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ABSTRACT

Single-cell RNA sequencing has become a powerful
tool for identifying and characterizing cellular het-
erogeneity. One essential step to understanding cel-
lular heterogeneity is determining cell identities. The
widely used strategy predicts identities by project-
ing cells or cell clusters unidirectionally against a
reference to find the best match. Here, we develop a
bidirectional method, scMRMA, where a hierarchical
reference guides iterative clustering and deep anno-
tation with enhanced resolutions. Taking full advan-
tage of the reference, scMRMA greatly improves the
annotation accuracy. scMRMA achieved better per-
formance than existing methods in four benchmark
datasets and successfully revealed the expansion of
CD8 T cell populations in squamous cell carcinoma
after anti-PD-1 treatment.

INTRODUCTION

Single-cell RNA sequencing provides an unprecedented op-
portunity to characterize cellular heterogeneity in a variety
of biological contexts by profiling transcriptomes of thou-
sands to millions of cells simultaneously (1–3). One essen-
tial but challenging step to understanding cellular hetero-
geneity is determining cell identities (4). Initially, manual
annotation was employed, but it is labor intensive, unre-
producible and unscalable for large-scale datasets (5). The
recent explosive growth in single-cell RNA sequencing has
prompted the development of automatic cell-type annota-
tion methods (6). Automatic cell type annotation methods
use a common strategy which projects a query against a ref-
erence unidirectionally to find the best match. The query is
either a single cell or a cell cluster, and a reference is a col-
lection of known cell types characterized by marker genes
or transcriptomic profiles (7).

Cell annotation methods either map single cells against
a reference, such as SingleR (8), scMATCH (9) and Gar-
nett (10), or annotate pre-computed cell clusters based on

average expression profiles such as scCATCH (11), SCSA
(12) and Alona (13). Due to high technical and biolog-
ical noise inherent in single-cell RNA sequencing data,
sometimes transcriptionally similar cells are annotated to
different cell types by single-cell query methods. Cluster-
based query is robust against noise; however, it is difficult
to choose an optimal resolution for cell clustering. Low-
resolution clustering impairs discriminative ability on spe-
cific cell types, while high-resolution may be unnecessary
and sometimes introduce noise. Moreover, single-resolution
clustering cannot capture global and local biological vari-
ances simultaneously.

Some methods use marker genes to define known cell
types in their reference, such as Garnett (10), CellAs-
sign (14) and scCATCH (11). Those markers are pan-
els of genes that uniquely identify cell types through lit-
erature or expert-curated knowledge databases like Cell-
Marker (15), PanglaoDB (16) and CancerSEA (17).
Other methods employ expression profiles from pre-
annotated and purified cell types quantitatively, such as
SingleR (8), CHETAH (18) and scMAP (19). The pop-
ular transcriptome-based references are HCA (20), MCA
(21) and FANTOM5 (22). Most methods assemble their ref-
erences by a flat structure, where each cell type is treated
equally and independently (8,11,14). The flat structure
works well for distinguishing broad cell types, while lacks
the resolution to distinguish more specific subpopulations
due to inability to reflect rich relationships between cell
types. CHEATH (18), Garnett (10) and CellO (23), in con-
trast, organize cell types hierarchically from broad to very
specific, improving discrimination for specific cell types.

We developed the ‘single cell Multiresolution Marker-
based Annotation’ (scMRMA) algorithm, a bidirectional
method that not only maps cell clusters against a hierar-
chical reference but the reference also guides cell cluster-
ing to identify distinctive subgroups for annotation. Un-
der the guidance of a hierarchical reference, the resolu-
tion for cell clustering gets higher for deeper annotation.
This multiresolution strategy enables the detection of sub-
tle difference and improves discriminating ability for very
specific cell types. Using four benchmark datasets from
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various tissues and platforms, we demonstrated that scM-
RMA outperformed other methods in annotation accuracy.
With high discriminative ability, scMRMA successfully un-
covered the expansion of CD8 T cells after anti-PD-1 treat-
ment in squamous cell carcinoma.

