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Abstract

Background: With the advancement of biomedical technology, artificial materials have been developed to replace diseased,
damaged or nonfunctional body parts. Among such materials, ultra high molecular weight alkane or modified alkyl
polymers have been extensively used in heart valves, stents, pacemakers, ear implants, as well as total joint replacement
devices. Although much research has been undertaken to design the most non-reactive biologically inert polyethylene
derivatives, strong inflammatory responses followed by rejection and failure of the implant have been noted.

Methodology/Principal Findings: Purification of the alkane polymers from the site of inflammation revealed extensive ‘‘in
vivo’’ oxidation as detected by fourier transformed infra-red spectroscopy. Herein, we report the novel observation that
oxidized alkane polymers induced activation of TLR1/2 pathway as determined by ligand dependent changes in intrinsic
tyrosine fluorescence intensity and NF-kB luciferase gene assays. Oxidized polymers were very effective in activating
dendritic cells and inducing secretion of pro-inflammatory cytokines. Molecular docking of the oxidized alkanes designated
ligand specificity and polymeric conformations fitting into the TLR1/2 binding grooves.

Conclusion/Significance: This is the first report of a synthetic polymer activating immune responses through TLR binding.
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Introduction

With the advancement of biomedical technology, artificial

materials have been developed to replace diseased, damaged or

nonfunctional body parts. Among such materials, ultra high

molecular weight alkane or modified alkyl polymers (PE) have

been extensively used in heart valves, stents, pacemakers, ear

implants, as well as total joint replacement devices [1]. Based upon

the most recent epidemiological data approximately three quarters

of a million joint replacements were performed in the United

States in 2005. Ten to fifteen percent of these joint replacements

were classified as revision joint replacements due to implant

failure. The single most common cause of failure and reason for

revision is a process known as osteolysis [2]. Over time different

size particles and short polymers of wear debris are generated from

the PE implant [3–8]. These micron-size particles as well as low

molecular weight alkane polymers are responsible for the initiation

of an aseptic inflammatory response known as osteolysis [5,9],[2].

The generation of implant-derived wear particles/polymers

prompts an inflammatory reaction at the prosthesis-bone interface

resulting in osteoclastic bone resorption around the implant and

ultimately the mechanical failure of the device. The molecular

mechanisms underlying these clinically important events are very

poorly understood. There is a consensus in the literature that the

size of the particles is important in determining the extent of the

inflammatory process [10]. In particular it appears that smaller

size particles (in the nanometer, micrometer range) which can be

phagocyted by local and recruited antigen presenting cells are the

most likely to cause the initial inflammation [10]. It has also been

reported that macrophages and osteoclast upon phagocytosis of

ultra high molecular weight polyethylene became activated and

mounted a strong pro-inflammatory immune response mediated

by TNF-a, IL1 and IL6 production [5]. However, the molecular

basis for PE recognition by the immune system is not yet known.

Results

Histological evaluation of periprosthetic implant associated

tissue, retrieved from patients undergoing hip replacement surgery

due to PE induced osteolysis, indicated chronic inflammatory

infiltrates (Figure 1a). Immunophenotyping demonstrated that

these infiltrates consisted predominantly of CD68+ macrophages

(MW), with few T and B cell infiltrates (Figure 1a). Histiocytes and

foreign body giant cells engulfing birefringent PE particles,

generated by wear and tear of the polymeric implant, were also

observed (Figure 1b).

Ultrastructural analysis revealed the presence of micron and sub-

micron PE particles in the periprosthetic inflamed tissue (Figure 1c),

similar to the one derived from chemically synthesized carbonyl

modified alkane polymers (Figure 1d). Micron size PE particles were
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mostly extracellular and observed among collagen fibers (Figure 1e,

1f). Sub-micron PE particles on the other hand were phagocytosed

by local antigen presenting cells (Figure 1g and 1h).

The presence of PE material at the site of inflammation raised

the question of the molecular basis for alkane polymers recognition

by the immune system. As initial analysis, a biophysical evaluation

by fourier transformed infra-red spectroscopic (FTIR) [11] was

performed on pre and post-implant material to determine possible

alkane polymer modification that could explain the loss of its bio-

inert properties (Figure 2). Analysis was performed on (i) pre-

implant PE, corresponding to the actual biological implant before

surgery, and (ii) post-implant PE, which was retrieved from the site

of osteolysis at the time of revision surgery (Figure 2a and 2b).

Post-implant material was purified according to scheme reported

in Figure 2a. Lipid, sterols and protein analysis determined that

the preparation was void of detectable contaminants as previously

reported [8] (FTMS analysis and assignment of molecular

formulas further confirm purity from lipids and protein contam-

inants (Figure 3a).

FTIR signature peaks at 2900–2800 cm21 wave numbers

showed the asymmetric stretch of the alkane backbone and a

skeletal vibration of the same backbone was registered at 715

cm21 for all the four samples. The alkane backbone also exhibited

a predicted deformation at around 1470 m21 in each case.

Differences in spectra were noted between the pre and post

implant PE material. A dramatic increase in the amount of

carbonyl (carboxylic, ketonic, aldehydic and ester), amide and

alcohol groups was observed in PE polymers prepared from post-

implant material (Figure 2b). The increase in the amount of

carbonyl groups (236% Figure 2c) is due to an ‘‘in situ’’ oxidative

process. This oxidative process may be mediated by enzymes

released from activated DC, MW and osteoclasts, or may occur in

the endosomal compartment of local antigen presenting cells

engorged with PE polymers (Figure 1g, 1h).

