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ABSTRACT: Katritzky salts have emerged as effective alkyl
radical sources upon metal- or photocatalysis. These are typically
prepared from the corresponding triarylpyrylium ions, in turn an
important class of photocatalysts for small molecules synthesis and
photopolymerization. Here, a flow method for the rapid synthesis
of both pyrylium and Katrizky salts in a telescoped fashion is
reported. Moreover, several pyrylium salts were tested in the
photoinduced RAFT polymerization of vinyl ethers under flow and
batch conditions.

2,4,6-Triarylpyrylium salts have found applications in various
fields of chemistry, especially as visible-light photocatalysts for
the synthesis of small molecules1 and photoinduced polymer-
izations.2 In addition to their applications as photocatalysts,
pyrylium salts have been used as precursors for a variety of
other heterocycles, in particular N-alkylpyridinium salts
(Katritzky salts), via reaction with primary amines.3 The
pyridinium moiety can act in these compounds as a leaving
group in nucleophilic substitution reactions4 or can lead to
fragmentation upon single-electron reduction, generating alkyl
radicals. Several methods for the single electron reduction of
Katritzky salts have been recently investigated. In particular,
activation via metal catalysis,5 photoredox catalysis,6 and
visible light-activated electron donor−acceptor (EDA) inter-
actions7 have recently found large interest in the chemistry
community.
Based on our interest in flow chemistry and photochemical

methodologies,8 we developed a flow protocol for the rapid
synthesis of pyrylium salts and, in a telescoped fashion, of
Katritzky salts, starting from simple starting materials (Scheme
1). As the formation of both pyrylium and Katritzky salts is a
thermal reaction, we reasoned that a continuous flow method
in superheated conditions would promote much faster
reactions than in batch.
Reversible addition−fragmentation chain transfer (RAFT)

polymerization has emerged as a powerful method to generate
polymeric materials with controlled properties.9 While radical
initiation has been traditionally achieved thermally, alternatives
have been recently investigated. In particular, the use of
photoactivated chain-transfer agents (CTAs) made possible
the development of photochemical RAFT methods, which
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offer milder conditions and higher degrees of control.9b−d

Photocatalytic RAFT polymerizations are often performed in
continuous flow conditions, due to the benefits of microflow
chemistry in this area.8a−c,10

Pyrylium photocatalysts have been recently used in cationic
photoinduced electron/energy transfer RAFT processes (PET-
RAFT10c,11) for the polymerization of vinyl ethers,2e,f not
always easy to achieve with traditional RAFT.12 Here, we
report investigations on the use of pyrylium salts for the
photchemical RAFT polymerization of vinyl ethers in flow and
comparison with the corresponding batch process. The use of
microflow chemistry allowed for much shorter reaction time,
higher molecular weight, and lower polydispersity of the
polymeric materials.
Pyrylium salts are typically prepared by reaction of an

acetophenone and a chalcone derivative in the presence of an
acid. This protocol comprises the use of simple starting
materials and allows for the synthesis of both symmetrical and
unsymmetrical triarylpyryliums, and was therefore chosen for
our investigations in flow. As tetrafluoroborate salts are
commonly used for both pyryliums and Katritzky salts
applications, we focused on these salts.
We started our investigation by performing the reaction

between chalcone (1), acetophenone (2), and HBF4·Et2O
under flow conditions for the synthesis of 2,4,6-triphenylpyry-
lium tetrafluoroborate (3) in DCE. The reaction was then
optimized with respect to temperature and residence time.
Reactions were performed above the boiling point of the
solvent (82 °C) using a back-pressure regulator set at 3.4 bar at
the end of the reactor coil. Screening of temperature showed
110 °C as the optimal temperature for the reaction, giving up
to 74% yield over 5 min residence time (entry 3, Table 1).
However, reactions conducted at 130 °C over 3 min residence
time gave comparable results (entry 9, Table 1).
The flow protocol was tested for the synthesis of a variety of

triarylpyrylium tetrafluoroborates (Scheme 2). Differently

substituted chalcones could be used in the reaction, furnishing
halogenated or methoxylated pyryliums 4−8. Different
acetophenones, including substituents such as phenyl,
methoxy, methylthio, chloro, and bromo, also reacted well,
giving products 9−15. Heteroaromatic ketones could also be
efficiently employed, and the reaction of chalcones with
acetylbenzofuran and acetylbenzothiophene led to pyryliums
16−18. Differently substituted pyrliums, containing alkyl
moieties, were then investigated (Scheme 2). Tetrasubstituted
and polycyclic pyrylium salts can be prepared by reaction of
chalcones with linear or cyclic ketones. For example, indanone,
cyclohexa/heptenone, and valerophenone gave pyryliums 19−
22 in 68−76% yield.
The yields obtained for the pyrylium salts 3−22 reflect the

