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could give us more insight into the neurodegenerative pro-
cess in AD.
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Introduction

Alzheimer’s disease (AD), the most prevalent neurode-
generative disorder, is responsible for the majority of late-
onset dementia cases [8]. The disease follows a progres-
sive and fatal disease course. Pathological hallmarks of AD 
include severe neurodegeneration, senile plaques consisting 
of extracellular deposits of amyloid-β (Aβ) protein, and 
neurofibrillary tangles (NFTs) composed of intracellular 
aggregates of hyperphosphorylated microtubule associ-
ated tau protein. Aβ protein is a proteolytic fragment of the 
β-amyloid precursor protein (APP). Autosomal dominantly 
inherited mutations in the genes that encode for APP, pre-
senilin 1 (PSEN1) and presenilin 2 (PSEN2) contribute 
to enhanced deposition of Aβ and are causally associated 
with an early onset of AD. Mutations identified in APP are 
missense mutations lying within or close to the domain 
encoding the Aβ peptide. Mutations in PSEN1 and PSEN2 
directly affect the proteolysis of APP leading to increased 
levels of Aβ [101]. Autosomal dominant inherited muta-
tions leading to AD are relatively uncommon. More com-
mon is the occurrence of a variant of the gene encoding for 
apolipoprotein E, APOE-ε4, which has been shown to be a 
risk factor for AD and occurs in both early and late-onset 
cases [93]. APOE-ε4 also contributes to the accumulation 
of Aβ, as shown in studies with transgenic mice [76, 92]. 
More support for a central role of Aβ in the pathogenesis of 
AD comes from the observation that patients with Down’s 
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syndrome show increased risk of dementia and cerebral Aβ 
deposits at early age. In Down’s syndrome the abundant 
cerebral deposition of Aβ is attributed to excess APP syn-
thesis due to the extra copy of chromosome 21 where the 
APP gene is located. The pathogenic effects of mutations 
associated with early-onset AD have strongly contributed 
to the hypothesis that AD is an amyloid driven process. 
The widely accepted, but not undisputed, amyloid cascade 
hypothesis, proposes that Aβ drives neuritic tau pathology, 
being an important secondary phenomenon that is closely 
correlated with the syndrome of dementia [34, 85]. Despite 
exhaustive knowledge about the various neuropathological 
correlates of AD, as of yet no general consensus has been 
reached regarding the mechanism underlying neuronal dys-
function and neuronal loss in AD, especially in the prodro-
mal phase of the disease. This has made the development of 
disease models and therapies extremely difficult.

Presently, post-mortem studies have reported increased 
expression of cell cycle proteins in post-mitotic neurons of 
AD patients. The cell cycle has been linked to all above-
mentioned AD hallmarks, and it has therefore been put 
forward that neuronal cell cycle re-entry may promote AD 
pathology and that a failure of completing the cell cycle 
results in neurodegeneration, a phenomenon referred to 

as ‘abortosis’ [77]. However, as will be discussed below, 
cell cycle proteins are also expressed in neurons without 
apparent pathological changes and neurons of healthy non-
demented individuals. Here, we will review physiological 
and pathophysiological roles of cell cycle proteins in post-
mitotic neurons. Recognizing the events that could drive a 
post-mitotic neuron to re-express cell cycle proteins will 
help us interpret the significance of these proteins in AD.

Cell cycle proteins in AD post‑mortem brain tissue

To understand the role of cell cycle proteins in AD pathol-
ogy, it is crucial to understand how the cell cycle operates 
under healthy conditions (described in detail in [66]). The 
eukaryotic cell cycle can be divided into a gap 1 (G1) phase, 
DNA synthesis (S) phase, gap 2 (G2) phase and mitotic (M) 
phase (Fig.  1). If the environment is unfavourable of cell 
division, the cell can enter G0 phase, a state of prolonged 
cell cycle arrest. Cells can only enter G0 phase as long as 
they reside in G1 phase. Once the cell has passed G1 phase 
it is fully committed to the cell cycle and unable to return 
to G0 phase. To successfully proceed through the cell cycle, 
the cell needs to pass several checkpoints. Progression of 

