)). Genes in the high-
expression cohorts of CYBB and NOD2 were all highly
enriched in spliceosome, lysosome, and B-cell receptor signal-
ing pathways (Figures 8(b) and 8(c)). Genes in the low-
expression cohorts of CD14, CYBB, NOD2, and TLR1 were
all highly enriched in olfactory transduction, linoleic acid

metabolism, and basal cell carcinoma (Figure 8). After consid-
ering the results of GSEA, we concluded that these four genes
might be highly correlated with immune and inflammation.

3.9. Drug-Gene Networks. A total of 17 potential drugs for
treating SONFH patients were identified when the drug-gene
interactions were explored using DGIdb (Table 2). Addition-
ally, drug-gene networks were constructed by Cytoscape
(Figure 9(a)). However, we did not find any small-molecule
drugs that could target TLR1 in this database.

3.10. Prediction of Key miRNAs and TF. ThemiRNA and TFs
regulatory network of 4 hub genes was constructed using miR-
Net. As illustrated in Figure 9(b), the interaction network con-
sisted of 4 hub genes and 59 miRNAs. Specifically, 9 miRNAs
(i.e., hsa-mir-335-5p, hsa-mir-100-5p, hsa-mir-3687) target-
ing CD14, 28 miRNAs (i.e., hsa-mir-6826-3p, hsa-mir-6845-
3p, hsa-mir-6859-3p) targeting CYBB, 12 miRNAs (i.e., hsa-
mir-215-5p, hsa-mir-122-5p, hsa-mir-320a) targeting NOD2,
and 15 miRNAs (i.e., hsa-mir-34a-5p, hsa-mir-3662, hsa-
mir-4511) targeting TLR1. The interaction network consisted
of 4 hub genes and 30 TFs.We found that 12 TFs (i.e., CEBPB,
FOS, JUN) could regulate CD14. 8 TFs (i.e., NFIC, NFYA,
YY1) could regulate CYBB. 11 TFs (i.e., MAX, USF1, USF2)
could regulate NOD2. 8 TFs (i.e., MEF2A, HINFP, TP63)
could regulate TLR1.

3.11. CeRNA Regulatory Network Construction. To elucidate
the potential molecular mechanism of lncRNAs in SONFH,
we constructed a lncRNA-miRNA-mRNA interaction net-
work. Briefly, 20 DEmiRNAs with the threshold criterion of
adjusted p-value < 0.05 and |Log2fold change|=0 were
screened by GSE89587. 1 miRNA (hsa-miR-320a) was
obtained by taking the intersection of 64 miRNAs predicted
by the hub genes above and 20 DEmiRNAs. We used the

Table 2: Potential drugs for treating SONFH.

Gene Drug Sources Pmids

NOD2 CHEMBL1456848 DTC

NOD2 CHEMBL585502 DTC

NOD2 MIFAMURTIDE ChemblInteractions 20596505|21226638

NOD2 INARIGIVIR SOPROXIL TTD

NOD2 CHEMBL599890 DTC

NOD2 CHEMBL578944 DTC

NOD2 CHEMBL577660 DTC

NOD2 MURABUTIDE DTC 22716113

NOD2 TACROLIMUS PharmGKB 23175667

NOD2 CHEMBL590706 DTC

NOD2 CHEMBL1351908 DTC

NOD2 CYCLOVALONE DTC

CYBB APIGENIN DTC 23786520

CYBB CHRYSIN DTC 23786520

CYBB LUTEOLIN DTC 23786520

CD14 IC14 TdgClinicalTrial|ChemblInteractions|TTD

CD14 LOVASTATIN NCI 7506029
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database miRNet to predict the lncRNAs that interacted with
the selected miRNAs (hsa-miR-320a). Finally, we obtained a
ceRNA network which included 67 lncRNAs, 1 miRNA
(hsa-miR-320a), and 1 mRNA (NOD2) (Figure 9(c)).

4. Discussion

ONFH is a progressive disease with necrosis of the osteocyte
and bone marrow as a result of intramedullary microvascular
lesions and interruption of blood supply of the femoral head.
In patients with end-stage ONFH, collapse of the femoral head
can lead to dysfunction of the hip joint, ultimately affecting the
quality of life. Hence, novel biomarkers for early diagnosis and
individualized treatment are urgently needed. Multiple biolog-
ical processes, including circulation, steroid metabolism,
immunity, and bone formation, were involved in the develop-
ment of ONFH [26]. Although existing theories have pointed
to the role of inflammation in the pathogenesis of SONFH
[15], the molecular mechanism contributing to disease onset
remains unclear. In addition, few studies have systematically

screened the biomarkers related to inflammation and their
value for assessing the process of SONFH.

In this study, a total of 535 DEGs were identified in the
SONFH and control samples. In addition, 9 co-expression
modules were obtained by WGCNA analysis. Among them,
the brown module with a total of 850 genes was the most rel-
evant to SONFH. Moreover, 200 IRGs were identified. We
obtained 25 candidate genes for hub genes by taking the inter-
section of the above three gene lists. Bioinformatics databases,
including GO and KEGG, are widely used in gene classifica-
tion and signaling pathway analysis. As demonstrated from
GO enrichment results, the candidate genes showed a major
relationship with the response to the molecule of neutrophil
activation, PRR signaling pathway, and TLR2 signaling path-
way. In addition, KEGG pathways were enriched in neutrophil
extracellular trap formation, TLR signaling pathway, NF-κB
signaling pathway, and NOD-like receptor signaling pathway.
Although SONFH is not an inflammatory disease, the enrich-
ment results suggest that inflammation may play a critical role
in its pathophysiological mechanism.
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Figure 9: Drug-gene networks and ceRNA network. (a) Drug-gene networks constructed by Cytoscape. (b) Interaction network consisted of
4 hub genes, 59 miRNAs, and 30 TFs. (c) A ceRNA network which included 67 lncRNAs, 1 miRNA (hsa-miR-320a), and 1 mRNA (NOD2).
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Through PPI network, we identified 4 hub genes,
namely, CD14, CYBB, NOD2, and TLR1. As shown by the
ROC curve, they had high sensitivity and specificity for
SONFH and could be used as biomarkers. Furthermore,
qRT-PCR showed that the relative expression of CD14,
CYBB, NOD2, and TLR1 in the peripheral blood samples
of SONFH was increased compared with normal group.
Finally, we constructed a ceRNA network to clarify the path-
ogenesis of ONFH from the transcriptomic level.