electronic properties of the reagents, and analogous trends are
observed in the literature for batch reactions.13 Reactions
under batch conditions (same scale, higher concentration, 1 h
reaction time) for a few of the salts were performed for the
sake of comparison and provided similar yields to the flow
protocol, further demonstrating the electronic limitations of
the synthesis.
We then set out to investigate the continuous-flow synthesis

of N-alkyl triphenylpyridinium compounds (Katritzky salts) in
a “one-flow” fashion.14 These compounds are typically
prepared in batch by reaction of pyrylium salts with a primary
amine in refluxing ethanol for a few hours.5a,d,7a A one-pot
process in batch, starting from the synthesis of triphenylpyry-
lium 3, followed by addition of an amine solution after 1 h of
reflux, resulted in the immediate formation of smoke and
deposition of amine salts on the walls of flask and condenser
and resulted in a complex mixture of salts, making this process
cumbersome and unpractical. A telescoped flow synthesis was
therefore envisaged, starting with the initial synthesis of
pyrylium, followed by immediate reaction with the desired
amine.
The use of DCE for both steps resulted in heavy reactor

clogging. Ethanol was therefore selected as the solvent of
choice for the second step, as it provides a good medium for
the synthesis of pyridinium salts, good miscibility with DCE,
and a comparable boiling point.15 The temperature and
residence time for the second reactor coil were set respectively
at 130 °C and 15 min, making the overall residence time for
the two-step process 18 min.
The telescoped protocol was applied to the synthesis of

different pyridinium salts (Scheme 3). Pyridinium salts
containing linear, primary alkyl chains (23−25) were obtained
smoothly in 41−59% yield. Allyl- and benzylamines also
reacted with comparable yields (26−28, 44−54%). The
reaction with cyclopropylmethyl-, isopropyl-, cyclobutyl-, and
cyclohexylamine delivered compounds 29−32, albeit in lower
yields (25−37%). As the yield for the triphenylpyrylium
precursor 3 (first step) is in average 71%, the second step of
the telescoped process results in yields of 58−83% for
compounds 23−28. For compounds 29−32, this translates
to 35−52% yield. As the reaction of secondary alkyl amines
with pyrylium salts (30−32) is known to be much slower than
the reaction of primary alkyl amines,15 we suspect individual
optimization might be necessary for these compounds, as well
as for 29.
Having established the efficiency of the microflow method

for the fast preparation of pyrylium salts, we set out to
investigate their use in the photopolymerization of vinyl ethers
via cationic RAFT.2e,f We thus selected differently substituted

Table 1. Selected Optimization for the Synthesis of
Triphenylpyrylium Tetrafluoroborate in Flowa

entry T (°C) res time (min) yield (%)

Temperature Screening
1 90 5 57
2 100 5 65−69b

3 110 5 69−74b

4 120 5 57−67b

5 130 5 63
Residence Time Screening

6 110 2 57
7 110 3 64
8 110 7 70
9 130 3 69

aConditions: Feed 1: 2.5−5 mmol of acetophenone, 5−10 mmol of
chalcone, diluted with DCE to 2−4 mL. Feed 2: 5−10 mmol HBF4·
Et2O, diluted with DCE to 2−4 mL. Isolated yields from direct
precipitation into Et2O at the outlet of the reactor. bThe reported
range represent the variation observed within at least two runs.
Conditions in entry 3 were run several times, with results always in
the reported range.
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catalysts 3, 4, 6, 8, and 9 to be tested in the polymerization of
benchmark monomers isobutyl vinyl ether (IBVE) and ethyl
vinyl ether (EVE) under blue light irradiation. Two different
CTAs, based on the xanthate and dithiocarbamate moieties,
were also compared. Furthermore, a flow and a batch
polymerization protocols were compared to evaluate the
benefits of microflow in this process.