To further define the molecular composition of the alkane

polymers retrieved from the post-implant material a Fourier

transform ion cyclotron mass spectroscopy FT/MS in MALDI

(matrix assisted laser desorption ionization) mode was performed.

FT/MS is so far the most sophisticated technique to identify

molecular composition since it combines the most advanced Ion

Trap and Fourier Transform Ion Cyclotron Resonance technol-

ogies into a single instrument with unprecedented analytical

power. Ultra-high resolution and sensitivity coupled with sub mass

prediction accuracy allow determining elemental composition.

Post-implant material was obtained as described in Figure 2b and

short chain alkane polymers were further purified from the nano

and micron size PE particles by centrifugation through a 10,000

membrane cut-off. Pre-implant material was similarly prepared.

FTMS analysis indicated the presence of several small sized PE

polymers in the post-implant material with a molecular mass of

400 to 2000 (Figure 3a). Differently from the pre-implant PE,

where a clear polymer-associated envelope was observed, in the

post implant material this signature was lost due to extensive

oxidation. Chemical formulas were assigned for each molecular

species observed in the post-implant PE. Assignment of each pick

was consistent with an alkane structure back bone bearing several

side chain modifications (Figure 3a). None of the assigned formulas

Figure 1. Periprosthetic inflammatory reaction to micron and
sub-micron size modified n-alkane polymers. a) Immunohisto-
chemistry of periprosthetic tissue retrieved at the time of the implant
revision surgery (20X magnification and 40X for inset). The tissue was
stained with: hematoxylin and eosin to detect total cell infiltrates, CD3
to detect T cells, CD20 to detect B cells and CD68 to detect
macrophages. PE polymers of varied shapes and sizes are visualized
as transparent areas. b) Hematoxylin and eosin staining (right) and
CD68 (left) showing a multi-nucleated giant cell surrounding a large PE
particle. c and d) Electron micrograph of sub micrometer PE particles
c) purified from periprosthetic tissue or d) chemically synthesized mPE
particles shown as control. e, f, g and h) Electron micrograph of

periprosthetic tissue obtained from implant failure prosthesis. e and f)
PE particles are visualized as black material indicated by red arrows. g
and h) PE sub-micron particles, indicated by red arrows, phagocyted by
local antigen presenting cells. A complete engorgement of the
endocytic tract by post implant PE is observed in h.
doi:10.1371/journal.pone.0002438.g001
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Figure 2. Modified alkane polymers purified from periprosthetic material increase their number of carbonyl groups. a) Purification
scheme of post implant PE. Optical density of the preparation was measured at different relevant wavelengths at a PE concentration of 100 mg/ml.
Bradford, lipid and sterol assays were also performed using100 ug/ml post-implant PE material. b) Fourier transformed infra-red spectroscopic (FTIR)
analysis pre-implant (new polyethylene implant) and post-implant PE (polyethylene material purified from the site of osteolysis). The analysis was
carried out between 4000 and 500 cm21 wave number. b) Tabular representation of the prominent peaks (cm21), and the predicted bonds with the
relevant vibrational modes for pre-implant and post-implant PE. Integral intensities are given for each prominent peak. c) Total integral intensity of
alkane and carbonyl groups in pre and post-implant material. Ratio between the two groups is shown.
doi:10.1371/journal.pone.0002438.g002

TLR2 and Alkane Polymers
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Figure 3. Mass spectroscopy analysis of n-alkane polymers purified from post implant PE indicates extensive oxidation. a) Fourier
transformed FT/MS-MALDI analysis of pre and post implant PE polymers (molecular mass ranging between 400 and 2000). b) Predicted chemical
composition for major peaks of post implant PE derived from FT-MS analysis depicted in a. c) MALDI-TOF scan (600–900 m/z) of PE purified from
post-implant PE and mPE. d) Predicted chemical composition for major peaks of mPE and post implant PE depicted in c.
doi:10.1371/journal.pone.0002438.g003
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could account for the presence of proteins, peptides, lipoproteins

or lipopeptides further confirming the purity of the post-implant

preparation. Most of the high molecular weight alkane polymers

presented extensive addition of carboxyl groups (Figure 3b and

Figure S1). In the lower molecular weight mass several polymers

could be observed with a low degree of oxidation similar to the MS/

MS profile, of mPE polymers (chemically synthesized PE polymers

with few side chain modifications (hydroxyl and carboxyl functional

groups) (Figure 3c and 3d and Figure S2). In both samples two major

clusters of peaks in the 600 and 800 mass range could be observed

(Figure 3c). Further analysis by TOF-TOF MALDI [12] fragmen-

tation indicated an identical fragmentation pattern for both mPE

and post implant PE. In both cases the 617 peak fragmented into 428

and 572 m/z, while the 806 peak fragmented into 617 (Figure S3).

We therefore concluded that polymers of different sizes and amount

of oxidation were present at the site of inflammation associated with

a strong innate immune response.