Fig. 1   Overview of proteins 
involved in regulation of the 
cell cycle. The cell division 
cycle of eukaryotic cells can be 
divided into four phases. During 
S phase, DNA synthesis takes 
place and during M phase mito-
sis and cytokinesis occurs. G1 
and G2 are gap phases, which 
separate S phase and M phase. 
Cells can enter a permanent 
resting state, referred to as G0 
phase. Neurons continuously 
reside in G0 phase. Progression 
through the cell cycle is tightly 
governed by the cell cycle con-
trol system, consisting of cyc-
lin-dependent kinases (CDK), 
cyclins and CDK inhibitors 
(CDKIs). CDKs need to bind to 
cyclins to become catalytically 
active. CDK-cyclin complexes 
important for phase transition 
are depicted on the border of 
two phases. Important inhibitors 
of cyclin D-CDK4/6 complexes 
all belong to the INK family 
of CDKIs (p15INK4b, p16INK4a, 
p18INK4c and p19INK4d). Inhibi-
tors of all other cyclin-CDK 
complexes belong to the Cip/
Kip family of CDKIs (p21Cip1, 
p27Kip1, p57Kip2)
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the cell cycle past these checkpoints is closely monitored 
and regulated by a cell cycle control system [66]. Core 
components of this system are cyclin-dependent kinases 
(CDKs) that are activated upon binding to specific cyclin 
proteins. Active CDKs can phosphorylate downstream sig-
nalling proteins thereby stimulating progression through 
the different phases of the cell cycle. The activity of CDKs 
can be inhibited, on the other hand, by reduced transcrip-
tion or enhanced degradation of cyclins, or by CDK inhibi-
tor (CDKI) proteins from the Cip/Kip family or INK4 
family. Each phase of the cell cycle is characterised by the 
involvement of specific CDKs, cyclins and CDKIs (Fig. 1).

It is believed that, during adulthood, neuronal cell divi-
sion can only take place in the subventricular zone and 
subgranular zone of the human hippocampus [25]. Once 
neurons are fully differentiated, it is assumed they enter 
G0 phase, during which cell cycle re-entry is continuously 
blocked. It is therefore surprising that post-mortem stud-
ies report re-expression of cell cycle proteins in differen-
tiated neurons of AD patients (Table  1). Whereas this re-
expression has been shown to occur in different areas of the 
brain, the majority of studies have focused on post-mortem 
hippocampal tissue. Often, but not exclusively, cell cycle 
proteins are found to colocalize with NFTs [6, 7, 12, 15, 
24, 39, 65, 91, 98, 105, 111, 114, 115] and senile plaques 
[6, 7, 12, 24, 39, 98, 111, 114, 115]. This observation sug-
gests that aberrant expression of cell cycle proteins may 
be a pathological feature of AD. Furthermore, since re-
expression of cell cycle proteins is already witnessed in 
patients with early AD pathology [71, 72] or mild cognitive 
impairment (MCI) [105], a prodromal stage of AD, it has 
been put forward that cell cycle abnormalities potentially 
play an early, or even causal role in AD pathogenesis. From 
post-mortem studies it seems that post-mitotic neurons can 
progress as far as G2/M phase; markers of G1 (CDK4, cyc-
lin D, E and p38), DNA synthesis [69, 102] and S phase 
(cyclin A, PCNA, mcm2), G2 (CDK1) and M phase (cyclin 
B, CDK1) (Table 1) have been detected. However, it seems 
that differentiated neurons in AD patients cannot complete 
the cell cycle, as no studies report successful events of 
mitosis. It has therefore been hypothesised that post-mitotic 
neurons can proceed up until the G2/M phase, at which 
stage their progression is blocked and aborted. The obser-
vation that post-mitotic neurons express cell cycle proteins 
is not restricted to AD cases as several studies show re-
expression of cell cycle proteins in other neurodegenerative 
disorders as well [71, 72, 89, 91].