MATERIALS AND METHODS

scRNAseq data preprocessing

scMRMA takes a gene-by-cell raw count matrix as in-
put, normalizes by the total number of reads, scales val-
ues to 10 000 and log-transforms after the addition of 1.
The top 2000 most variable genes are identified by model-
ing mean-variance relationship using local polynomial re-
gression (loess, span = 0.3) (24). The normalized and log-
transformed gene expression of the top 2000 most variable
genes are then scaled and used for principal component
analysis. The top 50 principal components are used for clus-
tering.

Iterative cluster-and-annotate of scMRMA

scMRMA employs an iterative cluster-and-annotate strat-
egy to capture both global and local variances across broad
and specific cell types, where a hierarchical reference guides
the label assignment. First, query cells are clustered and
annotated to reference cell types at the first level. Cells as-
signed to the same cell type are further clustered if there are
more than one child nodes under this cell type. In this round
of clustering, highly variable genes are rechosen, principal
component analyses are reperformed, and the cells belong-
ing to the same parental cell type are re-clustered. Through
this process, the focus shifts from global variance among
all cells to local variances within the cells belonging to the
same parental cell type, which is expected to obtain an ac-
curate sub-clustering. This re-clustering procedure will be
repeated until reaches to a leaf node or fails to assign cells
to any intermediate nodes.

A graph-based approach is used for clustering, where
cells are embedded in a graph structure, and then parti-
tioned into highly connected ‘communities’. Briefly, a K-
nearest neighbor (KNN, default k = 20) graph for each cell
is built on the Euclidean distance calculated by the top 50
PCs (25). A shared nearest neighbor (SNN) graph is con-
structed by calculating the neighborhood overlap between
every cell and its K-nearest neighbors (26,27). The Louvain
community detection method is used to identify highly con-
nected ‘communities’ (cell clusters) by optimizing the mod-
ularity function on the SNN graph (28).

Cell type annotation

scMRMA maps cell clusters to a hierarchical reference to
determine their identities. The cell clusters are represented
by their average expression profiles, while the reference is
characterized by a collection of marker genes. For a given
cluster, scMRMA uses the approach described in (16) to
calculate an activity score for each cell type by summing the
weighted expression of its marker genes.

ASc,t =
∑N

i=1 (Expti ,c∗wti )
Nr

, t = (t1, t2, . . . tN) (1)

wti = 1 +
√

max ( f ) − fti

max ( f ) − min ( f )
(2)

ASc,t is the activity score of the cell type t for a given
cell cluster c, where the cell type t is a collection of N
marker genes (t1, t2, . . . tN). Expti ,c is the average expression
of gene ti in the cluster c, and wti is the weights of gene
ti . The gene is weighted by its frequency fti in the refer-
ence, where common markers is down weighted and spe-
cific ones is up weighted (Equation 2). r is a constant factor
to adjust the score for the total number of markers in the
cell type, which is set to 0.3 in the original literature (16).
Since scMRMA organizes the reference from very broad
(the first level) to specific (the leaf node), broad cell types
include all the marker genes from their child nodes. There-
fore, the number of marker genes vary a lot at the broad
level. To adjust the effect caused by the number of marker
genes, scMRMA uses different parameters to calculate ac-
tivity scores at the first level and other levels. The average
expression profile and r of 0.6 are used at the first level,
while the z-transformed expression and r of 0.3 are utilized
at other levels. Since the first level consists of a large num-
ber of genes and distinct cell types, many genes are not
expressed simultaneously. Those unexpressed genes would
pulled down activity scores to a small value, even to nega-
tive, if z-transformed expression were used. Therefore, the
average gene expression without z-transformation was used
at the first level. In contrast, the lower level includes specific
cell types and fewer number of genes. In this case, z-scoring
is beneficial to generate discriminative activity scores. Be-
sides cell activity score, a P value is computed for each cell
type by using one-sided Fisher’s exact test. The cell cluster
is assigned to the cell type with the highest activity score if
the P value is <0.05 for the ‘winner’. Otherwise, the cluster
is set as ‘unassigned’.