The observation of modified PE material at the site of

inflammation associated with cellular infiltrates prompted us to

evaluate whether exposure to the modified polymers would activate

antigen presenting cells. To test for this, we used pre-implant PE,

post-implant PE, and chemically synthesized PE polymers without

(unPE) or with side chain modification (hydroxyl and carboxyl

functional groups) (mPE) matching several of the modification

observed in the post-implant PE (Figure 3c). Dendritic cells (DC)

cultured for 48 hours in the presence of 50 mg/ml of each compound

were evaluated for surface MHC class II expression. An up-

regulation of MHC class II molecules was observed in post-implant

and mPE treated cells only, to level similar to what observed with the

lipopeptide Pam2CSK4 (Figure 4a, 4b). DC activation was further

confirmed by a significant increase in IL-12 secretion determined by

ELISA (Figure 4c). We concluded that the hydroxyl and carboxyl

modified mPE polymers and post-implant PE can interact with DC

and initiate an inflammatory response.

A strong and rapid initiation and activation of the innate

immune response is generally achieved through engagement of

members of the toll like receptor (TLR) family [13,14]. Hence, we

investigated further whether any of the TLRs were actually

involved in the recognition of the mPE as well as post-implant

modified alkane polymers. Human 3T3 HEK cell lines stably

expressing TLR1/2, TLR2, TLR3 and TLR4 genes respectively

were transfected with a plasmid encoding the luciferase reporter

gene under the control of the NF-kB enhancer element. Thus, NF-

kB activation by pro-inflammatory stimuli would, in turn, up-

regulate luciferase production. Each TLR cell line was assayed for

activation with different PE preparations, chemically synthesized

(unPE and mPE) or alkane polymers prepared from the pre implant

and post implant material [8]. Each assay also included a well

known specific positive ligand for each respective TLR (Figure 5).

Both mPE and post-implant preparations induced luciferase up-

regulation in both TLR1/2 and TLR2 transfectants, but not in the

TLR3 and TLR4 cell lines (Figure 5). Thus, we conclude that the

carbonyl modified PE polymers cause a strong activation of the

innate immune system and initiate an inflammatory cascade

through the TLR1/2 receptor activation pathway.

To further analyze the TLR2 binding activity of modified

alkane polymers a soluble form of human recombinant TLR2

(extracellular domain Glu 21-Leu 590) was utilized in a binding

assay that monitored changes in fluorescence intensity (lexcitation

= 277 nm and lemission = 335 nm) of a tyrosine present in the

TLR2 binding grove (Tyr 326) [15]. Changes in the binding grove

environment, due to ligand occupancy would change the Tyr

fluorescence intensity and the wavelength of its fluorescence

emission. Soluble TLR-2 was incubated with increasing concen-

trations of each polyethylene derivatives; mPE (as a mixture of

hydroxyl and ester bond alkane polymers), PE (unmodified alkane

polymers) pre and post implant PE and the positive control,

Pam2CSK4 lipopeptide (known to be a specific ligand for TLR-2)

[15]. The emission scans (between 290 and 420 nm) were collected

for each complex separately and the change in maximum

fluorescence signal at 335 nm (due to tyrosinate ion) was used to

generate the binding curves, after subtracting the contribution of

the free protein (in the absence of any compounds). The

normalized fluorescence data were fitted to a hyperbolic function

using the software GraphPad Prism 4 (Figure 6).

The steady-state intrinsic fluorescence emission of TLR-2

strongly increased to ligand saturability upon the addition of

mPE. Since mPE comprise a random mixture of hydroxyl and

carboxyl alkanes (Figure S2) a binding Kd was calculated for both

components. For hydroxyl and carboxyl modified alkanes the

Figure 4. Modified alkane polymers induce DC activation and IL-
12 secretion. a) FACS analysis of DC untreated or treated for 48 hours
with unPE, mPE, pre and post implant alkane polymers. Surface staining
was performed with antibodies to MHC class II molecules, Data are shown
as increase in MFI as compared to the untreated control. b) Histograms
overlay of MHC class II staining in DC untreated or treated with different
concentrations of unPE and mPE. c) Elisa for IL-12 present in the
supernatant of DC untreated or treated for 48 hours with unPE, mPE, pre
and post implant alkane polymers (data are expressed in pg/ml).
doi:10.1371/journal.pone.0002438.g004
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binding Kd was 34.18 mM and 35.75 mM respectively (Figure 6).

Thus, the predicted Kd range for the modified alkane mixture was

very close to the Pam2CSK4 positive control (Figure 6). Importantly,

the alkane binding to soluble TLR-2 was inhibited following

incubation with the monoclonal antibody anti human TLR2 (clone

383936 R&D Systems) which is known to prevent ligand access to

the TLR2 binding groove [16]. On the other hand the affinity of

binding for non-modified alkane polymers (unPE) and pre-implant

material was much lower than the one reported for the oxidized ones

(Figure 6). Post-implant PE, a wide mixture of non-oxidized and

oxidized alkanes also showed a saturable binding even though the

blend of different alkane species did not allow for Kd mesurement to

be calculated. Nevertheless, the binding was completely blocked by

addition of the TLR2 mAb (Figure 6). In general a positive

correlation was observed between TLR2 binding affinity and

amount of oxidation of the alkane polymeric structures (Figure 6b)

in agreement with the luciferase assay data (Figure 5).