The interpretation of the nature of the observed cell 
cycle proteins in neurons in post-mortem tissue remains 
complex. From post-mortem studies alone it is diffi-
cult to infer a functional relation between neuronal cell 
cycle re-entry and pathology. Post-mortem studies pro-
vide the researcher with a static picture obtained during 

the progression of pathology, which makes it difficult to 
draw conclusions about the functional sequence of events. 
Re-expression of cell cycle proteins by neurons could be 
pathology induced preceding neurodegeneration or an 
adaptive response to a changing cellular environment. In 
addition, studies on human brain tissue show that cell cycle 
proteins are expressed in healthy control cases as well [12, 
15, 20, 24, 37, 39, 56, 65, 71, 72, 89, 91, 98, 105, 111, 114, 
115] (Table  1), although generally at lower levels than in 
AD patients, and in neurons without apparent presence 
of pathology. These findings question the rarity, specific-
ity and causality of cell cycle protein expression in AD. 
Moreover, the observed expression of cell cycle proteins 
in healthy adult neurons suggests that cell cycle proteins 
could fulfil essential physiological functions in post-mitotic 
neurons.

Physiological functions of cell cycle proteins 
in post‑mitotic neurons

DNA Repair

Previous studies have indicated a role for cell cycle pro-
teins in DNA repair. Oxidative stress comprises a major 
source for DNA damage in post-mitotic neurons. All aero-
bic organisms experience oxidative stress, which can occur 
as a side effect of the mitochondrial electron transport 
chain, (chronic) inflammation and ionizing radiation. It 
can be harmful to the cell due to the production of reac-
tive oxygen species (ROS), chemically reactive molecules 
that contain oxygen. Excessive ROS can lead to double-
strand breaks (DSBs) in DNA [44], which are considered 
to be the most lethal DNA lesions. Cells rely on two repair 
mechanisms when DSBs are detected: homologous recom-
bination (HR) and non-homologous end joining (NHEJ) 
(reviewed in [62, 81]). The HR mechanism uses a homolo-
gous chromosome or an identical sister chromatid as a tem-
plate to repair DSBs. Since sister chromatids are identical, 
and homologous chromosomes very similar to each other, 
this repair mechanism is usually without genetic risks. 
NHEJ, on the other hand, joins the ends of the broken DNA 
segments and, if necessary, fills the gaps. NHEJ is often 
considered imprecise, as deletions and insertions can more 
easily occur compared to when the HR repair mechanism is 
employed. It is believed that differentiated neurons primar-
ily use NHEJ to repair DSBs [75].

Cell cycle control and DNA damage repair are intri-
cately linked in cycling cells, so it might not be surprising 
that this is conserved to some extent in mature neurons. 
Cell cycle proteins have been shown to play a role in the 
activation and expression of components of DNA repair 
mechanisms (recently reviewed in [96] and [28]), providing 
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a clue as to why post-mitotic neurons could reactivate their 
cell cycle machinery to carry out DNA repair processes. 
Evidence is now starting to suggest that cell cycle activa-
tion is an important feature of the NHEJ response in dif-
ferentiated neurons [18, 83, 95]. After introducing DSBs in 
vitro by treatment with the ROS hydrogen peroxide, differ-
entiated neurons showed increased expression of proteins 
related to the NHEJ response [95] and cell cycle entry, 
such as cyclin D1 [83], phosphorylated retinoblastoma 
protein (pRb) [83, 95], and more global cell cycle regula-
tors such as Ki-67 [83, 95] and mcm2 [83]. Furthermore, 
increased phosphorylation of Rb by cyclin C and cyclin 
D was detected [95]. Preventing cyclin C-mediated cell 
cycle entry or simultaneous blocking of CDK4 and CDK6, 
both important during G1 progression (Fig. 1), augmented 
DNA damage upon hydrogen peroxide exposure [83, 95]. 
Interestingly, forced entry into G1 phase also activated the 
NHEJ response in the absence of DSB lesions [95]. Post-
mitotic neurons subjected to repairable DNA damage, did 
not proceed to S phase, but remained in G1 phase [83]. 
On the other hand, insurmountable DNA damage induced 
by excess levels of hydrogen peroxide seemed to promote 
G1/S phase progression, as shown by increased bromode-
oxyuridine (BrdU; a thymine analog) incorporation, CDK2 
and cyclin E expression, and subsequently led to apoptosis 
[83]. Blocking CDK2 activity reduced apoptosis, but did 
not affect DNA repair [83]. These results were largely con-
firmed by an in vivo experiment, in which rats underwent 
sublethal ionizing radiation (IR), focused on their heads, to 
induce DSBs [18]. Sensory ganglion neurons of these ani-
mals were investigated at 0.5, 3, 6 h, 1, 3 and 15 days post-
irradiation. DSBs were confirmed by immunostaining for 
phosphorylated H2AX and the presence of 53 binding pro-
tein 1, both involved in the NHEJ response [18]. A peak in 
nuclear cyclin D was found 1 day post-IR and, even though 
it decreased afterwards, it was found to remain elevated up 
to 15  days after radiation. Interestingly, p21, an inhibitor 
of G1/S phase progression also peaked 1 day post-IR, but 
decreased after 3 days and was absent at day 15. Finally, 
cyclin A expression could not be detected, supporting the 
notion that neurons did not progress to S phase. In line with 
this, neurons did not show signs of apoptosis. These find-
ings support that sublethal DSBs cause differentiated neu-
rons to re-enter G1 phase, but without subsequent progres-
sion to S phase.