The hierarchical reference

To build a hierarchical reference, we started from
PanglaoDB, a maker-based database consisting of 178 cell
types involving 3764 (human) and 3825 (mouse) marker
genes in a flat structure (16). We used Cell Ontology (29,30)
to reorganize the 176 cell types into a hierarchical structure.
Cell ontology incorporates phenotypic information of cell
types and is more comprehensive in its cellular detail than
other resources. It supports the consistent representation
of cell types across different levels of anatomical granu-
larity, such as tissues and organs (29,30). The hierarchical
PanglaoDB has four levels (Figure 2A). There are seven
broad cell types at the first level, Connective tissue cell
(CL 0002320), Epithelial cell (CL 0000066), Hematopoi-
etic cell (CL 0000988), Muscle cell (CL 0000187), Neural
cell (CL 0002319), Precursor cell (CL 0011115) and So-
matic cell (CL 0002371). There are 51, 109 and 59 cell
types at the second, third and fourth levels, respectively
(Figure 2A). scMRMA uses the hierarchical PanglaoDB as
the default reference. Besides, scMRMA provides another
reference named TcellAI, which contains 22 subtypes of
T cells in a two-level hierarchical structure (Figure 7A).
TcellAI is a part of ImmuCellAI, which was originally
collected for cancer immune cells (31). Therefore, TcellAI
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is very useful for annotating specific T-cell populations
in cancer. In addition, scMRMA accepts user-defined
references as well.

Datasets

All the datasets and cell type annotation were downloaded
from GEO. Four datasets, GSM2486333 (32), GSE130148
(33), GSE84133 (34) and GSM3580745 (35), were used for
evaluating performance on annotation accuracy. They are
single cells collected from human peripheral blood mono-
clonal cells, human lung tissue, human pancreatic islets and
mouse cerebral cortex and generated by Seq-Well, drop-seq,
inDrops and 10× technologies, respectively. One dataset,
GSE123813 (36), was used to demonstrate the ability of
scMRMA to reveal the change of cell compositions. It was
derived from single-cell squamous cell carcinoma (SCC) be-
fore and after anti-PD1 therapy treatment dataset by 10×
technology.

Cells with >20% mitochondria reads, or <500 UMI
reads, or <200 or >6000 genes expressed were excluded.
Filtering low quality cells before annotations is necessary
to avoid misleading biological conclusions and inaccurate
annotations. Cells without annotation in the literatures
were removed. After filtering, there were 3383 cells and
five immune cell types left in the human Peripheral Blood
Mononuclear Cell (PBMC) dataset (32), 5902 cells and 12
cell types in the human lung dataset (33), 8556 cells and 13
cell types in the human pancreas dataset (34), 3916 cells and
12 cell types in the mouse brain dataset (35) and 26 015 cells
and 10 cell types in the human SCC dataset (36).

Comparison methods

scMRMA was compared with four annotation algorithms:
CellAssign (14), Garnett (10), scCATCH (11) and SingleR
(8). CellAssign, Garnett and SingleR annotate single cells,
while scCATCH predicts identities of cell clusters. Gar-
nett, scCATCH and CellAssign use markers-based refer-
ence, while SingleR depends on transcriptome-based refer-
ence. Among the four methods, only Garnett organizes the
reference in a hierarchical rather than a flat structure.

Garnett (10) provides supervised classification, which
first uses a marker-based reference to select representa-
tive cells in a dataset and then trains a classifier to pre-
dict cell types for other cells based on their similarity with
representative cells. Garnett has two options, using a pre-
trained classifier, or generating your own classifier. Since
pre-trained classifiers exist for human PBMC (hsPBMC),
human lung (hsLung) (10,37) and mouse brain (mmBrain)
(10,38), they were used for cell type annotation on the cor-
responding datasets. For the human pancreas dataset with-
out a pre-trained classifier, we generated our own classifier
using the marker genes in the literature (34) and default pa-
rameters. Seurat clusters with a resolution 0.8 were used to
extend classifications to additional cells in the same cluster.