The crystal structure of TLR1/2 combined with an active

bacterial ligand (Pam3CSK4) indicates that the CH2 backbone of

the lipid ligand occupies the three hydrophobic active pockets

[15]. Since FTIR analysis indicated that in the post-implant

material alkane oxidation was the prevalent modification of the

alkane groups we further characterize the interaction between the

oxidized alkane polymers and TLR1/2 receptors. The structural

fitness of; (i) a 24 repetitive units of an alcohol modified alkane

polymer (1390 m/z), (ii) its oxidized form (1406 m/z), (iii) and an

isomer from a post-implant polymer (1333 m/z) into the binding

site of TLR-1/2 were evaluated. Molecular docking was

performed using as template the 2z7x.pdb structure of the TLR-

1/2 in complex with the tri-acylated lipopeptide Pam3CSk4 [15]

(Figure 7). The mPE and post-implant polymers were designed to

have an m/z ratio extrapolated from the FT/MS data (Figure 3a

and Figure S2) and all the polymers had at least 16 carbons in their

backbone based on published structural requirements for a

TLR1/2 ligand [17]. The polymer structures were merged into

the X-Ray structure 2z7x.pdb, such that each individual polymer

was superimposed over the original ligand Pam3CSK4. The Pam

ligand was then deleted to generate the TLR1/2-mPE complex

(Figure 7a). The relative free energy of interaction between each of

the new ligands and the TLR1/2 heterodimer was assessed using

the MM94FF force field built-in the software SCULPT. Both the

hydroxyl-modified alkane (mPE-1390) and the carboxyl form

(mPE-1406) as well as the post implant 1333 were predicted to be

very good fit based on the relative free energy of interaction as

compared to the Pam3CSK4-lipopeptide control (Figure 7b).

Thus, additional structural analysis of the interaction between

mPE-1390 and TLR1/2 was performed by extracting the amino

acids from the binding pocket of the receptor which made contacts

with the ligand (Figure 7c). Altogether, the predicted relative free

energy of binding, as determined by Vander waals and

electrostatic interactions (kcal/mol), together with the analysis of

amino acids contacts between the ligand and the receptor clearly

indicated a strong probability for hydroxyl-modified alkane

polymers to fit appropriately into the TLR1/2 binding groove.

Discussion

Our study shows for the first time that organic synthetic

polymers with an alkane subunit backbone and different carbonyl/

amide side chain modifications can act as potent TLR2 and

TLR1/2 activators.

It has been previously reported that extensive damage occurs in

implanted akane polymeric structures in particular at sites of

weight bearing. The process of PE breakdown generates

Figure 5. Modified alkane polymers induce activation of TLR-1 and TLR-2 signaling pathways. a) Luciferase activity expressed by human
TLR1/2, TLR2, TLR3 and TLR4 stable HEK 3T3 transfectant (pNF-kB-LUC Stratagene). Cells were left untreated or treated for a different time period with
50 mg/ml of unPE, mPE or pre and post implant PE and respective positive controls; PGN(10 mg/ml) for TLR1/2 and TLR2, Poly (I:C)(1 mg/ml) for TLR3
and LPS (10 mg/ml) for TLR4.
doi:10.1371/journal.pone.0002438.g005

TLR2 and Alkane Polymers

PLoS ONE | www.plosone.org 6 June 2008 | Volume 3 | Issue 6 | e2438



Figure 6. Direct binding of oxidized alkane polymers to soluble TLR-2 molecules. a) Left panels; fluorescence emission scans collected for
free soluble TLR2 and TLR2 in complex with two different concentrations (exponential and plateau) of each analyzed polymer. Central panels;
normalized fluorescence data (DF) for each concentration point as a function of the free ligand concentration. Right panels; fluorescence emission
scans collected for free soluble TLR2 and TLR2 in complex with each analyzed polymer at two different concentrations (exponential and plateau) in
presence of an anti TLR2 mAb known to block the TLR2 binding groove (stoichiometric ratio 2:1 Ab to soluble TLR2 receptor). b) Comparison of the
fluorescence emission scans collected for soluble TLR2, mPE and unPE.
doi:10.1371/journal.pone.0002438.g006
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nanometers and micrometers size particles, easily identifiable in

the peri-implant tissue as well as in endosomal compartment of

resident osteoclast and macrophages [3–10,18,19]. Herein, we also

identify alkane polymers as additional products of PE breakdown.

Interaction between PE particles/polymers and the host cells leads

to oxidative changes by means of enzymatic, extracellular matrix-

degrading activity of cells that have phagocytosed them or adhered

to them. Under hyper-oxidative conditions and in presence of

many enzymatic complexes, among which lipooxygenases, the free

radicals could react fast with oxygen giving peroxide ROON

Figure 7. Mass spectroscopy analysis of n-alkane polymers predicted conformations fitting within the hydrophobic pocket of TLR-
1/TLR-2 receptor. a) Docking and predicted conformations for the 1390 and 1406 mPE fragments and 1333 post implant PE fragment. b) Predicted
relative free energies of interaction between the ligands reported in a and the TLR-1/TLR-2 receptor determined with the MM94FF force field. c)
Amino-acids within the binding site of TLR-1/TLR-2 that are making contacts with the ligands Pam (from the original 2z7x.pdb structure) and with the
mPE ligand (mPE-1390).
doi:10.1371/journal.pone.0002438.g007
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radicals and generate different alkane polymers with aldehyde,

ketonic and hydroxyl groups as determined by FTIR, and FTMS

(Figure 2 and 3). On the other hand the free polymeric radicals

could re-react by cross linking each other and regenerate a

saturated polymeric structure as well as formation of unsaturated

structures with double bonds; both modifications were observed by

FTMS (Figure 2 and 3). Altogether our data indicate that the PE

breakdown and oxidation process released several carbonyl-

modified alkane polymers with carbon chains of different length

in the periprosthetic tissue.

