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A repertoire of proteolysis-targeting signals known as degrons is a necessary
component of protein homeostasis in every living cell. In bacteria, degrons can be
used in place of chemical genetics approaches to interrogate and control protein
function. Here, we provide a comprehensive review of synthetic applications of
degrons in targeted proteolysis in bacteria. We describe recent advances ranging
from large screens employing tunable degradation systems and orthogonal degrons,
to sophisticated tools and sensors for imaging. Based on the success of proteolysis-
targeting chimeras as an emerging paradigm in cancer drug discovery, we discuss
perspectives on using bacterial degraders for studying protein function and as
novel antimicrobials.

Keywords: degron, degradation signal, degrader, targeted protein degradation, bacterial protease, proteolysis-
targeting chimeras, induced degradation

INTRODUCTION

Proteins in living cells undergo a constant process of synthesis and degradation. Protein
degradation helps to maintain protein homeostasis by eliminating toxic aberrant proteins
or regulating the levels of proteins needed under the given environmental conditions. The
protein half-lives in Escherichia coli exist over a range of a few days down to a few minutes
(Nagar et al., 2021). Bacteria, as unicellular organisms, are particularly exposed to severe
environmental fluctuations including variations in temperature, nutrient availability, or the
presence of toxic compounds (Pine, 1973; Mogk et al., 2011). Regulation of protein levels by
degradation acts as one of the fastest ways to remodel the expressed proteome and enables
rapid responses to these changing environmental conditions. As a result of stress, damage
or a series of stochastic events, proteins may also unfold and aggregate (Mogk et al., 2011;
Schramm et al., 2019). Such proteins can undergo either refolding or degradation since the loss
of their structure leads to loss of function and aggregation of proteins may lead to cell death
(Mogk et al., 2011; Schramm et al., 2019). Altered protein levels may be sensed by various
feedback loops, involving transcriptional or translational regulators, which activate stress response
pathways that help bacteria to quickly adapt to unfavorable conditions. Regulation of protein
degradation pathways is well-conserved in all domains of life (Maurizi, 1992; Maurizi et al., 1994;
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Sauer and Baker, 2011; Miller and Enemark, 2016; Becker and
Darwin, 2017; Varshavsky, 2017; Mahmoud and Chien, 2018).
It is typically guided by the recognition of specific markers
by cognate proteolytic complexes. The specific signals which
turn the protein susceptible to degradation are called degrons
(Varshavsky, 1991). Their size may vary from single amino acids,
to short peptides, to post-translational modifications including
tagging with a small protein (Luh et al., 2020).

Degrons have been used extensively in research as tools for
manipulating protein levels, and here we describe the various
applications and experimental designs exploiting bacterial
degradation systems. In eukaryotes, the use of degrons has
progressed beyond the laboratory and has engendered a new
drug discovery field named Targeted Protein Degradation (TPD),
based on induced proteasomal degradation of target proteins
(Verma et al., 2020). This approach is a promising therapeutic
strategy applied intensively in cancer research (Mullard, 2021),
yet due to the lack of direct bacterial equivalents, it has not
yet been applied in bacteria. We believe that exploiting degrons
for induced degradation of endogenous target proteins could
similarly empower chemical genetics approaches in bacteria and
constitute an alternative to conventional antimicrobial drugs.
This review focuses on the existing applications of bacterial
degradation signals in the context of introducing TPD in bacteria
as an approach to proteome engineering and developing novel
degron-based antimicrobials.

DEGRADATION PATHWAYS AND
SIGNALS IN BACTERIA

Misfolded or unfolded proteins may be subjected to refolding
by chaperones or they can be degraded and replaced by
newly synthesized proteins. Proteases not only rescue cells
from proteotoxic stress, but they also regulate levels of
the existing proteins, maintaining the equilibrium between
production and degradation (Alber and Suter, 2019). As refolding
and degradation require high energy expenditure, typically
powered by ATP hydrolysis, these processes are conducted by
proteins belonging to the AAA+ family (ATPase Associated
with diverse cellular Activities) (Neuwald et al., 1999; Santra
et al., 2017; Rotanova et al., 2019). Protein degradation in
bacteria is performed by proteases such as Clp complexes,
Lon or the bacterial 20S proteasome which contain AAA+
domains (Table 1; Sauer and Baker, 2011). Typically, proteolytic
complexes comprise an ATPase which unfolds polypeptide chains
and a protease responsible for hydrolysis of peptide bonds.
Bacteria also have many other proteases which carry out various
specific functions in different intra- or extracellular localizations.
In this review we focus on the family of AAA+ proteases since
they are well-characterized, ATP-powered, highly processive,
have a broad range of substrates and are primarily located in
the cytoplasm, which—like the eukaryotic proteasome—makes
them good candidates for TPD. Two of the most ubiquitous
proteases, serine proteases ClpP and Lon, might be the most
promising choice for designing a targeted degradation system

which could be applied to a broad range of bacterial pathogens
with minor modifications.

Proteolytic Complexes Based on ClpP
and Lon
The gene encoding the caseinolytic protease ClpP was found in
most of the bacterial genomes with the exception of Mollicutes
(Yu and Houry, 2007). ClpP also exists in eukaryotes, mostly in
organelles such as chloroplasts and mitochondria (Yu and Houry,
2007). It is an ATP-dependent serine protease, which associates
with AAA+ chaperones (Figure 1A). ClpP oligomerizes into
a tetradecameric barrel-like structure composed of two stacked
heptameric rings (Wang et al., 1997). In some bacteria with two
paralogous genes clpP1 and clpP2 (such as Mycobacteriaceae,
Listeriaceae, Pseudomonaceae), ClpP1 and ClpP2 each form
homoheptameric rings which stack on top of each other. Each
barrel possesses 14 active sites facing the inside of the central
channel (Wang et al., 1997). Because of the small diameter of
the entrance pore, ClpP by itself can degrade only unstructured
proteins and short peptides (Thompson and Maurizi, 1994). In
order to degrade larger proteins, ClpP has to cooperate with
AAA+ chaperones which unfold substrates.

The ClpP partner unfoldases ClpX, ClpA, and ClpC have a
typical structure for AAA+ proteins with a characteristic α/β
fold, Walker A and B motifs which mediate ATP binding and
hydrolysis, and C-terminal helical bundle (Miller and Enemark,
2016). They form homohexameric rings which bind to one or
both faces of the ClpP barrel. It is the docking of highly conserved
Ile-Gly-Phe or Ile-Gly-Leu (IGF/IGL) loops of the unfoldases in
the hydrophobic pockets of ClpP that causes opening of the ClpP
central pore and enables degradation of larger peptides (Lee et al.,
2010; Alexopoulos et al., 2012). ClpX has one ATPase domain
while ClpA and ClpC have two of them (Sauer and Baker, 2011).
ClpX is the best conserved ClpP partner and is found in most
bacteria. ClpA and ClpC are present in general, respectively, in
Gram-negative or Gram-positive bacteria. Some proteobacteria
were found to have both genes, although they are functionally
redundant and could be a result of horizontal gene transfer
(Miller et al., 2018). Certain proteases such as Lon do not need
to form a complex with an unfoldase, since they comprise both
proteolytic and ATPase domains and therefore have chaperone
activity themselves (Sauer and Baker, 2011).

In general, the processive protease subunits are not highly
specific, so that substrate engagement is usually mediated by
degrons which are recognized by the AAA+ subunits. Degrons
might interact directly with unfoldases or with adaptor proteins
which help in delivering the substrates to the proteolytic
complexes (Kuhlmann and Chien, 2017; Mahmoud and Chien,
2018) (summarized in Table 1). Degradation of certain proteins
requires multiple adaptors acting in concert (Joshi et al., 2015).
Adaptors can enhance the action of the protease complex by
improving the affinity of the AAA+ protein for the substrate
(Wah et al., 2002; Román-Hernández et al., 2011), pulling the
substrate to facilitate engagement by the proteolytic complex
(Rivera-Rivera et al., 2014), or enabling the assembly of the
ATPase hexamers (Kirstein et al., 2006). The presence of adaptors
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TABLE 1 | A list of bacterial proteases with examples of their substrates.