CellAssign (14) offers a probabilistic model that leverages
a marker-based reference for cell type assignment. Since
CellAssign does not provide a pre-defined list of marker
genes, we used marker genes in the pre-trained/trained Gar-
nett classifiers (10) as the marker file input for CellAssign.

The marker file was transformed to a gene-by-cell-type bi-
nary matrix, whose entries were set to 1 if a gene is a specific
marker for a given cell type and 0 otherwise. Default param-
eters were used to run CellAssign.

scCATCH (11) annotates cell clusters through a tissue-
specific cell taxonomy reference databases CellMatch
(11,15,17,21) and evidence-based score. Seurat clusters with
a resolution 0.8 were used as the cluster input. The parame-
ter match CellMatch was set as ‘TRUE’ and the parameters
‘species’ and ‘tissue’ were set to the corresponding species
and tissues. Other parameters were kept as default.

SingleR (8) correlates single-cell expression profile with
reference transcriptome of pure cell types profiled by
microarray and bulk RNA-seq to assign cell identity.
There are multiple reference transcriptomes available, in-
cluding Human Primary Cell Atlas dataset (HumanPri-
maryCellAtlasData) (39), Encode and Blueprint Epige-
nomics dataset (BlueprintEncodeData) (40,41) and Mouse
RNA-seq dataset (MouseRNAseqData) (42). The refer-
ences achieving the highest annotation accuracy were used
to report the result. Specifically, HPCA was used for the an-
notation of the human PBMC and lung datasets, while En-
code was utilized for the annotation of the human pancreas
and SCC datasets. MouseRNAseqData (42) was used for
the classification of the mouse brain dataset.

Annotation accuracy

Annotation accuracy was defined as the number of cells as-
signed with the same cell type as in the literature. Some cell
types were combined into a broad cell type if there were
only very limited number of cells or removed due to lack
of specific cell types defined in all references. For exam-
ple, GABAergic neurons and glutamatergic neurons were
combined as neurons, while multiplets (n = 69) labeled by
the original study were removed in the mouse brain dataset
(35). Mast cells, macrophages and T cells were combined
as hematopoietic cells, quiescent stellate cells and activated
stellate cells were combined as Stellate cells, while Schwann
cells (n = 13) were removed in the human pancreas dataset.
CD4 and CD8 annotated in the human PBMC dataset were
combined into T cells. Secretory and transformed epithe-
lium were combined as epithelium, while Lymphatic cells
(n = 105) were removed in the human lung dataset.

RESULTS

Overview of scMRMA algorithm

scMRMA maps cell clusters against a collection of known
cell types characterized by marker genes and organized in
a hierarchical structure for cell type annotation (Figure 1).
scMRMA not only projects cell clusters against the refer-
ence but also uses the hierarchical reference to guide the
subcluster refinement when necessary. Rather than fixed
and pre-computed cell clusters, scMRMA refines cell clus-
ters every time the annotation moves to a deeper level.
Specifically, when there are more than one child nodes un-
der a parental cell type, it suggests the necessity of a closer
look into those cells assigned to the parental type for a deep
annotation. To achieve this, cells belonging to the parental
node are re-clustered to capture the difference within them.
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Figure 1. Overview of scMRMA algorithm. (A) The query cells were clustered and then annotated from broad cell types to specific ones. The color
denotes cell types, where cells with the same color belong to the same cell type. (B) The iterative cluster-and-annotate procedure of scMRMA and (C) the
Hierarchical reference. Black represents root or intermediate nodes, while colorful nodes are leaf nodes.