Toll like receptors (TLR) are important pattern recognition

receptors of the innate immune system. Among those TLR 2 is

responsible for the functional recognition of lipoproteins/peptide

constituent of the cell wall of bacteria [13,14,17,20,21]. TLR2 is

different from other TLRs in that it is also activated by heterotypic

interactions with TLR1 and TLR6. It was generally accepted that

tryacylated lipopeptides are recognized by TLR1/TLR2, whereas

dyacylated lipopeptides are recognized by TLR2/TLR6 [21]. Such

dogma was recently challenged by reports that dyacylated lipopep-

tide could engage TLR2 in a TLR6 independent manner raising the

possibility that TLR2 might be able to signal as homomers [20].

Recent analysis of the structural requirements for optimal TLR2

ligands was performed and indicated that two ester bond fatty acids

with at least 12 carbon atoms were required to stimulate a cellular

response [17]. In contrast, amide-bound fatty acids had no

remarkable effect on TLR2 recognition even though they could

determine the co-receptor usage (TLR1 vs. TLR6) [17].

Herein, a thorough biophysical analysis determined that the post

implant PE retrieved at the site of inflammation encompass different

carbon chain length alkane polymers modified by the addition of

carboxyl groups. The mixture of the oxidized polymers were capable

of activating TLR2 and TLR1/2 transfectant only few folds above

the range of activation observed with the pre-implant material. This

result has to be interpreted in light of the fact that several alkane

species are present in the peri-implant tissue bearing different

degrees of modification and carbon chain length, obviously not all of

them compatible with TLR1/2 engagement. However, the

requirement of alkane oxidation was further confirmed using

chemically synthesized PE alkane with or without hydroxyl and

carboxyl groups. Using this controlled in vitro system we could

determine that carboxyl-modified alkanes were able to engage a

soluble TLR2 with a 140 times greater binding affinity as compared

to the non oxidized polymers. Molecular docking further confirmed

that mPE polymers avidly fit into the hydrophobic groove of the

TLR1/2 heterodimeric crystal structure.

Altogether our results show that the strong immune reaction

following the break down of PE implant can be attributed to

TLR1/2 engagement. This results can provide the molecular basis

for the strong macrophages, osteoclasts and granulocytes activa-

tion observed at the site of the implant as well as after in vitro

treatment with PE generated polymers [2–10,18,19,22–29].

Important implications can be drawn for designing n-alkane/

alkenes polymeric compounds with similar bio-performance but

reduced immunogenecity.

Materials and Methods

Polyethylene
Ultra high molecular weight polyethylene unmodified (unPE)

and carbonyl modified (mPE) were purchased from Sigma (cat#
429015 and # 434272 respectively). Both forms were prepared at

20 mg/ml in PBS and added in culture media at different amounts

as reported in each figure legend. In some experiments a 10,000

MW cut off of PE preparations was utilized to test for the presence

of shorter polymers. Post implant PE particles and polymers were

purified from peri-prosthetic tissue removed at the time of the hip

or knee revision surgery. All patients were diagnosed with

loosening of the implant due to aseptic osteolysis and immune

reaction to PE material. The scheme for PE purification is

presented in Figure 2a as previously published [8].

Immunohistochemistry
Tissue was formalin-fixed and paraffin embedded and cut on a

microtome (4 um). Tissue slides were dried over night at room

temperature, deparaffinize with xylene, cleared with graded

ETOH (100%62, 95%, 70%), and rinsed with ddH2O. Antigen

retrieval was performed by microwave using Citrate buffer pH6.0

at 97o for 10 minutes. Slides were incubated with the following

primary antibodies for 30 minutes: CD20 monoclonal mouse anti-

human (mAb) (clone L26; dilution 1:3000), CD3 polyclonal rabbit

anti-human (#A0452; dilution 1:200), CD68 mAb (clone PGM-1;

dilution 1:25) all from Dako Corp. (Carpinteria, CA). Antigen-

antibody reaction was visualized using diaminobenzidine chromo-

gen (DAB) applied for 7 minutes. Sections were counterstained in

Hematoxylin for 30 seconds, cleared in 2% Glacial acetic acid for

30 seconds, rinsed in hot water then in 0.2% Ammonia Water for

10 seconds, rinsed in water, then dehydrated in ETOH and in

Xylene before manual cover slipping. Samples were analyzed by

light microscopy and polarized light microscopy to identified

birefringent polyethylene particles (PE).

Electron Microscopy
Tissue was fixed with a mixture of 2% paraformaldheyde and

4% PVP in phosphate buffer 0.2 M, pH 7.4 at 4uC and epon

embedded. DCs untreated or treated with mPE for 48 hours were

similarly fixed. Samples were processed for ultra-thin sectioning.