Protease ATPase partner Adaptor or
regulator

Substrates Degron location Sequence References

ClpP ClpX (E. coli) SspB ssrA-tagged
proteins

C-terminus AANDENYALAA Gottesman et al., 1998

RseA1−108

(cleaved)
C-terminus VRPWAAQLTQMGVAA Flynn et al., 2004

– MuA C-terminus RRKKAI Harshey et al., 1985;
Levchenko et al., 1995

– FtsZ C-terminus AKEPDYLDIPAFLRKQAD Camberg et al., 2009

RssB RpoS (σS) N-terminus KVHDLNEDAEFDENGVE
VFDEKALVEQEP

Stüdemann et al., 2003

– λO N-terminus TNTAKILNFGR Flynn et al., 2003

– Dps N-terminus STAKLVKSKAT Flynn et al., 2003

– OmpA N-terminus MKKTAAIAIAV Flynn et al., 2003

ClpX (B. subtilis) – Poly-Ala-tagged
proteins

C-terminus Poly-Ala Lytvynenko et al., 2019

YjbH Spx C-terminus FLPRKVRSFQLRE Awad et al., 2019

CmpA SpoIVA n.d. n.d. Tan et al., 2015

ClpX
(C. crescentus)

CpdR/RcdA/PopA CtrA N-terminus DPNEQVNAA Domian et al., 1997; Joshi
et al., 2015

CpdR/RcdA TacA C-terminus TLEEIERDLIQH Joshi et al., 2015

CpdR PdeA C-terminus GAAPVKARG Rood et al., 2012

SocA SocB n.d. n.d. Aakre et al., 2013

ClpA (E. coli) ClpS N-degron pathway N-terminus L, F, W, Y Dougan et al., 2002; Ninnis
et al., 2009; Schuenemann
et al., 2009

ClpC (B. subtilis) MecA ComK C-terminus FMLYPKEERTMIYD
FILRELGERY

Prepiak and Dubnau, 2007

ComS N-terminus IILYPR Ogura et al., 1999; Prepiak and
Dubnau, 2007

McsB CtsR Internal (tagged
Arg)

pArg Trentini et al., 2016

MgsR Internal (tagged
Arg)

pArg Lilge et al., 2020

Lon Lon AAA+ domain – RcsA (E. coli) n.d. n.d. Stout et al., 1991; Gur and
Sauer, 2009

– SulA (E. coli) C-terminus ASSHATRQLSGLKIHSNLYH Ishii et al., 2000; Gur and
Sauer, 2009

– Y2853 (Y. pestis) C-terminus PLTATSYPIIH Puri and Karzai, 2017

– UmuD (E. coli) N-terminus FPLFSDLVQCGFPSP Gonzalez et al., 1998

– ZntR (E. coli) N-terminus n.d. Pruteanu et al., 2007

– Unfolded proteins Internal Hydrophobic amino acids Gur and Sauer, 2008b

– DnaA
(C. crescentus)

N-terminus MSLSLWQQCLARL
QDELPATEF

Liu et al., 2019

– SoxS (E. coli) N-terminus SHQKIIQDLIAWIDEHIDQ Shah and Wolf, 2006

HspQ YmoA (Y. pestis) n.d. n.d. Puri and Karzai, 2017

– PerR (B. subtilis) Internal, oxidation NNLRVFR Ahn and Baker, 2016

FtsH (E. coli) FtsH AAA+ domain n.d. LpxC C-terminus LAFKAPSAVLA Führer et al., 2006

λCIII λCII C-terminus RSEQIQMEF Kobiler et al., 2002

n.d. RpoH (σ32) n.d. n.d. Herman et al., 1995, 2003

– YfgM N-terminus EIYENENDQVEAV Bittner et al., 2015

– YccA N-terminus VSSSHDRT Kihara et al., 1999

– SecY n.d. n.d. Kihara et al., 1995

HslV (ClpQ)
(E. coli)

HslU (ClpY) – RcsA n.d. n.d. Chang et al., 2016

– SulA Internal GFIMRP Chang et al., 2019

(Continued)
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TABLE 1 | Continued

Protease ATPase partner Adaptor or
regulator

Substrates Degron location Sequence References

– YbaB n.d. n.d. Tsai et al., 2017

– RpoH (σ32) n.d. n.d. Kanemori et al., 1997

20S Proteasome
(M. tuberculosis)

Mpa – Pup-tagged
proteins

Internal (tagged
Lys)

MAQEQTKRGGGGGDD
DDIAGSTAAGQERREKLTE
ETDDLLDEIDDVLEENAE
DFVRAYVQKGGQ

Cole et al., 1998

– Bpa Unstructured
proteins

Internal Hydrophobic amino acids Delley et al., 2014

Cpa – n.d. n.d. n.d. Ziemski et al., 2018

n.d., not determined.

can also reprogram the protease complex by inhibiting the
degradation of other protease substrates (Dougan et al., 2002;
Torres-Delgado et al., 2020) or preventing autodegradation of the
unfoldase (Dougan et al., 2002). Not all proteases and substrates
require an adaptor, for instance there are few known examples
of proteins activating or reprogramming Lon (Puri and Karzai,
2017) and this protease can exert most of its functions without the
aid of accessory proteins. Conversely, ClpCP requires an adaptor
protein or substrate for ClpC complex formation (Kirstein et al.,
2006; Trentini et al., 2016) and chaperone activity (Schlothauer
et al., 2003; Trentini et al., 2016). One such example of ClpC
adaptor in Bacillus subtilis is MecA, which is degraded together
with the proteolytic substrates instead of being recycled and
the protease complex is being disassembled upon completing
degradation (Schlothauer et al., 2003; Mei et al., 2009).

C-Degrons Appended Through
Trans-Translation
Bacterial ribosome rescue and degradation of nascent proteins
stalled on ribosomes requires a process called trans-translation.
Upon translation arrest in bacteria, a tmRNA molecule is
recruited, the translated mRNA is cleaved and it dissociates
from the ribosome (Janssen and Hayes, 2012). The translation
resumes on the tmRNA template and a short peptide called ssrA
is appended to the synthesized polypeptide. The ssrA tag is a
C-terminal degradation signal (C-degron) and the tagged protein
is eliminated predominantly by the ClpXP complex (Figure 1B;
Keiler, 2008). Trans-translation seems to be a highly significant
quality control mechanism since genes encoding tmRNA and
proteins involved in this process are highly conserved in bacteria
and ssrA mutants show growth and virulence defects (Oh and
Apirion, 1991; Keiler, 2008). The ssrA tagging is not only a rescue
mechanism but it is also involved in the regulated proteolysis of
certain substrates (Hong et al., 2007). Degradation of ssrA-tagged
substrates is facilitated by the stringent starvation protein SspB
(Wah et al., 2002; Dougan et al., 2003; Farrell et al., 2005). This
protein acts as an adaptor binding to the zinc-binding domain
of ClpX and delivering the tagged proteins to the proteolytic
complex (Dougan et al., 2003; Wojtyra et al., 2003; Park et al.,
2007). However, SspB is not indispensable for degradation of
ssrA tagged proteins by ClpXP and it was found only in
certain proteobacteria such as E. coli and Caulobacter crescentus

(Lessner et al., 2007; Chowdhury et al., 2010). Though ClpXP
is the main proteolytic complex responsible for eliminating
products of trans-translation, the ssrA-tagged proteins can also
be degraded by ClpAP, Lon, or FtsH proteases (Gottesman et al.,
1998; Farrell et al., 2005; Gur and Sauer, 2008b; Hari and Sauer,
2016).