Then, the refined subclusters are mapped against the child
nodes to find the best match using only marker genes that
discriminate them. scMRMA repeats this process that tra-
verses the hierarchical tree until it reaches a leaf node or
halts at an intermediate node due to assignment failure
(‘unassigned’) (Figure 1B). For example, cells are annotated
to cell type A and B at the first step (Figure 1A). Cell type
A is a leaf node; therefore, cells predicted as type A come
to their final annotation without an enhanced resolution
clustering. In contrast, cell type B includes two subtypes
B1 and B2 (Figure 1C); thus, cells annotated to cell type
B go through a re-clustering procedure to capture the vari-
ance within them. The refined two clusters are annotated
as cell type B1 and B2, respectively. Repeatedly, only cells
annotated as B2 are re-clustered and then assigned to B21
and B22 types (Figure 1A). Unlike most approaches using a
single and uniform resolution for cell clustering, scMRMA
employs an iterative cluster-and-annotation strategy which
cells are grouped by multiple resolutions under the guid-
ance of a hierarchical reference. Cells assigned to deeper an-
notated cell types undergo multiple clustering steps, which
results in higher resolutions for capturing the minor differ-
ence. The multiresolution framework of scMRMA allows
the focus shifting from genes distinguishing broad cell types
to those differentiating sibling cell types.

We demonstrated the iterative cluster-and-annotate pro-
cedure of scMRMA by a toy example. In the example, the
hierarchical PanglaoDB was used as the reference, whose
structure was illustrated in Figure 2A. First, all cells were
clustered and annotated to ‘hematopoietic cell’ based on
marker genes at the first level. Second, all cells were re-
clustered and annotated to ‘B’, ‘T’ and ‘NK cells’ using
marker genes differentiating cell types at the second level.
Third, cells predicted as ‘NK cells’ reach their final annota-
tion since ‘NK cells’ is a leaf node. Cells classified as ‘B’ and
‘T’ were re-clustered separately. The refined clusters were
annotated to the third level according to marker genes dis-

criminating sibling nodes in ‘B’ and ‘T’, respectively. As a
result, cells belonging to ‘B’ were annotated as ‘B cells’ (leaf
node). Cells belonging to ‘T’ were further classified into ‘T
helper cell’ and ‘T cytotoxic cells’. Finally, cells predicted as
‘T helper cell’ underwent a further re-clustering. Some re-
clustered cells were annotated as ‘T follicular helper cells’,
while others were predicted to be ‘T helper cells’ (Figure
2B).

scMRMA outperforms other methods

We benchmarked scMRMA against Garnett (10), CellAs-
sign (14), scCATCH (11) and SingleR (8) in terms of anno-
tation accuracy on four scRNA-seq datasets. These datasets
were collected from brain, pancreas, lung and blood from
human or mouse and generated by various platforms (32–
35) (details in Materials and Methods section). scMRMA
achieved the best performance in all four datasets, with an-
notation accuracy of 94.6%, 93%, 93.8% and 77.9% for the
mouse brain, and the human pancreas, PBMC and lung
datasets, respectively (Figure 3). Moreover, scMRMA pre-
dicted most accurately in almost every individual cell type,
including dominant and rare cell types (Figure 3 and Sup-
plementary Figures S1–S4).

Compared to scMRMA achieving the most accurate an-
notation in all four datasets, the performance of Garnett,
CellAssign, scCATCH and SingleR is dataset-dependent.
For the mouse brain dataset, scMRMA predicted 3703 out
of 3916 cells correctly (94.6%), followed by Garnett which
provided the right annotation for 3181 cells (87.3%). Gar-
nett misclassified ependymal cells, fibroblasts and Oligo-
dendrocyte Progenitor Cells (OPCs) as ‘unknown’ although
those cell types were included in its reference. Besides, it
only detected nine neurons and missed most of them (as-
signed as ‘unknown’). Using the same reference as Garnett,
CellAssign only identified 2294 cells successfully (59.5%).
It assigned most ependymal cells correctly, but failed in fi-
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Figure 2. A toy example of scMRMA annotation process. (A) The hierarchical PanglaoDB reference in a four-level structure. (B) A toy example showing
annotation from the first level to the fourth level based on the hierarchical PanglaoDB reference. The color represents cell types.
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Figure 3. Comparative analysis of annotation accuracy. (A) The number of cells assigned correctly by scMRMA, scCATCH, Garnett, SingleR and
CellAssign in the mouse brain dataset; Y-axis shows the number of cells in the log10 scale, while X-axis is the total and each individual cell type. The
‘Gold-standard’ annotation from the literature was represented by red dashed lines. (B–D) The same measurement as in (A) from the human pancreas (B),
PBMC (C) and lung datasets (D).