Contrast was obtained with a mixture of 2% methylcellulose

(SIGMA) and 0.4% uranyl acetate pH4 (EMS). Samples were

viewed under a CM120 Philips electron microscope.

Dendritic cells preparation and FACS analysis
Peripheral blood was obtained from the New York Blood Bank.

The CD14+ monocyte population was separated using CD14

conjugated MicroBeads (Miltenyi Biotec). Purified cells were

cultured in GM-CSF/IL4 (30 ng/ml plus 10 ng/ml) (RD Systems)

for 5 to 6 days in DMEM (GIBCO, Grand Island, NY, USA). In

some experiments DC were cultured in presence or absence of

unPE, mPE and pre and post implant PE for 48 hours. DC were

then washed with cold PBS, and labeled for 30 min on ice with

saturating amounts of anti human HLA-DR (clone TU36) (BD

Biosciences, Pharmingen, San Diego, CA) in staining buffer (PBS/

0.1 % BSA/ 0.01% NaN3). The Cells were analyzed using a

FACSCalibur flow cytometer and cellquest software program (BD

Biosciences Mountain View, CA, USA).

ELISA
DC were cultured in presence or absence of unPE, mPE and pre

and post implant PE as described above. Culture supernatant was

collected, filtered through a 20 mm filter and assayed for human

IL-12 (Biosource (Invitrogen) according to the manufacturer

instruction.

Luciferase assay
The HEK 293/TLR clones (Invivogen) were used to determine

TLR1/2, TLR2, TLR3 and TLR4 activation by PE. Each clone

was transfected with the NF-KB cis- reporter enhancer (pNF-kb-

LUC, Stratagene) and an independent GFP containing using

TLR2 and Alkane Polymers
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Fugene 6 transfection reagent (Roche). The expression of GFP was

measured by FACS. Forty-eight hours post transfection the cells

were treated with unPE, mPE, pre and post-implant-PE, as well as

a positive controls; PGN (peptidoglycan from Staphylococcus aureus)

at a concentration of 10 mg/ml l for TLR1/2 and TLR2, Poly

(I:C) (polyinosinic:polycytidylic acid) was used at 1 mg/ml for

TLR3 and LPS (lipopolysaccharide) at a concentration of 10 mg/

ml for TLR4. All the controls were purchased from Invivogen.

The luciferase readout was measured at different time points using

the standard Luciferase reporter assay kit (Promega).

Fourier Transform Infra-red spectroscopic analysis
Pre-implant PE and post-implant PE were analyzed by Fourier

transformed infrared (FTIR) spectroscopy. All FTIR data was

collected using JASCO 6100 Infrared Spectrometer equipped with

a Golden Gate Attenuated Total Reflectance (ATR) cell. In order

to prevent contamination between samples, the ATR window was

cleaned with methanol prior to each analysis. The data were then

analyzed using JASCO’s spectra manager software (BioRad’s

Know it all software and Fiveash Data Management polymer

database.

Equilibrium titrations of polyethylene compounds into
hrTLR-2.

Binding of different polyethylene compounds and of lipopeptide

control Pam2CSK-4 to hrTLR-2 was determined by monitoring

changes in the receptor’s intrinsic tyrosine fluorescence emission.

The steady state fluorescence emission spectra were collected

between 290 and 420 nm using lexcitation = 277 nm for tyrosine, 5

nm bandwidth for both emission and excitation wavelengths and a

response time of 0.5 seconds for each scan. Soluble TLR-2 was

titrated with increasing concentrations of each polyethylene

derivatives unPE, mPE, pre and post implant PE and the positive

control, Pam2CSK4 lipopeptide (known to be a specific ligand for

TLR-2 [15]. For each titration assay complexes between TLR-2

and each compound were preformed by incubating the protein (15

or 76 nM) with different compounds at different concentrations in

20 mM Tris-HCl with 200 mM NaCL, pH = 8.0 buffer at 4uC for

1 hour. Before reading their fluorescence emission scans between

290 and 420 nm the complexes were equilibrated at room

temperature. The emission scans were collected for each complex

separately and the change in maximum fluorescence signal at 335

nm (due to tyrosinate ions) was used to generate the binding

curves, after subtracting the contribution of the free protein (in the

absence of any compounds). The normalized fluorescence data

were fitted to a hyperbolic function (one single binding site model)

using the software GraphPad Prism 4. Similar experiments were

conducted in presence of mouse anti human TLR2 mAb (clone

383936 R&D Systems) which is known to prevent ligand access to

the TLR2 binding groove. The anti TLR-2 mAb was pre-

incubated with the human recombinant TLR-2 on ice for 30

minutes at a stoichiometric ratio 2:1 (Ab: soluble receptor). Each

binding compounds; unPE, mPE, pre and post implant material

was then added at different concentrations to the preformed

complexes. Emission scans were collected as described above.

Spectroscopic Analysis
Optical density of the pre- and the post-implant were

determined at a concentration of 100 ugm/ml at the relevant

wavelength after proper blanking of the instrument (BioRad smart

spec 3000). The Bradford assay was performed at the identical

concentration using the Biorad Braford assay kit (Biorad #
500006). Protein concentration was determined from the standard

plot. The absence of lipids and the sterol were determined using

the Libermann-Burchard test.