Recently, an alternative ribosome quality control pathway was
discovered in Bacillus subtilis. The mechanism is based on the
recognition of C-terminal poly-Ala tails by ClpXP (Lytvynenko
et al., 2019). A similar system exists in yeast, where Rcq2 protein
adds C-terminal Ala-Thr tails (CAT-tails) to the polypeptides
stalled on ribosomes and promotes their ubiquitination and
degradation (Yonashiro et al., 2016; Kostova et al., 2017).
In bacteria, Rcq2 homolog (RqcH) together with Hsp15/RqcP
recruit Ala-tRNA to the stalled peptides which are then degraded
in a ClpXP-dependent manner (Lytvynenko et al., 2019; Crowe-
McAuliffe et al., 2020; Filbeck et al., 2020). This degradation
pathway also exists in a number of Gram-positive bacteria and
Archea which suggests that it was formed during the early
evolution of life (Lytvynenko et al., 2019).

N-Degron Pathway
The composition of the N-terminus was found to regulate
the stability of proteins and therefore determine their half-
lives. The N-degron pathway was identified in bacteria as well
as in yeast and higher eukaryotes, although the destabilizing
amino acids vary between the organisms (Tobias et al., 1991;
Dougan et al., 2010, 2012; Varshavsky, 2019). In bacteria the
primary destabilizing residues are hydrophobic and aromatic
amino acids such as Leu, Phe, Trp, and Tyr (Tobias et al.,
1991; Ninnis et al., 2009; Schuenemann et al., 2009; Varshavsky,
2011) while secondary destabilizing residues could be Met or
the charged amino acids Asp, Glu, Lys, Arg (Tobias et al.,
1991; Graciet et al., 2006; Ninnis et al., 2009; Varshavsky, 2011;
Dougan et al., 2012). Typically, bacterial N-degrons are formed
either by endoproteolytic processing or attachment of a primary
destabilizing residue by an amino acid transferase to specific
N-terminal residues (Tobias et al., 1991; Ninnis et al., 2009;
Dougan et al., 2010; Humbard et al., 2013). Some studies suggest
that formylated N-terminal Met can serve as a degradation signal
(Piatkov et al., 2015). In eukaryotes, another way of generating
N-degrons involves exposure of destabilizing residues by removal
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FIGURE 1 | ClpP-based proteolytic systems in bacteria. (A) The tetradecameric peptidase ClpP (PDB ID 6NB1; Mabanglo et al., 2019) can be assisted in substrate
unfolding and recognition by the hexameric unfoldases ClpX (PDB ID 6PP5; Fei et al., 2020), ClpA (PDB ID 6UQO; Lopez et al., 2020), or ClpC (PDB ID 3J3S; Liu
et al., 2013) from the AAA+ family. The unfoldases bind to one or both faces of the ClpP double barrel, promoting its opening. Each unfoldase can cooperate in
substrate selection with its cognate adaptor proteins: the C-terminal XB tail of the dimeric SspB is bound by the Zinc Binding Domain of ClpX (PDB ID 2DS7; Park
et al., 2007), the N-terminal extension of ClpS (PDB ID 3O1F; Román-Hernández et al., 2011) baits ClpA, while MecA (PDB ID 3J3S; Liu et al., 2013) cooperates in
B. subtilis with ClpC. (B) The highly conserved tmRNA system rescues stalled ribosomes and appends ssrA degrons through trans-translation. tmRNA provides the
coding template for the ssrA peptide which contains an SspB-binding motif and C-terminal residues bound by ClpX. The ribosome rescue event results in the
production of a fusion protein with the C-terminally appended ssrA degron which in E. coli is targeted for degradation primarily through the SspB-ClpXP pathway.
Figures were created with BioRender.com and Mol* (Sehnal et al., 2018).

of the N-terminal Met (Varshavsky, 2019), although this is yet
to be demonstrated in bacteria. The canonical example of the
N-degron pathway in Gram-negative bacteria involves the ClpAP
complex (Tobias et al., 1991) and the ClpS adaptor which is also
referred to as an N-recognin (Erbse et al., 2006; Schmidt et al.,
2009; Schuenemann et al., 2009). The N-terminal amino acids of

the substrate are bound by the core of ClpS (Wang et al., 2008;
Rivera-Rivera et al., 2014). The ClpS N-terminal Extension (NTE)
fragment enters the central channel of the protease complex
and releases the substrate which is then unfolded and degraded
by ClpAP, while ClpS is being recycled (Román-Hernández
et al., 2011; Rivera-Rivera et al., 2014). The presence of ClpS
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significantly reduces the affinity of ClpAP to ssrA-tagged proteins
suggesting that it has a complex mode of action, delivering the
N-end rule proteins while preventing degradation of other ClpAP
substrates (Dougan et al., 2002; Torres-Delgado et al., 2020). No
sequelogs of ClpS were identified in Gram-positive bacteria or
Archea suggesting that this degradation pathway occurs only in
Gram-negative bacteria and eukaryotes (Varshavsky, 2011).

Constitutive and Conditional Degrons
Degrons naturally occurring in protein sequences are also a
part of natural regulation of protein half-lives. Their timely
recognition and degradation helps to maintain proteostasis and
regulate various cellular processes (Stüdemann et al., 2003;
Camberg et al., 2009; Bhat et al., 2013; Buczek et al., 2016;
Arends et al., 2018). Proteases may recognize a pool of protein
sequences. The C-terminal motifs identified in ClpXP substrates
are similar to the ssrA tag or the MuA transposase C-terminal
sequence and the N-terminal motifs have high homology with the
N-terminus of the outer membrane protein OmpA or λO phage
replication protein (Flynn et al., 2003). Bacterial proteases are
responsible for removal of prematurely terminated or unfolded
proteins (Gur and Sauer, 2008b; Van Melderen and Aertsen,
2009; Sauer and Baker, 2011; Arends et al., 2018; Mahmoud and
Chien, 2018). Their degradation is mediated by recognition of
regions with aromatic amino acid side chains and the absence of
small polar amino acids which can be exposed upon unfolding
(Gur and Sauer, 2008b; Van Melderen and Aertsen, 2009). As an
example, an unstructured N-terminal fragment of β-galactosidase
constitutes a degradation signal for the Lon protease, even though
the full length folded protein is not degraded by Lon (Gur and
Sauer, 2008b). Degron exposure under extreme conditions is
often a part of the stress response. Cryptic degrons may become
accessible upon temperature stress, oxidative environment or
endoproteolytic cleavage of the substrate protein (Sauer and
Baker, 2011). Regulated degradation is also mediated by other
bacterial proteases activated by heat shock including HslUV
(Baytshtok et al., 2021) or FtsH which can degrade both
cytoplasmic and membrane proteins (Bittner et al., 2015, 2017).

Post-translational Modifications
Directing Proteins for Degradation
Marking proteins for degradation is also mediated by post-
translational modifications such as phosphorylation or
attachment of a small protein. Arginine phosphorylation by
protein-arginine kinase McsB is a degradation signal for ClpCP
in Bacillus subtilis (Kirstein et al., 2007; Elsholz et al., 2011, 2012;
Trentini et al., 2016). Degradation of phosphorylated proteins
seems to be involved in adaptation to high temperatures (Trentini
et al., 2016). Interestingly the presence of phosphorylated
substrates promotes formation of ClpCP complex and enables
degradation even in absence of adaptors (Trentini et al., 2016).