broblasts, neurons and oligodendrocytes. scCATCH only
predicted 322 microglia cells correctly and failed to anno-
tate all other cells although its reference includes all those
cell types (Supplementary Figure S1). Out of 8556 cells
in the human pancreas dataset, scMRMA labeled 7956
cells correctly (93%), followed by CellAssign for 7404 cells
(86.5%) and scCATCH for 4362 cells (51%) (Figure 3). sc-
CACTH misclassified delta, ductal, endothelial, hematol-
ogy and stellate cells although they were included in its ref-

erence. Its failures in Epsilon and Gamma cells, however,
were due to a lack of those cell types in its reference. Garnett
failed to recognize Beta, Delta, Endothelial, Epsilon cells,
and most of Alpha cells although it used the same reference
as CellAssign. SingleR performed well in endothelial and
hematology cells but failed in other cell types due to a lack
of reference profiles of those cell types (Supplementary Fig-
ure S2). Hematology cells included three distinct cell types:
mast cells, macrophages and T cells. scMRMA successfully
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Figure 4. The advantage of scMRMA annotation from broad to specific. (A) The annotation results of the mouse brain dataset from the literature (Ref),
scMRMA and Uniform. (B) The number of cells assigned to pericytes and SMCs by the original literature, scMRMA and Uniform. (C) The annotation
results of scMRMA from the first level to the third level. (D) The heatmap and fold change of differential expressed genes between pericytes and SMCs
classified by scMRMA and Uniform. (E) Boxplot of expression of Kcnj8, Myh11 and Acta2 between pericytes and SMCs predicted by scMRMA and
Uniform.
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Figure 5. The impact of clustering resolution on scMRMA and Uniform. (A) The Uniform annotation results of the mouse brain dataset at a low clustering
resolution and a high clustering resolution. (B) The annotation result of scMRMA. (C) The number of cells identified as macrophages, microglia, pericytes
and SMCs by scMRMA, Uniform at low and high clustering resolutions.

assigned mast cells and macrophages but failed in annotat-
ing T cells (Supplementary Figure S3). The reason for its
failure was due to incorrect clustering of rare T cells (only
seven cells). With the default k value to build the k-nearest
neighbor graph (k = 20), T cells were clustered with mast
cells, leading to false annotation. scMRMA annotated T
cells successfully when a smaller k value was used (Supple-
mentary Figure S4). For the human PBMC dataset, scM-
RMA identified 3172 out of 3383 cells (93.8%), followed
by SingleR for 3074 cells (90.9%). CellAssign only pre-
dicted 746 cells correctly, which labeled most cells as unas-
signed (Supplementary Figure S5). The human lung dataset
showed high ambient RNA contamination, where highly
expressed cell-type specific genes were observed in other
cell populations. In this challenging case, scMRMA anno-
tated 4596 out of 5902 cells correctly (77.9%) (Supplemen-
tary Figure S6). Compared to the manual annotation in the
literature (33), we found that 391 of 804 B cells were identi-
fied as Type II alveolar cells by scMRMA. We believed that
these 391 cells are truly Type II alveolar cells since they have
much higher SFTPC and SFTPA2 expression than other
cells. They were misclassified as B cells by the original pa-