More indirect support for a link between DSBs and cell 
cycle re-entry comes from studies on ataxia telangiecta-
sia mutated (ATM). ATM autophosphorylates upon detec-
tion of DSBs [9] and is an important inhibitor of cell cycle 
phase transitions, including G1/S phase progression, to 
allow cycling cells time to repair DNA damage. The Atm 
gene is defective in patients with the disease ataxia telangi-
ectasia (AT), which is characterised by decreased resistance 

to DSBs, progressive neurodegeneration of Purkinje cells 
and neuronal cell cycle protein expression [45, 103]. This 
illustrates that DNA damage-induced cell cycle arrest is 
not only important in cycling neurons to repair DNA, but 
might also be of great importance in post-mitotic neurons. 
An in vivo study using Drosophila melanogaster express-
ing human tau in the fly’s nervous system reported that tau-
expressing post-mitotic neurons showed increased signs 
of DSBs compared to post-mitotic neurons in healthy flies 
[48]. Interestingly, decreasing ATM in tau-expressing neu-
rons, increased apoptosis and PCNA expression [48]. This 
indicates that a subset of tau-expressing neurons, perhaps 
those with repairable DSBs, would naturally not enter S 
phase but might remain in G1 phase and therefore survive. 
Indeed, down-regulation of Cdh2 and p53, both involved 
in ATM-associated G1 arrest [19], also increased PCNA 
expression and apoptosis in tau-expressing neurons [48]. 
Hence, decreasing ATM activity and therefore cell cycle 
arrest at G1 phase might allow more neurons to progress 
into S phase and die. Some studies have suggested that Atm 
deletions can protect neurons from DNA damage-induced 
apoptosis, since ATM may be required for p53-mediated 
apoptosis [55]. Several other studies, however, also sup-
port that knockdown of ATM causes expression of S 
phase markers in post-mitotic neurons [58, 80, 103, 104] 
and enhance apoptosis [58, 80, 104], which both seem to 
increase under conditions of oxidative stress [104], con-
firming the neurodegenerative phenotype and susceptibility 
to cancer [68] seen in AT patients. Although these studies 
did not investigate if NHEJ repair occurred in these neu-
rons during G1 phase, they do support a protective role for 
G1 arrest upon DNA damage in adult neurons.

In conclusion, it seems that post-mitotic neurons may be 
capable of re-entering the cell cycle to initiate DSB repair, 
and remain in G1 phase as long as DNA damage is repair-
able or sublethal. High doses of irreparable DSBs induce 
further progression to S phase in the cell cycle and ulti-
mately lead to apoptosis. The link between S phase pro-
gression and apoptosis is supported by other studies [22, 
48, 55]. The underlying mechanism responsible for apop-
tosis in S phase requires further study, but has been sug-
gested to be due to replicative stress [108]. As cells will 
replicate their DNA during S phase, this will give rise to 
hyperploidy in neurons. Perhaps due to insufficient DSB 
repair, the majority of neurons presumably cannot com-
plete S phase, which may cause the resulting aneuploidy to 
further enhance genomic instability and eventually causes 
the neuron to die.