The post-translational modification which targets proteins
to the 20S proteasome present in some bacterial orders
(Nitrospirales and Actinomycetales) resembles the one in
eukaryotes (Striebel et al., 2009; Jastrab and Darwin, 2015;

Fuchs et al., 2018; Becker et al., 2019; Müller and Weber-
Ban, 2019). Eukaryotic proteins are targeted for the proteasome
by conjugation of ubiquitin by the cascade action of enzymes
E1, E2, and E3 (Varshavsky, 2017). Ubiquitinated proteins are
recognized and degraded by the proteasome. Analogously, in
actinobacteria, proteins directed for degradation are tagged on
lysine side chains by a small prokaryotic ubiquitin-like protein
(Pup). Pup is attached covalently by the single action of Pup
protein ligase PafA (Pearce et al., 2008). It can be removed by
Dop (Pup deaminase/depupylase) which not only recycles Pup
and regulates degradation rates (Pearce et al., 2008; Burns et al.,
2010; Imkamp et al., 2010) but also activates Pup (Striebel et al.,
2009; Elharar et al., 2017). Pup is partially disordered and remains
disordered upon binding to the target proteins (Chen et al., 2009;
Liao et al., 2009; Barandun et al., 2017). This might contribute
to protein degradation, since degrons which target substrates
to the proteasome and other proteases are often unstructured
peptides (Prakash et al., 2004; Gur and Sauer, 2008b; Kim et al.,
2011; Hughes et al., 2018; Inobe et al., 2018). Despite certain
similarities, bacterial Pup tagging is simpler than the eukaryotic
ubiquitin-proteasome system and the differences between them
suggest that they developed independently (Imkamp et al., 2015).
Pup-tagged proteins are recognized and bound by Mpa, an
AAA+ unfoldase which is an activator protein for the bacterial
proteasome (Darwin et al., 2004; Wu et al., 2017), competing
for 20S binding with two other regulators Bpa (recognizing
unstructured proteins) (Delley et al., 2014) and Cpa (Ziemski
et al., 2018). Since the Pup-proteasome degradation system is
only found in Actinobacteria but is lacking in other bacterial
phyla, it has a limited potential as a universal proteolytic
machinery in targeted degradation. However, since it plays a
significant role in a number of important pathogens such as
Mycobacterium tuberculosis (Darwin et al., 2003; Gandotra et al.,
2007), it might be exploited for fighting antimicrobial resistant
mycobacteria which cause tuberculosis.

TOOLS FOR PROTEIN DEGRADATION
AND THEIR APPLICATIONS

Two strategies find use in targeting proteins for degradation:
fusing proteins with degrons or applying degrader molecules. We
describe these two approaches in turn and how they may be used
to modify protein stability for various applications in functional
studies of proteins, synthetic biology or drug discovery.

Applications of Bacterial Degrons
Studies of protein function often exploit fusion constructs
appending otherwise stable proteins with degrons to enable tight
regulation of protein levels. Since the ssrA-tagging system is the
most extensively studied, ssrA is currently the only degron widely
used for modification of protein stability in bacteria (Fritze et al.,
2020). Given the high efficiency of degradation and the precision
of control conferred by adaptor proteins, using degrons can serve
as a diverse tool for reverse genetics and clever synthetic biology
applications. However, since a single degron can be recognized by
multiple proteases under natural conditions, engineered proteins
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with attached degrons may be susceptible to degradation by
several pathways, which can make degradation control more
difficult (Ogle and Mather, 2016; Butzin and Mather, 2018). To
increase degradation specificity and stringent control, different
strategies may be applied, such as using heterologous degrons
recognized by degradation systems from other organisms; other
approaches include split-adaptor systems or degrons which are
exposed upon specific proteolytic cleavage.

Homologous Use of Fine-Tuned Degron Variants
Degron-induced protein degradation is one of the ways
of regulating gene expression in loss-of-function protein
studies. A collection of bacterial expression-regulating elements
including different constitutive promoters, ribosome-binding
sites and degrons enabled modifications in B. subtilis on multiple
levels: transcription, translation and protein stability (Guiziou
et al., 2016). The proteolysis rate of the target protein could be
regulated by the addition of a ssrA variant. In total, 10 different
versions of ssrA with a modified tripeptide at the C-terminus
were used to tune the protein levels constituting a valuable tool
for protein research.

Precise regulation of protein expression is valuable in many
synthetic biology applications. Addition of degrons to proteins
involved in synthetic circuits can prevent protein accumulation
and therefore enable fast response to the changing concentrations
of inducers and repressors. Degrons are widely used in the design
of genetic oscillators which periodically switch from one state to
another in vitro or in vivo (Stricker et al., 2008; Purcell et al.,
2010; Niederholtmeyer et al., 2015; Potvin-Trottier et al., 2016).
Stringent regulation of a protein half-life can also be applied
in more sophisticated synthetic circuits, for example a digital
data storage platform in E. coli capable of recording cellular
events using fluorescent reporters (Bonnet et al., 2012). Adding a
ssrA tag to the components driving DNA recombination helped
to create a resettable system which holds its state for multiple
generations of cells.

Heterologous Use of Degrons
Because of the high conservation of tmRNA tagging system, ssrA
tags can be introduced to different species of bacteria and still
be recognized and processed by their cognate endogenous or
transgenic proteases. Interspecies differences such as dependence
of degradation on adaptors can be used to ensure stringent
control of protein degradation and the diversity in recognition of
degrons can be exploited to avoid interference with endogenous
degradation systems.

Involvement of SspB is not necessary for the degradation of
ssrA-tagged proteins, and not all bacteria express homologues
of this ClpXP adaptor (McGinness et al., 2006). The absence
of SspB homologues in Bacillus subtilis and mycobacteria was
exploited to create two similar systems based on the ssrA
derived degrons and inducible expression of SspB (Griffith
and Grossman, 2008; Kim et al., 2011). An ssrA tag variant
featuring Asp-Ala-Ser at the C-terminus and four residues
inserted between the ClpX and SspB binding sites (referred
to as DAS+4 tag) was used in both cases (McGinness et al.,
2006; Griffith and Grossman, 2008; Kim et al., 2011). Such

degrons cause rapid protein degradation in the presence of SspB,
while they are stable when the adaptor is absent (McGinness
et al., 2006). In Bacillus subtilis this degron was mutated and
optimized for enhanced stability and SspB dependence. This
enabled rapid ClpX-dependent degradation of tagged proteins
strictly upon induction of SspB expression. The system was
applied for inducible degradation of ComA transcriptional
regulator and several proteins involved in sporulation (Griffith
and Grossman, 2008). However, in such an approach the different
degradation tags and the different variants of the promoter
controlling SspB expression may need to be tested for the optimal
degradation control of each individual protein. C. crescentus
SspB and the degron optimized for this adaptor were used
in parallel to E. coli degradation components to show that
the system can be modified for more complex applications
enabling orthogonal regulation of degradation of two proteins
simultaneously (Griffith and Grossman, 2008).

Similarily, a DAS+4 tag was introduced at the C-terminus
of some reporter proteins in M. smegmatis and M. tuberculosis.
Transfection of mycobacteria with an SspB-encoding plasmid
with an inducible promoter enabled regulation of the levels of the
target proteins. This system was also tested on the endogenous
RNA polymerase subunit β (RpoB). Attachment of the DAS+4
tag led to inactivation of RNA polymerase and caused growth
inhibition. This supports the applicability of degron tagging for
identification of novel drug targets while omitting limitations
of transcriptional gene silencing which can be lengthy and
inefficient (Kim et al., 2011).

A different degron-recognizing protease was employed by
Cameron and Collins to create a modular system applicable in
diverse bacterial species, based on the Mesoplasma florum ssrA-
tag (Cameron and Collins, 2014). Mycoplasma have a minimal
genome encoding only two members of the AAA+ protease
family: FtsH and Lon. Despite having a significantly smaller
number of genes, Mycoplasma retained the trans-translation
system which indicates the importance of stalled ribosome rescue
(Gur and Sauer, 2008a). However, M. florum ssrA differs in length
and sequence from tmRNAs typically found in bacteria. Due to
the lack of the ClpXP complex (the main protease eliminating
ssrA-tagged proteins in most bacterial genera), degradation
of ssrA-tagged substrates in M. florum is mediated by Lon
(Gur and Sauer, 2008a). As mf -ssrA is not recognized well
by Lon from other bacteria and mf -Lon does not efficiently
degrade proteins with distinct tmRNA tags, introducing them
into a different organism enabled the creation of an efficient
inducible degradation system (Gur and Sauer, 2008a; Cameron
and Collins, 2014). Inserting mf -ssrA-derived degradation tag
at the C-terminus of the protein of interest and mf -Lon under
a tetracyclin-inducible promoter, either on a plasmid or in the
LacZ locus, provides a tool for regulated protein degradation
(Figure 2A). The utility of this system was proven in E. coli
as well as in Lactococcus lactis, suggesting it may be widely
applicable in bacteria. In E. coli, a simple toggle switch circuit was
engineered to show the utility of this system in synthetic biology.
The mf -ssrA tag was further modified to improve protein
stability in the absence of mf -Lon by reducing recognition by
endogenous proteases (Lv et al., 2019). Finally, the Essential

Frontiers in Molecular Biosciences | www.frontiersin.org 7 May 2021 | Volume 8 | Article 669762

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-669762 April 30, 2021 Time: 20:29 # 8

Izert et al. Protein Degradation Tools in Bacteria

Protein Degradation library which is composed of 238 strains
with tagged essential proteins and inducible expression of mf -
Lon proved that such an artificial degradation system can be
exploited in basic protein function research and in drug discovery
screens (Cameron and Collins, 2014).