per because they have high expression of IGKC. However,
IGKC was observed in other cells with similar abundance
(Supplementary Figure S7). Therefore, the high expression
of IGKC is likely due to ambient RNA contamination
rather than cell-type specific expression. Among the four
methods, transcriptome-based SingleR performed better
than marker-based methods, Garnett, scCATCH and Cel-
lAssign. SingleR obtained high performance for cell types
covered in its reference, such as endothelial, macrophage,
NK and T. Its high performance likely attributes to its us-
age of transcriptomes as reference, which is less affected
by contamination compared to the utilization of a lim-
ited number of marker genes by the other three meth-
ods. scMRMA also depends on cell-specific markers like
the three methods; however, it achieved better performance
than SingleR. scMRMA assigns cell annotation from broad
to specific. Broad cell types include much more markers
than specific ones, making them easy to be recognized.
The correct assignment of broad types narrows down the
prediction, leading to the robustness against contamina-
tion and improved annotation accuracy on specific cell
types.
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Figure 6. The advantage of iterative clustering of scMRMA. (A) The annotation results of scMRMA for the human lung dataset GSM3489182. (B) The
Uniform annotation results. (C) The clustering results at the first level. (D) The clustering results at the third level. (E) The heatmap of expression of Type
I (cluster 9 in Level 3) and II (cluster 7 in Level 3) alveolar specific genes. (F) The UMAP plot of normalized expression of AGER, RTKN2, SFTPC and
SFTPA1.

In terms of computational runtime, scMRMA, sc-
CATCH and SingleR were comparable, whereas CellAs-
sign required the longest runtime. Garnett was the fastest
method if a pre-trained classifier was used, but its run-
time was significantly increased if a classifier needs to be
trained before annotations (Supplementary Table S1). All
runs were conducted on a MacBook Pro Laptop equipped
with 2.3 GHz Intel Core i5 CPUs at 2.3 GHz and 8 GB
memory.

The iterative cluster-and-annotate strategy improve the per-
formance

The performance of cell type annotation depends strongly
on the quality of the reference and the approach to find the
best match. In addition, the iterative cluster-and-annotate
from broad to specific significantly improves performance.

We compared scMRMA with a method, ‘Uniform’ that
groups cells at a defined resolution then assigns cell types
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Figure 7. The application of scMRMA to revealing alterations in cell compositions. (A) The hierarchical TcellAI reference in a two-level structure. (B)
The UMAP projection of cells colored by scMRMA annotation results. (C) The UMAP projection of cells colored by pre- and post-treatment. (C) Paired
changes in cell abundance before and after treatment for each cell type. Different colors represent different patients.

in one step. scMRMA and Uniform used the same ref-
erence. However, scMRMA implemented iterative cluster-
and-annotate, whereas Uniform did not. For the mouse
brain dataset, scMRMA identified 360 pericytes and 337
Smooth Muscle Cells (SMCs), which were very close to the
manual annotation in the literature (35) (Figure 4A and
B). In comparison, Uniform predicted 638 Pericytes and 58
SMCs, where most SMCs were misclassified as Pericytes.
The classification by scMRMA showed a more distinc-
tive gene expression pattern between pericytes and SMCs
than the one by Uniform (Figure 4D). Moreover, known
Pericytes-specific or SMCs-specific markers, such as Kcnj8,
Myh11 and Acta2, showed bigger difference between per-
icytes and SMCs in the scMRMA classification than the
Uniform (Figure 4E). These observations further validated
the correct annotation by scMRMA. The success of scM-
RMA attributes to the annotation strategy from broad to
specific, where cells were correctly assigned to ‘connected
tissue cell’ or ‘muscle cell’ at the first level, which avoids the
misclassification between pericytes and SMC at deep levels
(Figure 4C).

Moreover, the performance of scMRMA is resolution-
independent (Figure 5B), while a certain resolution at which
Uniform grouped cells has a big impact on the annota-
tion results. For example, Uniform identified pericytes and
SMCs correctly but misclassified macrophage as microglia
at a low-resolution clustering (Figure 5A and C; Sup-

plementary Figure S8). In contrast, Uniform recognized
macrophages but misclassified some pericytes at a high-
resolution clustering (Figure 5A and C).