Neuroplasticity

Studies on cell cycle proteins have also suggested a link 
with neuroplasticity. Neuroplasticity refers to the ability 
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of the brain to structurally and functionally adapt to its 
dynamic and continuously changing environment. Immu-
noelectron microscopy and immunoblotting experiments 
have shown an association of cyclin B and D, as well as 
CDK2 and CDK4 with the axonal microtubule cytoskel-
eton in mouse neocortical tissue [82]. The same study fur-
thermore showed kinase activity to bovine tubulin, espe-
cially by cyclin B complexed with CDK2. siRNA-driven 
down-regulation and pharmacological inhibition of CDK1, 
2 and 4, and cyclin B, D and E in vitro promoted neurite 
outgrowth in a mouse neuroblastoma cell line and mouse 
primary neurons, indicating a role for those cell cycle pro-
teins in the regulation of network stability and neuronal 
cytoskeleton dynamics [82]. Accordingly, cyclin D1 was 
recently linked to microtubule reorganisation in hippocam-
pal rat neurons [54]. Another recent study demonstrated 
that cyclin E could also play a role in the formation of syn-
apses in post-mitotic neurons through inhibition of CDK5 
[74]. Unlike other CDKs, who are generally activated by 
a cyclin protein, CDK5 is catalytically activated by p35/
p39 or the more stable fragment p25 and exerts inhibitory 
control over the cell cycle [110]. Many studies have shown 
a key role for CDK5 in synaptic plasticity. However, as 
activation and inhibition of CDK5 have both been associ-
ated with improvement but also with impairment in meas-
ures of neuroplasticity, its functions are likely to be con-
text dependent [21]. Cyclin E was demonstrated to inhibit 
CDK5 activity by preventing it from binding to p35/p39 
[74]. Acute ablation of cyclin E in post-mitotic neurons led 
to a decreased number of synapses and dendritic spines in 
in vitro cultures of mouse hippocampal neurons [74]. These 
findings were confirmed in vivo, as cyclin E knockout mice 
showed alterations in dendritic spines, a reduced length of 
postsynaptic densities and decreased synaptic transmission. 
In addition, cyclin E null-brains showed less phosphoryla-
tion of the NR1 subunit of the NMDA receptor and, corre-
spondingly, reduced NMDA-dependent currents.

As neurodegeneration leads to a loss of connections 
between neurons, this is an important stimulus to trigger 
neuroplastic processes in the remaining neurons. It could 
therefore well be that cell cycle proteins found to be upreg-
ulated in healthy neurons upon loss of synaptic connections 
aid  in synaptic remodelling. Loss of synaptic connections 
has been shown to trigger expression of cell cycle proteins 
in intact post-mitotic neurons both in vitro [51] and in 
vivo [35, 36]. Lesions in the entorhinal cortex were found 
to induce cell cycle protein expression (cyclin D1, cyclin 
B and ERK1/2) in the dentate gyrus of the hippocampus 
[35], and vice versa (cyclin D1, CDK6, PCNA, CDK2, 
cyclin B, CDK5 and p25/35) [36]. CDK4 and its activa-
tor cyclin D1 were upregulated in intact neurons bordering 
ischemic cores in rat brain [60, 61] and were also found to 
be upregulated upon contusion in intact neurons without 

signs of apoptosis [46]. This all implies that these cell cycle 
proteins are necessary for survival, repair or compensatory 
mechanisms.