The Split-Adaptor System for Small-Molecule
Induced Degradation
Rapid control of protein degradation can also be achieved
by chemically induced dimerization of adaptor domains. This
approach exploits the interaction between FRB (a domain of
mTOR serine/threonine kinase) with FKBP12 (peptidyl-prolyl
cis-trans isomerase) upon binding to rapamycin (Chen et al.,
1995; Figure 2B). The core domain of the SspB adaptor
protein and its ClpX-binding peptide were split and fused to
FRB and FKBP12, respectively. Introducing these constructs
in an sspB- strain allowed the induction of degradation of
proteins tagged with a ssrA-DAS+4 degron. Additionally, the
degradation could be easily switched off by removal of rapamycin
(Davis et al., 2011).

Degrons Exposed by Protein Cleavage
Several systems for controlling protein degradation incorporate
terminal degrons in internal sites. The degrons are protected
by endopeptidase recognition peptides. The degradation can be
induced by expression of transgenic endopeptidases such as TEV
and HIV-2 or by conditions which cause self-cleavage of the
protein. When the endopeptidase is not induced, the degron-
tagged protein remains stable, but when the cleavage is induced,
the protective sequence is removed, the degron is exposed, and
the target undergoes degradation by either ClpXP or ClpAP
complex. This is a widely applicable approach since it was used in
different organisms for both N- and C-degrons (Wei et al., 2011;
Sekar et al., 2016; Liu et al., 2017). A modified ssrA system was
tested in M. smegmatis on different antibiotic targets, which in
many cases resulted in increased susceptibility of the bacteria to
antimicrobials, proving that regulated protein degradation can be
a valuable tool in drug development (Wei et al., 2011).

Another system using an endoprotease recognition site and
a ssrA degron was developed to enable growth-independent
protein production. Functional engineering of ssrA/NIa-based
flux control (FENIX) is based on a C-terminal fusion of NIa
protease recognition site followed by the ssrA sequence (Durante-
Rodríguez et al., 2018). Under normal conditions the protein of
interest expressed under a constitutive promoter is continuously
degraded, but upon induced expression of NIa protease the
degron is cleaved off resulting in accumulation of a stable protein,
such as the acetyl-CoA transferase (PhaA) which is involved in
the synthesis of polyhydroxybutyrate (Steinbüchel et al., 1992;
Durante-Rodríguez et al., 2018). This allowed the uncoupling of
protein production from cell growth to manipulate the metabolic
flux for more efficient biopolymer synthesis (Durante-Rodríguez
et al., 2018). This is of particular importance for the production of
proteins which interfere with bacterial growth or for the synthesis
of toxic proteins and enzymes. The FENIX approach may have
important implications for industrial production of enzymes and
polymers in bacteria.

Extraction of Components From Macromolecular
Complex
The high affinity between a degron and a specific protease can
be exploited to separate the target protein from more complex
structures. The pulling force created by ClpX is so strong that it
can separate tagged proteins from the bacterial membrane and
nucleic acid complexes (Burton and Baker, 2005; Chai et al.,
2016; Abeywansha et al., 2018). The high affinity of ClpX to
its substrates was used as “molecular tweezers” to extract a
50S subunit component, ribosomal protein L22 (Moore et al.,
2008). L22 is crucial for correct ribosome assembly since it forms
multiple stable contacts with 23S rRNA (Moore and Sauer, 2008).
Investigations into the functions of this protein are limited since
its genomic deletion disrupts complex formation and therefore
affects the whole ribosome. In order to better understand the
specific roles of L22, the endogenous L22 protein in a clpX-
strain was exchanged for a version with an N-terminal His-
tag and an unstructured titin domain, followed by ssrA at the
C-terminus. In vitro degradation by ClpXP of tagged L22 in
isolated ribosomes was not complete, the protease degraded
only the titin ssrA part and leaving L22 protein intact. Partial
destabilization of the ribosomal complex due to a reduced
concentration of magnesium in the buffer allowed efficient L22
degradation, but did not result in disassembly of the whole
ribosomal subunit. Because magnesium ions are involved in
proper folding and interactions of rRNAs (Allen and Wong,
1986), moderate reduction of magnesium levels likely loosened
the ribosome structure and therefore enabled the extraction.
Even though the harsh extraction conditions resulted in a
decreased translational activity of the isolated ribosomes, the
ssrA-mediated degradation of proteins has a potential use in
studying the functions of individual components of complex
biological assemblies without disrupting their whole structure
(Moore et al., 2008).

Acoustic Biosensors
An interesting example of degron use was creation of an acoustic
biosensor by affecting gas vesicle properties. Multi-protein gas
vesicles can be formed by mixing a small hydrophobic protein
GvpA and a small hydrophilic protein GvpC (Walsby, 1994).
These structures exist naturally in aquatic cyanobacteria and
regulate their buoyancy and phototaxis (Walsby, 1994). The
presence of gas vesicles was found to improve ultrasonic contrast
and therefore constitutes a promising tool for molecular imaging
(Yang et al., 2017). The vesicles can be modified by introducing
a protease-recognized sequence in the GvpC protein which
forms a scaffold on the vesicle surface. Upon protease cleavage
the vesicles retain the same morphology, but their physical
properties such as pressure resistance change, which affects the
non-linear ultrasound contrast (Lakshmanan et al., 2020). In
this way the protease activity can be tracked by monitoring the
contrast change upon proteolytic cleavage. Tagging a gas vesicle
protein with ssrA and introducing it in bacterial strains with
ClpXP expression under the control of an inducible promoter
allowed the monitoring of enzymatic activity in synthetic circuits.
Moreover, engineering E. coli with ssrA-tagged gas vesicles
controlled by an arabinose-induced ClpXP can also be used
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FIGURE 2 | Bacterial degrons are used as tools for controlled protein degradation and interaction modules. (A) Induction of heterologous expression of M. florum
Lon (PDB ID 1RRE; Botos et al., 2004) protease in E. coli or C. crescentus cells enables selective degradation of proteins fused with mf-ssrA degrons (Cameron and
Collins, 2014). (B) A split-adaptor system can be used to specifically control the degradation of homologously expressed proteins. Protein constructs encoding the
SspB core domain fused to FRB and the SspB C-terminal XB tail fused to FKBP12 can be made to interact by the addition of the small molecule rapamycin. The
SspB core domain recognizes the substrate appended with a ssrA DAS+4 degron, while the SspB XB tail binds to ClpX. The rapamycin-induced assembly of this
split-adaptor system results in the degradation of the target protein (Davis et al., 2011). (C) The degron-adaptor interaction can be used to co-localize proteins in a
light-inducible manner. Protein X is fused to LOV2 with a C-terminally appended ssrA-derived sequence, while the second protein Y is fused to SspB. In the dark,
ssrA is bound by LOV2 and precluded from interaction with SspB. Light-induced conformational changes in LOV2 cause the release of the ssrA degron, which is
recognized by SspB and mediates the interaction between the proteins X and Y (Guntas et al., 2015). Figures were created with BioRender.com and Mol* (Sehnal
et al., 2018).
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to improve ultrasound contrast in the gastrointestinal tract in
infected mice (Lakshmanan et al., 2020).