As shown in Table 2, the flow process resulted in generally
higher molecular weight (Mn, in kg/mol) of the polymers than
the batch and a slightly lower polydispersity (D). In addition,
while full conversion in flow was obtained after a residence
time of 15 min, the batch reaction required several hours of
irradiation for completion. While the different catalysts tested
generally resulted in similar properties of poly-IBVE and poly-
EVE, the effect of the CTA is more remarkable. CTA2
resulted, in general, in higher Mn, albeit with slightly higher D
values than CTA1, indicating a somewhat lower level of
control on the polymerization. The behavior of catalyst 8 in
flow is noteworthy. The combination of catalysts 8 and CTA1
resulted in very poor Mn for both polymers, while, on the
contrary, its combination with CTA2 resulted in higher Mn
than all the other catalysts. This behavior was observed only
under flow conditions. As in flow, the photochemical excitation
of the catalyst is much enhanced with respect to batch, we
suspect the unusual behaviour of catalyst 8 might be related to
a faster activation of CTA2 under these conditions. Catalyst 8
appears to have a very rapid response in the presence of both
CTA1 and CTA2.16 Despite being a less strong oxidant than,
for example, catalysts 3,2f the extinction coefficient of 8 at 450
nm is much higher, resulting in a much faster excitation and
more frequent electron transfer. This feature would be
enhanced under flow conditions, thus explaining our results.
We hypothesize that CTA1 can accommodate a faster electron
transfer, generating larger amounts of active CTA species, and
the formation of more polymeric chains of lower Mn. CTA2,
instead, cannot accommodate the electron transfer as
efficiently, and a lower amount of radical initiator is generated,
giving less, and longer polymer chains. Further investigation
will, however, be needed to confirm this hypothesis.
The results obtained (in terms of Mn and D values) for the

polymerization of vinyl ethers are in line with previous studies

Scheme 2. Synthesis of Pyrylium Saltsa

aConditions: Feed 1: 0.5 g of chalcone (2 equiv), acetophenone (1 equiv), diluted to 2−3 mL with DCE. Feed 2: HBF4·Et2O (2 equiv), diluted to
2−3 mL with DCE; T = 110 or 130 °C, P = 3.4−5.2 bar, residence time = 3−5 min. Products were obtained by direct precipitation into Et2O at the
outlet of the reactor, isolated yields after filtration are reported.

Scheme 3. Synthesis of Katritzky Saltsa

aConditions: Feed 1: 0.5 g of chalcone (2 equiv), acetophenone (1
equiv), diluted to 2−3 mL with DCE. Feed 2: HBF4·Et2O (2 equiv),
diluted to 2−3 mL with DCE. Feed 3: amine (4 equiv), diluted to 2−
3 mL with EtOH; T = 130 °C, P = 3.4−5.2 bar, total residence time =
18 min. Products were obtained by direct precipitation into Et2O at
the outlet of the reactor (isolated yields after filtration and washing),
or purified by chromatography.
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on pyrylium catalysts. Polydispersitiy values reported in the
literature range between 1.08 and 1.98 for IBVE and 1.08 and
1.89 for EVE, indicating comparable control in our experi-
ments, with higher values observed under flow conditions.2e,f,17

To our knowledge, no previous photochemical RAFT
polymerization of vinyl ethers have been reported under flow
conditions. To exclude the possibility of a catalyst-free
photoiniferter polymerization, known to occur for example
for acrylates and acrylamides,18 control experiments for the
polymerization of both monomers were also performed. Under
otherwise identical conditions, the absence of catalysts results
in essentially no polymerization, with conversions of 4−10%
and Mn values about 50 times lower than with the pyrylium
catalysts (see ESI).
In conclusion, we reported here the flow synthesis of a range

of pyrylium tetrafluoroborate salts and a two-step flow
synthesis of their derivatives N-alkylpyridinium salts. The use
of flow technology allowed the synthesis of pyrylium salts to be
completed in as short as 3 min (1+ hour in batch), while
Katritzky salts can be prepared in 18 min (second step alone
typically a few hours in batch). Several pyrylium salts were
tested in the photochemical RAFT polymerization of vinyl
ethers, under batch and flow conditions. The flow protocol
resulted in a much shorter reaction time (15 min vs several
hours), higher Mn, and lower D of the polymeric materials,
compared to the batch procedure. The combination of

photoinduced cationic RAFT polymerization and the use of
microflow chemistry is in our opinion a very promising method
for the fast, mild synthesis of polymeric materials with
controlled properties, and although not fully explored at the
moment, we believe its study will attract much interest in the
near future.
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