Several other cell cycle regulators have been linked to 
neuronal plasticity in fully differentiated neurons, such 
as the anaphase-promoting complex/cyclosome (APC/C) 
and its activator Cdh1, polo-like kinase 2 (Plk2), Aurora 
A kinase and the origin recognition complex (ORC) 
(reviewed in [29]). In the cell cycle, APC/C primarily func-
tions to drive M phase progression and exit by controlling 
degradation of other cell cycle proteins, including cyclin B. 
In developing post-mitotic neurons, nuclear Cdh1-APC/C 
was demonstrated to suppress axonal growth [53], whereas 
cdc20-APC/C activity at the centrosome was shown to be 
critical for dendrite morphogenesis [49]. In addition, Cdh1-
APC/C activity is suggested to play a role in maintaining 
homeostatic plasticity, the mechanism by which neurons 
adapt their spiking output within an optimal range follow-
ing chronic excitation or depression, by down-regulating 
the Glur1 subunit of the AMPA receptor upon chronic 
elevated synaptic activity [31]. Another cell cycle protein 
involved in homeostatic plasticity is Plk2, which is active 
during S phase and late G2 phase. Plk2 was shown to bind 
and degrade CDK5-phosphorylated spine associated Rap-
GAP protein  (SPAR), which led to decreased synaptic 
strength [84]. Aurora A kinase, which mainly functions to 
coordinate centrosome dynamics, appears to play a role 
in neurite extension [67] and in NMDA activity depend-
ent protein translation at the synapse [40]. Another major 
regulator of the cell cycle, ORC, is involved in dendritic 
branch and spine development [41]. Finally, it was shown 
that overexpression of constitutively active Ras, an impor-
tant regulator of cell proliferation, led to altered synaptic 
connectivity at both the functional and structural level in 
cortical neurons of mice [5].

Altogether, above findings argue that cell cycle proteins 
may contribute to neuroplasticity. The exact mechanism 
underlying neuroplastic processes mediated by cell cycle 
regulators in post-mitotic neurons remains to be deter-
mined. As neuroplasticity can occur on many levels and 
has been shown to involve multiple cell cycle proteins, it 
is likely that various mechanisms can be employed in post-
mitotic neurons depending on the contextual demands. The 
above studies suggest that cell cycle proteins might directly 
interact with the neuronal cytoskeleton, and that they may 
exert their effects by modulating specific functions of other 
regulators of cytoskeletal dynamics, such as CDK5 or 
SPAR. In addition, cell cycle proteins may affect glutamate 
receptor expression or protein synthesis. Alternatively, it 
has been hypothesised that neurons retract from the cell 
cycle to use their cell cycle machinery for neuroplastic 
purposes (reviewed in [3]). In line with this hypothesis, it 
has been suggested that the increase in cell cycle proteins 
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reflects failed neuroplasticity in AD; neuroplastic signalling 
might be erroneously interpreted for mitogenic signalling 
and therefore activate the ancient mechanisms of the cell 
cycle in differentiated neurons leading to neurodegenera-
tion [3].

Cell cycle activation and neurodegeneration

Early indications that re-entry of the neuronal cell cycle 
could lead to neurodegeneration, came from a study over 
two decades ago [27]. In this study, the oncogene Tag was 
over expressed in post-mitotic, cerebellar Purkinje cells 
in mice. Rather than inducing tumorigenesis, the authors 
were confronted with increased neurodegeneration. Over 
the years, other experimental studies [57, 80], correlative 
evidence from post-mortem studies (Table 1), and the fact 
that cell cycle reactivation often accompanies Aβ-, and tau-
mediated cell death have been supportive of this phenom-
enon [1, 22, 32, 43, 47].

In addition to DNA damage and replicative stress-
induced apoptosis, several pathways have been proposed 
to explain the mechanism of cell cycle-mediated neurode-
generation. One hypothesis states that neurons die through 
‘phase stasis’; in late S phase, G2 and M phase, mitochon-
drial proliferation takes place, exposing neurons with 
defective control over their cell cycle even more to the 
damaging effects of ROS [90]. Two other theories revolve 
around CDK1 as a mediator of cell death upon neuronal 
activity deprivation. Activity deprivation was demonstrated 
to induce E2F1-mediated CDK1 expression, which in turn 
was found to phosphorylate BAD at its serine 128 site [51, 
52]. If not phosphorylated at serine sites 112 and 136, BAD 
heterodimerises with Bcl-2 and Bcl-XL, thereby promoting 
apoptosis [109]. Growth factors can induce phosphoryla-
tion of BAD at serine 112 and 136, which leads to interac-
tion of BAD with proteins from the 14-3-3 family [109]. 
This in turn promotes neuronal survival. It has therefore 
been proposed that phosphorylation of BAD at serine 128 
prevents sequestration of serine 136-phosphorylated BAD 
by 14-3-3 proteins and thereby antagonises growth factor-
induced neuronal survival. More recently, the transcrip-
tion factor FOXO1 was found to be phosphorylated by the 
cyclin B-CDK1 complex as well [107]. Phosphorylation 
resulted in the translocation of FOXO1 from the cytoplasm 
to the nucleus. In the nucleus, FOXO1 then induced expres-
sion of the pro-apoptotic gene BIM. Active CDK1 plays a 
role during G2 and M phase and both mechanisms there-
fore likely describe a different apoptotic pathway in post-
mitotic neurons than is seen upon DNA damage-induced 
cell death.