Photoswitches Using Affinity Between ssrA and SspB
Degron-adaptor interactions can be also exploited for their high
affinity as binding modules. The SspB-binding fragment of ssrA
fused with a photoswitchable domain were used to create a light-
inducible dimer (LID) with SspB (Lungu et al., 2012). LIDs are
often based on photoactivatable proteins which naturally occur
in plants. Upon exposure to blue light, the proteins change their
conformation and expose their ligand-binding sites (Salomon
et al., 2000; Harper et al., 2003). Fusing a fragment of the
ssrA peptide to an AsLOV2 protein domain which undergoes
structural rearrangement upon light exposure helped to create
a system for precise control of protein interactions (Lungu
et al., 2012; Guntas et al., 2015; Figure 2C). Under normal
conditions, the ssrA fragment is embedded in the AsLOV2
protein and therefore unavailable for SspB binding, but upon
light activation the AsLOV2 conformation changes, exposing
ssrA and thus increasing the affinity of the fusion protein to
SspB (Lungu et al., 2012). In the absence of light, proteins
relax to their ground state. Further engineering of the AsLOV2
domain enabled the creation of a highly efficient system which
caused protein dimerization upon light induction and therefore
modified the localization or activity of proteins fused to AsLOV2-
ssrA and SspB (Guntas et al., 2015; Zimmerman et al., 2016).
The affinity of SspB and ssrA in LIDs can be also exploited to
regulate assembly of homomeric complexes (Yu et al., 2017). The
system was applied in both bacterial and eukaryotic cells (Guntas
et al., 2015; Zimmerman et al., 2016; Yu et al., 2017). Fast and
reversible action of ssrA-modified LIDs made a good alternative
to chemically induced dimerization (Guntas et al., 2015).

Targeted Protein Degradation Using
Degraders
Although fusion proteins with degrons can be used to effectively
knock-down proteins in bacteria in a regulated manner, there is
still a lack of a universal and adaptable technique which would
enable effective degradation of endogenous proteins without
any prior modifications with fusion tags. Such approaches have
been successfully developed and studied in eukaryotes, which
could serve as a starting point for creating analogous techniques
for bacteria. We describe the most feasible strategies used in
eukaryotes that enable the manipulation of endogenous proteins
with the use of exogenously applied compounds.

Targeted protein degradation (TPD) has emerged as a
significant technique in drug discovery over the last decade. This
approach to treatment omits the limitations of traditionally used
inhibitors by elimination of the protein molecules rather than
blocking their activity. TPD can also be an alternative to typical
reverse genetics methods such as genetic modifications or RNA
interference (RNAi) and allows control of protein levels in a
fast, precise, and reversible manner. Degradation is triggered
by molecules which bring together the protein of interest and
the degradation machinery or cause a conformational change of
the target which can expose the degron. Degradation-inducing
compounds can be small molecules or peptides, and can be

a single molecule or a bivalent fusion of two ligands. This
technique may lead to significant advances in the treatment
of cancer and neurodegenerative diseases which are becoming
increasingly prevalent. Three types of TPD agents have shown
particular promise so far: PROTACs, molecular glues, and
hydrophobic tags.

PROTACs
Using Proteolysis-Targeting Chimeras (PROTACs) is a new
approach in biological discovery. Typically, a PROTAC is
composed of a ligand for a protein of interest joined by a flexible
linker to a ligand of an E3 ubiquitin ligase. One advantage of
this approach is that PROTACs do not need to occupy an active
site, thus they are able to degrade also “classically undruggable”
proteins without enzymatic activities such as transcription factors
or scaffolding proteins (Gao et al., 2020; Wang et al., 2020).
They can also give a new purpose for ligands with a good
affinity but poor inhibitory effects or enhance the effects of good
inhibitors. The PROTACs themselves are reusable, since after the
degradation of one target molecule they can go on to recruit
more molecules, which decreases the concentration of the drug
required to be effective. Although the design of the molecules
appears to be relatively straightforward, there are numerous
factors which must be taken into consideration to create an
effective PROTAC. Tight binding of the chimeras is achieved
by a mechanism of cooperative binding which leads to high
ternary affinities. Preferably, the affinity of the PROTAC-target or
PROTAC-E3 complexes to the third component (the E3 ligase or
the target, respectively) should be higher than the separate binary
affinities of the PROTAC components to its individual binding
partners (to the E3 ligase or the target) alone (Gadd et al., 2017;
Liu X. et al., 2020). Linkers, usually made of PEG or alkyls, play
an important role in enabling molecules to form this coordinative
and permissive complex by keeping them at a distance which
helps to reduce steric constraints but at the same time allows
efficient ubiquitination by the proximity effect. The design should
take into consideration features such as the length, flexibility,
and also the attachment sites of the linker to both ligands, and
typically requires optimization for each PROTAC (Cyrus et al.,
2011; Maple et al., 2019; Donoghue et al., 2020). The length of
the linker not only influences PROTAC action and affinity toward
the binding partners but also the compound stability (Goracci
et al., 2020; Pike et al., 2020). Another important factor is the
cell permeability of PROTAC molecules. The size of a chimera
composed of two different ligands is twice as large as traditional
drugs, which affects their pharmacokinetics and can potentially
cause absorption issues. Surprisingly, PROTAC permeability is
relatively high and can be improved by linker modifications or
attaching cell-penetrating peptides (Maple et al., 2019; Jin J. et al.,
2020; Liu X. et al., 2020). Ligands that bind to the E3 ligase
and to the protein of interest can be either small molecules
or peptides. The first PROTACs had peptidic binding moieties;
however, because of the relatively poor permeability and stability
for peptides, more recent PROTACs now are constructed from
small molecules (Sakamoto et al., 2001; Schneekloth et al., 2004;
Ishikawa et al., 2020). Nonetheless, the limitations of peptide
ligands may in principle be obviated with peptidomimetics,
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chemical modifications, or fusions with cell-penetrating peptides
(Jiang et al., 2018; Lu et al., 2018; Au et al., 2020; Jin J. et al., 2020;
Lee et al., 2020; Ma D. et al., 2020). Due to the low toxicity of
peptides, their large binding surfaces (which can help overcome
the effect of mutations in target proteins), and the possibility
of designing multiple potential ligands based on structures of
protein complexes, peptide-based PROTACs are still used (Au
et al., 2020; Jin J. et al., 2020).

Even though the most popular PROTACs are minimally made
of two peptides or small molecules joined with a linker, a
number of modifications to this basic concept have significantly
broadened the spectrum of available PROTACs (Figure 3A). This
includes light-activated PROTACs (Pfaff et al., 2019; Xue et al.,
2019; Jin Y.H. et al., 2020; Liu J. et al., 2020; Manna and Wu,
2020; Reynders et al., 2020), RNA-PROTACs which target RNA-
binding proteins (Ghidini et al., 2020), homo-PROTACs which
are composed of two particles of the same E3 ligand (Maniaci
et al., 2017; Steinebach et al., 2018), HaloPROTACs which are
directed against the popular HaloTag (Buckley et al., 2015; Tovell
et al., 2019; Simpson et al., 2020), and bioPROTACs composed
of E3 ligase fused to known domains that interact with the
target protein (Lim et al., 2020). Other techniques which exploit
different degradation pathways are Specific and Nongenetic
Inhibitor of Apoptosis Protein (IAP)-dependent Protein Erasers
(SNIPERs) which have an activity similar to PROTACs but also
induce the degradation of the associated ubiquitin ligases (Ohoka
et al., 2017; Naito et al., 2019; Ishikawa et al., 2020), LYTACs
which degrade extracellular proteins via lysosomal pathway
(Banik et al., 2020) or autophagy-inducing AUTACs which
can degrade fragmented mitochondria and proteins (Takahashi
et al., 2019). All of those approaches create an exciting potential
to develop drugs which can target multiple proteins that are
untargetable with other methods. Over the last few years there
has been a growing interest in PROTACs in both academia
and industry as shown by a steep increase in the number of
publications on PubMed and patent applications in the Google
Patents database. In 2019, the first PROTAC was approved for
clinical trials in prostate cancer treatment (Mullard, 2019) and
more degraders are soon going to be tested in patients (Mullard,
2021). Most often the chimeric molecules are directed against
cancer-related proteins, but are sometimes used in research
on neurodegenerative or autoimmune disorders and can even
potentially act on viruses such as SARS-CoV2 (Ding et al., 2020;
Ocaña and Pandiella, 2020; Tomoshige and Ishikawa, 2020).