Mass Spectroscopic Analysis
Mass spectroscopic analysis of all PEs samples were performed

using MALDI (matrix assisted laser desorption/ionization) time of

flight (TOF) and MS/MS MALDI-TOF/TOF technologies. Data

were acquired using an ABI-4700 mass analyzer (Applied

Biosystems, Framingham, MA). All spectra were collected in the

reflector mode. Samples were prepared by mixing equal amounts

of matrix (a-cyano-4-hydroxycinnamic acid from Sigma) and

sample, each dissolved in 50% acetonitrile and 50% 0.1%

trifluororacetic acid (TFA). The samples were loaded on a 192

well engraved stainless steel plate (ABI 433375). Calibration was

updated before each acquisition using a standard peptide mixture

according to instrument protocol. The PEs subjected to MS

analysis were pre-filtered through Amicon Centriplus (YM-10,000:

10,000 Da cut-off). Only the filtrates were used for MS analysis.

FT-MS
Mass Spectra were acquired on a Varian Fourier transform

Mass Spectrometer (FTMS) (Lake Forest, CA) equipped with a

MALDI source. The spectra were imported from Varian Doc

Viewer and the analysis of chemical composition of each peak of

interest was performed with the built-in software.

Molecular docking
Molecular docking was carried out using SCULPT ‘‘Interactive

3D Structural and Electronic Analysis’’ software package provided

by MDL Information systems, Inc (San Leandro, CA). The

2z7x.pdb structure of the TLR-1/TLR-2 heterodimers receptor in

complex with the tri-acylated lipopeptide Pam3CSK4 was used as

target while the new PE polymer ligands were derived from the

original structure of the monomer (C3H6O)n predicted by the

Fourier Transformed Mass Spectroscopy (FT-MS) data (supple-

mentary information Sx). The new PEs were drawn in ISIS

DRAW (MDL) and imported into SCULPT superimposing each

structure over the original Pam3CSK4 ligand which was deleted

such that the template TLR1/TLR2 had in its binding groove the

new PEs. During each cycle of minimization the protein was

freezed while the ligand was thawed using the corresponding

functions from the SCULPT software. This rigid docking

procedure ensured the flexible conformational search for the

ligand within the binding site while the protein remained in its

original conformation. The minimization procedures used both

Van der Waals potential for finding the best sterical fit of the

ligand into the binding groove and the electrostatic potential

provided by the MM94FF built-in SCULPT to assess the relative

free energy of binding between the ligand and the target protein.

Supporting Information

Figure S1 Mass spectroscopy analysis of n-alkane polymers

purified from post implant PE indicates extensive oxidation. a)

Predicted chemical composition for major peaks of post implant

PE derived from FT-MS analysis depicted in Figure 3a.

Found at: doi:10.1371/journal.pone.0002438.s001 (0.68 MB TIF)

Figure S2 FTMS analysis of mPE. a) Fourier transformed FT/

MS-MALDI analysis of carboxyl-modified mPE polymers.

Found at: doi:10.1371/journal.pone.0002438.s002 (0.53 MB TIF)

Figure S3 MALDI parent ions 617 and 806 from PE and mPE

have a similar fragmentation pattern. MALDI-TOF-TOF analysis

of precursor ion 617 fragmentation into 428 and 572 for post
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implant PE and mPE and MALDI-TOF-TOF fragmentation of

precursor ion 808 into 617 for both pPE and mPE.

Found at: doi:10.1371/journal.pone.0002438.s003 (0.52 MB TIF)

Acknowledgments

Mass analysis was performed using the resources of the Laboratory for

Macromolecular Analysis and Proteomics (LMAP) at the Albert Einstein

College of Medicine. Linda Siconolfi-Baez provided the MALDI TOF/

TOF sample spectra. Dr. Hui Xiao performed the analysis on the MALDI

source equipped FTICR.

Author Contributions

Conceived and designed the experiments: LS RM CC. Performed the

experiments: RM CC GC. Analyzed the data: LS RM CC. Wrote the

paper: LS RM CC NC.

References

1. Chiesa R, Tanzi MC, Alfonsi S, Paracchini L, Moscatelli M, Cigada A (2000)

Enhanced wear performance of highly crosslinked UHMWPE for artificial

joints. J Biomed Mater Res 50: 381–387.

2. Abu-Amer Y, Darwech I, Clohisy JC (2007) Aseptic loosening of total joint

replacements: mechanisms underlying osteolysis and potential therapies.

Arthritis Res Ther 9 Suppl 1: S6.

3. Witkiewicz H, Vidovszky T, Turner RT, Rock MG, Morrey BF, Bolander ME

(1993) Fate of ultrahigh molecular weight polyethylene (UHMW-PE) wear

debris in patients with hip implants. Tech Orthop 8: 254–261.

4. Williams S, Tipper JL, Ingham E, Stone MH, Fisher J (2003) In vitro analysis of

the wear, wear debris and biological activity of surface-engineered coatings for

use in metal-on-metal total hip replacements. Proc Inst Mech Eng [H] 217:

155–163.