It could be questioned, however, whether apoptosis is 
the primary underlying mechanism of cell cycle-related 

neurodegeneration in AD. Apoptosis is a relatively rapid 
way for neurons to die. AD on the other hand, is character-
ised by slow, but progressive neurodegeneration. Research-
ers have therefore been puzzled by the many neurons that 
were found to exhibit cell cycle markers in post-mortem 
tissue of MCI and AD patients. If these cell cycle proteins 
would indeed indicate that apoptotic processes are being 
at work, those neurons would be expected to die within a 
very short time frame and this would not match the rate of 
neurodegeneration in AD. Another source for researchers to 
feel hesitant towards the hypothesis of cell cycle-induced 
apoptosis is the lack of neurodegeneration in a number of 
mouse models despite an up-regulation of cell cycle pro-
teins [59]. The ‘two-hit hypothesis’ provides an explanation 
for this and the long period between cell cycle abnormali-
ties and cell death [112, 113]. It postulates that oxidative 
stress and cell cycle re-entry, with either one preceding 
the other, cooperate to induce cell death. According to this 
hypothesis, oxidative stress or mitogenic alterations can 
drive neurons into a new steady state, in which they still 
function normally but at the cost of permanent adaptive 
changes. These changes render neurons more vulnerable 
to a second insult. The expression of cell cycle markers 
therefore reflects a mitotic steady state, in which neurons 
are more vulnerable to ROS-induced damage, and does not 
necessarily indicate ongoing neurodegeneration. According 
to this hypothesis, however, oxidative stress and cell cycle 
abnormalities seem to be two independent processes. This 
is counteracted by the many studies that report cell cycle 
up-regulation upon both high and low levels of oxidative 
stress [11, 14, 18, 23, 50, 55, 83, 95]. In addition to DNA 
damage-induced cell cycle re-entry described above, ROS 
have been linked to cell cycle activation in neurons via p38 
activation, the induction of growth factors, and the inhibi-
tion of histone deacetylation (summarised in [50]). Finally, 
several dietary compounds affecting susceptibility to oxida-
tive stress have also been shown to regulate cell cycle acti-
vation, such as selenium [78], iron [22, 26], and folic acid/
homocysteine [55, 73]. Overall, these results seem to sup-
port a relationship between oxidative stress and cell cycle 
activation.

Cell cycle proteins: significance in AD pathology

It seems evident that cell cycle proteins can fulfil physi-
ological functions in post-mitotic neurons, which include 
DSB repair and neuroplasticity. Both processes are very 
important throughout the different stages of AD to counter-
act pathology. We therefore propose that during the earliest, 
preclinical stages of AD, cell cycle protein expression may 
predominantly reflect repair of sublethal DSBs. However, 
with the accumulation of DSBs and AD pathology during 
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disease progression, cell cycle-mediated neuroplasticity 
and neurodegeneration may become more predominant. 
Furthermore, control over DSB repair and neuroplasticity 
may become increasingly defective and this may also con-
tribute to neurodegeneration (Fig. 2).