Molecular Glues
Much like PROTACs, molecular glues are a type of small
molecules which brings together two proteins of otherwise poor
or no affinity which may lead to a desired outcome such as
protein degradation. Molecular glues are typically more compact
and less modular than PROTACs, and form a new interface
between the two proteins, which results in a high affinity of the
ternary complex and less of the pharmacological “hook effect.”
Natural examples of such molecules are cyclosporine promoted
binding of cyclophilin and calcineurin, and the afore-mentioned
rapamycin which acts on FKBP and FRP (Che et al., 2018). In
an engineered system using FRP fused to the proteasome and

the target protein fused to FKBP, the addition of rapamycin
caused ubiquitin-independent proteasomal degradation (Janse
et al., 2004). This circumvents the need for an E3 enzyme—a
promising premise for the necessarily E3-free TPD in bacteria.
Some molecular glues do induce interactions between target
proteins and ubiquitin ligases, which causes degradation. For
example, a class of anticancer drugs known as SPLAMs cause
degradation of RNA-binding protein 39 (RBM39) involved in
RNA splicing by the DCAF15 ubiquitin ligase (Che et al., 2018;
Faust et al., 2020). Thalidomide derivatives (IMiD) are now
known to bind to cereblon (CRBN) E3 ligase complex in the
brain and induce degradation of transcription factors such as
IZKF1, IZKF3, or SALL4 (Figure 3B). Fusing fragments of those
proteins to the protein of interest created a system for IMiD-
dependent inducible protein degradation (Koduri et al., 2019;
Yamanaka et al., 2020). The discovery of molecular glues has so
far been largely serendipitous, albeit once established they often
find a widespread use—such as the auxin system derived from
plants. Auxin inducible degradation (AID) is used to activate
protein degradation in genetically intractable research problems
(e.g., studies of cellular memory maintained through epigenetic
protein marks; Siwek et al., 2020).

Hydrophobic Tagging
A variation on the use of small molecules to induce TPD is
a method called hydrophobic tagging. Hydrophobic stretches
are often exposed in unfolded proteins, and can be recognized
by protein quality control pathways and result in protein
degradation (Hachisu et al., 2016). Hydrophobic tags (HyTs) are
chimeric compounds designed to have high hydrophobicity and
low molecular weight (Neklesa et al., 2011). The primary action
of HyTs relies on the recognition of the highly hydrophobic Boc3-
Arg (tert-butyl carbamate protected arginine) as the signal for
degradation. HyT selectivity is conferred through fusion of Boc3-
Arg to a known protein ligand (for example, trimethoprim is used
as a ligand of DHFR) (Figure 3C). Alternatively, in the absence
of a known ligand, a HaloTag-binding linker can be used to target
HaloTag fusion proteins. Degradation mediated by Boc3-Arg is
proteasome dependent but ubiquitin independent (Long et al.,
2012; Shi et al., 2016). Hydrophobic tagging has been used for
inducing the degradation of numerous cancer-related proteins
and the Alzheimer disease-related Tau protein (Gao et al., 2017;
Rubner et al., 2018, 2019; Nietzold et al., 2019; Ma A. et al., 2020).

Small Molecule-Induced Instability
An example of a clinically relevant degradation-promoting small
molecule is Fulvestrant, a selective estrogen receptor degrader
(SERD), which was approved for breast cancer treatment in
2002 (Bross et al., 2002). It inhibits ER dimerization and its
transcriptional activity, and promotes proteasome-dependent
degradation (Osborne et al., 2004; Croxtall and McKeage, 2011).
It acts by exposing a hydrophobic part of the target ER molecule
that mimics a natural degron (Cornella-Taracido and Garcia-
Echeverria, 2020) and can be thought of as indirect hydrophobic
tagging (Figure 3D). Other small-molecule induced degradation
techniques which require engineering the protein of interest
include fusions with DHFR or a FKBP12-based destabilizing
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FIGURE 3 | Targeted protein degradation (TPD) strategies exploited in eukaryotes. (A) PROTACs are bifunctional chimeras which mediate the recruitment of an E3
ubiquitin ligase to the target protein. PROTAC components can be peptides, small molecules or oligonucleotides recognized as ligands by the target proteins.
Ubiquitination of the target results in its degradation by the proteasome, while the PROTAC molecules are recycled for the next proteolytic event. LYTACs and
AUTACs direct proteins for lysosomal degradation by promoting their encapsulation in endosomes and autophagosomes, respectively. (B) Thalidomide serves as a
molecular glue which brings together SALL4 and the cereblon (CRBN) E3 ligase complex. SALL4 becomes a neo-substrate for the ubiquitination by CRBN and is
then degraded by the proteasome (Yamanaka et al., 2020). (C) Hydrophobic tagging uses chimeric compounds in which a known protein ligand is linked to a highly
hydrophobic Boc3-Arg, which is recognized as a degron by the proteasome. DHFR can be targeted for degradation through the use of its ligand trimethoprim in the
chimeric hydrophobic tag (Shi et al., 2016). (D) Fulvestrant binding to the estrogen receptor α causes conformational changes which exposes the hydrophobic parts
of the protein that serve as a degron. The Fulvestrant-bound ERα is degraded in the nucleus through the ubiquitin-proteasome pathway (Cornella-Taracido and
Garcia-Echeverria, 2020). Figures were created with BioRender.com.

domain which cover the degrons in the presence of the small
molecule ligands but expose them in their absence which results
in degradation (Banaszynski et al., 2006; Tai et al., 2012).

The First Bacterial Degrader
Importantly, a recent discovery provided the first example of a
small molecule inducing specific protein degradation in bacteria,
through induced instability: pyrazinamide. This compound
eliminated aspartate 1-decarboxylase PanD activity needed for
CoA synthesis in M. tuberculosis. It was previously believed
to act like a regular inhibitor, but has been recently found to
target PanD for degradation by ClpC1P (Gopal and Dick, 2020;
Gopal et al., 2020). It acts by exposing the C-terminal degron of

PanD and changing the multimeric state of the PanD complex
(Figure 4A). This is the first degradation-inducing antimicrobial,
working along the lines of SERD-like strategy.

DISCUSSION

Bacterial proteases are robust machines embedded within tight
regulatory networks to ensure timely and specific substrate
selection, aided by adaptor proteins and sequence-encoded
degradation signals. Their diversity provides researchers with
tools for manipulating protein stability in order to investigate
protein function and to design useful synthetic circuits. Despite
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FIGURE 4 | Possible strategies for targeted protein degradation (TPD) in bacteria. (A) Pyrazinamide binds PanD, which leads to conformational changes that expose
a degron sequence and degradation by ClpC1P (Gopal et al., 2020). (B) In Mycobacteria, a PROTAC molecule containing a ligand of PafA could recruit PafA to the
target protein. Pupylation of the target protein by PafA could enable its selective degradation by the 20S proteasome. (C) In Gram-positive bacteria, the McsB
arginine kinase can be exploited to phosphorylate target proteins. A PROTAC containing a ligand of McsB could elicit phosphorylation of the target and bring about
ClpCP-mediated degradation. (D) PROTAC molecules could directly recruit the proteolytic machinery by employing small molecule or peptide ligands of the proteins
involved in the proteolytic pathway. PROTAC-mediated interaction with an adaptor protein, an unfoldase, or a peptidase could serve to induce proximity and cause
degradation of the target protein. Figures were created with BioRender.com and Mol* (Sehnal et al., 2018).

this repertoire, the majority of controlled proteolysis approaches
found in the literature and described here focus on variants of
ssrA tagging. This might be due to the well-described properties
of this system, and its useful modality. Indeed, the applications
of ssrA degrons seem versatile and range from large screens
of protein function in collections of mutant strains, to elegant
reversible switches for in vivo studies. It seems that most needs
for protein stability control can be addressed using the ssrA
degron. However, all of the current approaches to specific and
inducible protein degradation in bacteria have one requirement
in common: they rely on engineering protein fusions. This might
limit their application in terms of the required labor, finding
a neutral tagging site, and the genetic engineering tractability
of the bacterial species. How would the field progress if the
remarkable opportunities offered by PROTACs and molecular
glues to target endogenous proteins were also applicable in
bacteria?