In addition, the iterative clustering captures local vari-
ances in a given subpopulation, leading to improved anno-
tation for very specific cell types. For example, pulmonary
alveolar type I and type II cells were both identified by
scMRMA in a human lung dataset (GSM3489182) (Figure
6A), while only pulmonary alveolar type II cells were rec-
ognized by Uniform no matter what resolutions were used
(Figure 6B and Supplementary Figure S9). scMRMA iden-
tified epithelial cell (clusters 1,3, 7 and 13) and other cell
types at the first level (Figure 6C). Looking into epithelial
cells, scMRMA further divided the cluster 7 into two sub-
clusters (7 and 9) (Figure 6D). The subcluster 7 was anno-
tated as Type II alveolar cells, while the subcluster 9 was
determined to be type I cells by scMRMA. The subcluster
7 showed high expression of type II markers like SFTPC,
SFTPA1 and SFTPB, while the subcluster 9 had low expres-
sion of type II markers but high expression of type I mark-
ers such as AGER and RTKN2 (Figure 6E and F), which
supported the annotation of scMRMA. Since the cluster of
type I alveolar cells cannot be detected at any resolution by
Uniform, it demonstrated the value of re-clustering, which
looks into specific cell populations and captures their sub-
tle difference. The more distinctive subcluster leads to more
accurate annotation especially on very specific cell types.
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scMRMA uncovers expansion of CD8 T cells after PD-1
blockade

With the ability of annotating cells accurately, scMRMA
can estimate cell population alterations across conditions.
We applied scMRMA on a scRNAseq dataset collected
from four patients with squamous cell carcinoma (SCC) be-
fore and after PD-1 blockade (36). TcellAI, a collection of
T cells in cancer immune environment (31), was used as the
reference (details in Materials and Methods section) (Figure
7A). scMRMA found six cell types, including CD4 naive,
CD8 T, CD8+, Central Memory CD8, CD8 Exhausted and
nTreg (Figure 7B). Cell populations changed between pre-
and post-treatment (Figure 7B). To identify the consistent
changes across patients, we performed the paired analysis
on the proportion of each cell type between pre-and post-
treatment. We found that all four patients have expansion in
CD8 T cells after PD-1 blockade (P = 0.1, wilcox signed-
rank test) (Figure 7C). This is consistent with T-cell receptor
(TCR) sequencing results, which revealed expanded clones
especially in CD8 T cells (36). In comparison, the expan-
sion of CD8 T cells was not discovered in the original man-
ual annotation, nor detected by CellAssign, scCATCH, Sin-
gleR or Garnett (Supplementary Figure S10).

DISCUSSION

In this study, we developed scMRMA, a multi-resolution
marker-based annotation method for single cell datasets.
scMRMA achieved high annotation accuracy. The success
is partly attributed to the iterative cluster-and-annotate pro-
cedure, which uses a pre-defined hierarchical reference for
clustering and annotates cells from broad to specific cell
types.

scMRMA uses cell-specific marker genes for annotation,
which is robust against technical factors or batch effects
in experimental processing. Cell assignment from broad to
specific cell types make it highly tolerant to technical factors
like ambient RNA contamination since broad cell types are
very distinct and easily recognized. The correct assignment
to broad cell types narrows down the prediction and im-
proves annotation accuracy. Moreover, scMRMA captures
both global and local variances of diverse cell populations
through the iterative cluster-and-annotate procedure. The
number of clustering steps depends on the depth of the hi-
erarchical reference. When one cell type has more than one
specific subtypes, scMRMA will take a closer look into cells
belonging to the cell type, trying to capture the subtle differ-
ence and to map them to specific subtypes accurately. This
procedure improves clustering performance on specific cell
types, leading to distinctive subclusters and accurate anno-
tation.

The performance of automatic cell annotation meth-
ods highly depends on the quality of the reference. They
would likely to fail if cells are unknown to their reference
(poorly characterized cell types). Although scMRMA re-
quires prior knowledges of cell-specific marker genes, it can
assign those unknown cells to broad types even if it cannot
annotate them very specifically. As the knowledge on cell
types increases over time, scMRMA can easily add them
into the hierarchical reference by expanding its breadth and

depth. scMRMA intrinsically handles the challenge caused
by highly specific cell types.
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The scMRMA R package is freely available in the Github
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