5. Ren WP, Markel DC, Zhang R, Peng X, Wu B, Monica H, Wooley PH (2006)

Association between UHMWPE particle-induced inflammatory osteoclastogen-

esis and expression of RANKL, VEGF, and Flt-1 in vivo. Biomaterials 27:

5161–5169.

6. Kurtz SM, Peloza J, Siskey R, Villarraga ML (2005) Analysis of a retrieved

polyethylene total disc replacement component. Spine J 5: 344350.

7. Kurth M, Eyerer P, Ascherl R, Dittel K, Holz U (1988) An evaluation of

retrieved UHMWPE hip joint cups. J Biomater Appl 3: 33–51.

8. Koseki H, Matsumoto T, Ito S, Doukawa H, Enomoto H, Shindo H (2005)

Analysis of polyethylene particles isolated from periprosthetic tissue of loosened

hip arthroplasty and comparison with radiographic appearance. J Orthop Sci

10: 284–290.

9. Trindade MC, Song Y, Aspenberg P, Smith RL, Goodman SB (1999)

Proinflammatory mediator release in response to particle challenge: studies

using the bone harvest chamber. J Biomed Mater Res 48: 434–439.

10. Goodman S (2005) Wear particulate and osteolysis. Orthop Clin North Am 36:

41–48.

11. Mukherjee DP, Ogden AL, Mayeux RH, Siriwardane U, Patel H (2000) Effect

of carbon coating on the properties of gamma irradiated ultra-high-molecular-

weight polyethylene specimens. Crit Rev Biomed Eng 28: 445–449.

12. Wallace WE (2007) Reactive MALDI mass spectrometry: application to high

mass alkanes and polyethylene. Chem Commun (Camb). pp 4525–4527.

13. Brodsky I, Medzhitov R (2007) Two modes of ligand recognition by TLRs. Cell

130: 979–981.

14. Chen L, Wang T, Zhou P, Ma L, Yin D, Shen J, Molinero L, Nozaki T,

Phillips T, Uematsu S, Akira S, Wang CR, Fairchild RL, Alegre ML, Chong A

(2006) TLR engagement prevents transplantation tolerance. Am J Transplant 6:

2282–2291.

15. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO (2007)

Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-
acylated lipopeptide. Cell 130: 1071–1082.

16. Massari P, Visintin A, Gunawardana J, Halmen KA, King CA, Golenbock DT,
Wetzler LM (2006) Meningococcal porin PorB binds to TLR2 and requires

TLR1 for signaling. J Immunol 176: 2373–2380.

17. Buwitt-Beckmann U, Heine H, Wiesmuller KH, Jung G, Brock R, Ulmer AJ
(2005) Lipopeptide structure determines TLR2 dependent cell activation level.

Febs J 272: 6354–6364.
18. Taddei P, Affatato S, Fagnano C, Toni A (2006) Oxidation in ultrahigh

molecular weight polyethylene and cross-linked polyethylene acetabular cups

tested against roughened femoral heads in a hip joint simulator. Biomacromo-
lecules 7: 1912–1920.

19. Lee AW, Santerre JP, Boynton E (2000) Analysis of released products from
oxidized ultra-high molecular weight polyethylene incubated with hydrogen

peroxide and salt solutions. Biomaterials 21: 851–861.
20. Buwitt-Beckmann U, Heine H, Wiesmuller KH, Jung G, Brock R, Akira S,

Ulmer AJ (2006) TLR1- and TLR6-independent recognition of bacterial

lipopeptides. J Biol Chem 281: 9049–9057.
21. Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19: 24–32.

22. Brach del Prever EM, Bistolfi A, Costa L, Bracco P, Linari A, Botto Micca F,
Crova M, Gallinaro P (2003) The biological reaction to polyethylene wear debris

can be related with oxidation of the UHMWPE cups. Chir Organi Mov 88:

291–303.
23. Costa L, Luda MP, Trossarelli L, Brach del Prever EM, Crova M, Gallinaro P

(1998) In vivo UHMWPE biodegradation of retrieved prosthesis. Biomaterials
19: 1371–1385.

24. Fiorito S, Goze C, Adrey J, Magrini L, Goalard C, Bernier P (2001) Increase in
free radicals on UHMWPE hip prostheses components due to inflamed synovial

cell products. J Biomed Mater Res 57: 35–40.

25. Harris WH (2004) Conquest of a worldwide human disease: particle-induced
periprosthetic osteolysis. Clin Orthop Relat Res. pp 39–42.

26. Jahan MS, Stovall JC, Davidson JA, Hines G (1995) Long-term effects of
gamma-sterilization on degradation of implant materials. Appl Radiat Isot 46:

637–638.

27. Kurella A, Dahotre NB (2005) Review paper: surface modification for
bioimplants: the role of laser surface engineering. J Biomater Appl 20: 5–50.

28. Reno F, Lombardi F, Cannas M (2003) UHMWPE oxidation increases
granulocytes activation: a role in tissue response after prosthesis implant.

Biomaterials 24: 2895–2900.

29. Xing S, Santerre J, Labow RS, Boynton EL (2002) Differential response to
chemically altered polyethylene by activated mature human monocyte-derived

macrophages. Biomaterials 23: 3595–3602.

TLR2 and Alkane Polymers

PLoS ONE | www.plosone.org 11 June 2008 | Volume 3 | Issue 6 | e2438