Several studies employing degrons in bacteria, and the case
of pyrazinamide, show that the general requirement for TPD
is fulfilled: induced degradation can cause notable molecular
and even phenotypic changes despite the typically faster protein
turnover rates in bacteria. Moreover, degradation can be brought
about simply by virtue of the proximity of the target to the
protease, as in the split-adaptor system (Davis et al., 2011). There
are, however, few true examples of TPD in bacteria, leaving a
significant methodological gap between bacteria and eukaryotes.
This stems mostly from the lack of the ubiquitin-proteasome
system in bacteria, which has been the foundation for TPD in
human cells. Nonetheless, the extensive range of protease action
and structures highlighted in this review should enable scientists
to ultimately find ways to deliver bacterial proteins of interest
for degradation. Here we discuss possible future developments

in the light of the present drawbacks and limitations of TPD
tools in bacteria.

Firstly, what type of TPD agents may be the most suitable for
use in bacteria? While there are various approaches available in
eukaryotes, some have a limited potential for becoming the go-to
technique for depleting specific endogenous proteins in bacteria.
Molecular glues are usually discovered accidentally as they are
difficult to rationally design although there were attempts to
develop screening techniques enabling identification of potential
molecular glues (Mayor-Ruiz et al., 2020). Pyrazinamide is a
proof that small-molecule induced instability is a viable strategy
(Figure 4A), yet it was also a result of a serendipitous discovery
rather than targeted design (Gopal et al., 2020). Similarly,
direct hydrophobic tagging of non-fusion proteins has yet to be
demonstrated to be a facile tool in bacteria. Some approaches
may remain applicable only in eukaryotes, such as those relying
on lysosomal degradation. Since we are aiming at engineering
a successful and universal strategy, we believe that a PROTAC-
like approach would have the most potential to successfully yield
bacterial degraders. Similarly to the eukaryotic PROTACs, the
bacterial TPD field may start with peptidic degraders and later
move on to employing small-molecule chimeras. For example,
the multitude of known protein-peptide interactions presents
a big repertoire of peptide motifs which could serve as the
target-engaging part (warhead) of the bacterial bio-degraders. In
addition, based on the success of various eukaryotic PROTACs
we hypothesize that it could be possible to create RNA and DNA-
degraders which use oligonucleotides as baits for the nucleic acid-
binding proteins. By using degraders, it would also be possible to
repurpose known small molecules, for example, failed antibiotic
candidates which might be decent binders but poor inhibitors.
Since only binding (as opposed to any inhibitory potential) is
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required from the ligand, TPD can bring to bear its key advantage,
allowing investigators to target classically “undruggable” proteins
without any tractable active sites.

What seems to be a more challenging task is finding
an effective method for delivering the proteins of interest
to the proteases. Because of the lack of ubiquitin-dependent
degradation, it is necessary to find a different strategy to recruit
proteolytic machinery to the target. One of the possible solutions
would be recruitment of the PafA Pup-ligase which could result in
pupylation and targeting the protein to the bacterial proteasome
(Figure 4B). This approach would be applicable in a limited
number of bacteria, although it could help to create new tools and
antibiotics against Mycobacterium tuberculosis. Since proteins
phosphorylated on arginine residues are known substrates of
ClpCP, recruitment of the McsB kinase is also a promising
TPD strategy (Suskiewicz et al., 2019) in Gram-positive bacteria
(Figure 4C). In a more universal approach, bacterial degraders
could directly recruit a proteolytic complex without relying
on a post-translational modification step. The viability of this
strategy is hinted at by the studies successfully employing
rapamycin-mediated interaction with the target to bring about
proteasomal (Janse et al., 2004) or ClpXP-mediated (Davis et al.,
2011) degradation. Bacterial degraders could recruit proteolytic
activity by employing a ligand binding to an adaptor protein,
an unfoldase, or even the protease component (Figure 4D) from
the suggested repertoire described above (Table 1). Finally, future
work may find ways to exploit other pathways unique to bacteria,
for example by promoting trans-translation to append ssrA or
poly-Ala tails in a target-specific manner, although currently such
precise action cannot be yet achieved.

If the bacterial degraders have to rely on direct protease
recruitment, how would their characteristics compare with
those of eukaryotic PROTACs? The first concern is that
peptidic degraders may be degraded together with their targets,
losing the potential to be recycled and to gain a catalytic-
like efficiency of their eukaryotic counterparts. Peptide mimics
or switching to small-molecule ligands may be required to
ensure the stability of the degraders. In general, promoting
ternary (i.e., target-degrader-E3 ligase) complex formation is a
key concern in TPD, and in this aspect molecular glues are
better candidates than PROTACs. Similarly, in bacterial TPD the
best compounds would promote target interaction with a part
of the protease complex that engages substrates. This requires
careful optimization of PROTAC linkers in terms of distance,
flexibility, and promoted stereochemistry. For the majority of
the eukaryotic degraders, the rate-limiting step seems to be
enzymatic reaction initiation (monoubiquitin transfer) right
after the ternary complex formation, since it requires spatial
alignment of the active site and the target Lys residue (Fisher
and Phillips, 2018). In bacteria, the equivalent rate-limiting step
might be the substrate engagement in the unfoldase or protease
pore; once initiated, the motor action of the ATPase might
help in further progress of the proteolysis. Unlike PROTACs
engaging a novel E3 ligase, proteins targeted for degradation in
bacteria may not necessarily be neo-substrates for the recruited
proteases. Naturally occurring, less structured sites and loops
may help in achieving substrate unfolding for proteolysis,

while preferably slow dissociation rates would help bacterial
degraders potentiate this initiation event. On the other hand,
degraders binding too tightly to their targets might preclude
efficient proteolysis by stabilizing or sequestering the target
from the reach of the protease. An adaptor-recruiting degrader
which binds too tightly to the protease adaptor might also
cause degradation of the adaptor following the engagement of
the target. In such cases, the affinity of the degrader would
need to be fine-tuned in order to bind sufficiently strongly to
selectively bring the target to the proteolytic complex, yet loosely
enough to allow extraction upon engagement and to release
the target upon the proteolytic event. It may be possible to
find a way to rescue adaptors and degraders, similarly to the
natural resistance of certain adaptors that bind and even bait
the unfoldases yet avoid destruction along with the substrate.
This may be conferred by conformational changes associated
with substrate unfolding and degradation, though the details
of such mechanisms are still poorly understood and are not
easily engineered. Finally, the problem of delivering the degraders
into the bacterial cells would need to be addressed. Possibly,
some modifications could be added to promote the active import
of degraders which would obviate the issues with the larger
sizes of chimeric compounds (e.g., conjugates with Proline rich
AntiMicrobial Peptides (PrAMPs) (André et al., 2020) may
help degraders enter the cell). It will be exciting to see how
all of these concerns will be addressed by the first true TPD
studies in the future.

Once these challenges are overcome, bacterial degraders could
provide an excellent alternative reverse-genetics approach for
studying protein function, opening new possibilities such as
dose-dependent and time-resolved control that would supersede
the use of gene knockouts and protein fusions. The unique
suitability of TPD for studying fast biological processes may
be especially appreciated for applications in bacteria, whose
molecules typically have shorter half-lives due to the higher
metabolic rates compared to human cells. More importantly,
degraders could also constitute a completely novel and possibly
resistance-retardant class of antibiotics, which gains importance
in the light of increasing antimicrobial resistance (O’Neill, 2016).
The recent COVID-19 outbreak proves that infectious diseases
are still a global threat, and excessive use of antibiotics during the
pandemic has exacerbated the growth of antimicrobial resistance
even further (Arshad et al., 2020). Therefore, degrader-type
antibiotics could be of particular interest, since the antiviral
PROTACs have been shown to act fast enough to prevent the rise
of viral resistance (de Wispelaere et al., 2019). The current state of
the art is ripe for the design and exploration of TPD in bacteria,
and the expected results will open a plethora of opportunities
both for research and in antimicrobial therapies.
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