The protein encoded by CD14 is a surface antigen which
is preferentially expressed on monocytes and macrophages.
Generally, macrophages are known as a critical role in the
innate immune response and they can polarize into pro-
inflammatory (M1) or anti-inflammatory (M2) phenotypes
depending on the microenvironment [27]. The repolariza-
tion of macrophages from the M1 phenotype to M2 pheno-
type could promote the survival of osteocytes and decrease
inflammatory cytokines, which was effective in the allevia-
tion of SONFH [28]. Early study has shown that CD14+
macrophages increased in the fibrovascular repair tissue
during the induction of ONFH [7]. Consistent with the pres-
ent study, we found that CD14 expression was upregulated
in SONFH patients and the ROC curve showed that CD14
had a high diagnostic value (AUC=0.847).

CYBB is a transmembrane protein of the microbicidal
oxidase system of phagocytes [29]. CYBB deficiency can lead
to the disorder of reactive oxygen species (ROS) production,
resulting in the disability of phagocytes to kill most patho-
gens, which is associated with the rare immune deficiency
disorder, chronic granulomatous disease [30]. However,
uncontrolled neutrophil ROS production can lead to persis-
tent vascular inflammation reactions contributing to some
inflammatory diseases [31]. Moreover, the impaired blood
vessels caused by dysregulation of bone endothelial cells
are one of the most convincing mechanisms of SONFH
[32]. Therefore, the vascular inflammation caused by high
expression of CYBB may be related to SONFH. In the cur-
rent study, we found that CYBB expression was upregulated
in SONFH patients and it may be a diagnostic biomarker for
SONFH (AUC=0.753).

NOD2 is one of PRRs of the NOD-like receptor (NLR)
family that sense conserved motifs in bacterial peptidoglycan
and activate intracellular signaling pathways that drive pro-
inflammatory and antimicrobial responses [33]. NOD2 reg-
ulates multiple pathways involved in a variety of inflamma-
tory responses via the activation of NF-κB, MAPK, and
type I interferons (IFN) [34, 35]. NOD2 also interplays with
TLRs during systemic bacterial infection to enhance
immune response and promote immune responses after tol-
eration by TLR ligands [36]. Furthermore, the activation of
TLR4/NF-κB pathway results in the gene expression of mol-
ecules responding to inflammatory cytokine responses in
macrophages, which may contribute to SONFH [37, 38].
Therefore, combined with the results of the ROC curve
(AUC=0.767), we hypothesize that NOD2 may be an effec-
tive biomarker for the diagnosis of SONFH.

TLR1 is a member of the TLR family, which is responsible
for the recognition of pathogen-associated molecular patterns
(PAMPs) and induction of inflammatory immune responses

[39]. The formation of TLR1-TLR2 heterodimer brings the
intracellular Toll/interleukin 1 receptor (TIR) domains into
close proximity and initiates signaling [40]. MyD88, an intra-
cellular TIR-containing adaptor used by TLR1, interacts with
interleukin-1 receptor-associated kinases (IRAKs) and eventu-
ally leads to the activation of NF-κB and IFN-regulatory
factors (IRFs) to elicit anti-pathogen responses and inflamma-
tion [41]. Our study showed that the expression of TLR1
increased in SONFH patients and TLR1 had a high diagnostic
value according to the ROC curve (AUC=0.847). Therefore,
we believe that TLR1 is a new and effective biomarker for
the diagnosis of SONFH.

Furthermore, miRNAs and TFs targeting CD14, CYBB,
NOD2, and TLR1 were predicted and a total of 20 differen-
tially expressed miRNAs were identified in patients with
osteonecrosis and controls. Among the 20 differentially
expressed miRNAs, hsa-miR-320a was found as a regulatory
miRNA of NOD2. Consequently, lncRNAs targeting hsa-
miR-320a were searched from the database and a ceRNA
network of 67 lncRNAs targeting hsa-miR-320a, hsa-miR-
320a, and NOD2 was constructed. In early bioinformatics
researches, hsa-miR-320a has been identified as diagnostic
biomarker of atherogenesis [42], multiple sclerosis [43], gas-
tric cancer [44], and metabolic syndrome [45]. Our study
indicated that hsa-miR-320a was a key regulator of NOD2
associated with inflammation contributing to the progres-
sion of osteonecrosis.

This study had several limitations. The sample size for
analysis and validation was relatively small. Moreover, most
SONFH cases have other comorbidities which have been
treated with glucocorticoids, and the different primary dis-
eases may influence our results. Therefore, future studies
need to increase the sample size and control the effects of
primary disease to further confirm our results.

5. Conclusions

This study identified and validated 4 hub genes, CD14,
CYBB, NOD2, and TLR1, as potential inflammation-
related biomarkers of SONFH, and provided clues to the
mechanism of disease development of SONFH at the tran-
scriptome level. Moreover, we proposed a ceRNA network
of lncRNAs targeting hsa-miR-320a, hsa-miR-320a, and
NOD2 as a potential RNA regulatory pathway that controls
disease progression in ONFH.
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