Firstly, we propose that the earliest stages of AD might 
be characterised by cell cycle protein expression to aid 
DNA repair. Preclinical and prodromal stages of AD are 
presumably featured by accumulating, yet repairable or 
sublethal DSBs. These DSBs might be caused by gradu-
ally increasing genotoxic insults and deficient DNA repair 
mechanisms. Indeed, oxidative DNA damage increases 
with age, but appears to be even further augmented in MCI 
patients [99]. Another potent candidate in AD that could 
partly be responsible for the occurrence of DSBs is Aβ [94]. 
Preclinical stages of AD are likely marked by elevations in 
oligomeric, nonfibrillar Aβ, which may contribute to the 
accumulation of DSBs [94] and therefore evoke re-expres-
sion of cell cycle proteins to initiate DNA repair. In line 
with this, in transgenic mice expressing human amyloid 
precursor protein with the Swedish (K670M/N671L) muta-
tion, cell cycle changes were observed well before amyloid 
plaque formation [97, 106]. It was furthermore shown that 
Aβ oligomers could induce neuronal cell cycle entry in 
vitro as measured by cyclin D1 [86], BrdU incorporation 
[10, 97] and PCNA expression [10]. Interestingly, BrdU 
incorporation and PCNA expression increased in a concen-
tration-dependent fashion [10, 97]. Similarly, it was dem-
onstrated in vitro that fibrillar Aβ can induce hippocampal 
adult neurons to re-enter the cell cycle towards different 

stages, depending on the concentration [63]; whereas low 
concentrations of Aβ induced cyclin D1 expression, higher 
concentrations led to cyclin B1 expression.

Aβ has also been found to interfere with NHEJ [17]. 
This is supported by studies that have reported reduced 
NHEJ efficiency in AD patients [87], as measured by end-
joining activity and the expression of Ku and DNA-depend-
ent protein kinases—proteins responsible for recognition 
and binding to DSBs to facilitate bridging of the DNA ends. 
Cell cycle reactivation might, however, still occur to initi-
ate the NHEJ response, which will later on lack effective-
ness. It could then be hypothesised that cell cycle activity 
is further increased in an attempt to compensate for an inef-
ficient repair mechanism. Altogether, this could account for 
results found in post-mortem studies where G1 phase mark-
ers are elevated in neurons in early stages of AD pathology 
[37, 38, 71]. To the best of our knowledge, no studies have 
addressed the spatial relationship between DSB lesions and 
cell cycle markers in post-mortem human brain tissue. One 
study investigated whether a correlation exists between 
markers of DSB repair and expression of cyclin A in post-
mitotic cerebellar and hippocampal neurons of AD patients 
[20]. Even though the presence of DSB repair markers was 
positively correlated with diagnosis (AD vs. control), no 
correlation between cyclin A and DSB repair could be con-
firmed. The lack of correlation might be explained by the 
fact that DSB repair primarily takes place during G1 phase. 
It would therefore be interesting for future studies to inves-
tigate colocalization of NHEJ markers with G1 phase mark-
ers, or markers of DSB lesions with cell cycle stages.

Fig. 2   Cell cycle activation in post-mitotic neurons of AD patients. 
G1-phase entry of the cell cycle in post-mitotic neurons facilitates 
DNA repair via the non-homologous end joining (NHEJ) pathway 
(green arrows). DNA damage beyond repair will drive neurons to 
progress to S phase in the cell cycle which will ultimately result in 

neurodegeneration (red arrows). Accumulating AD pathology and 
neurodegeneration will increase the need for cell cycle-related neu-
roplasticity (blue arrows). Finally, neuroplastic signals may be misin-
terpreted for mitogenic signalling in AD patients, which also leads to 
neurodegeneration
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Several experimental studies have shown that Aβ and 
tau can be mitogenic [1, 10, 22, 30, 32, 43, 47, 63, 86, 97], 
and that Aβ and tau-induced cell death is often mediated 
by cell cycle activation [1, 22, 32, 43, 47]. This suggests 
a functional relation between the accumulation of Aβ and 
tau during disease progression and the occurrence of cell 
cycle proteins in neurons. However, in human pathology 
the relation between cell cycle proteins in neurons and the 
pathological hallmarks of AD is not clear. Even though cell 
cycle proteins are often found to colocalize with NFTs, 
they are also found in neurons without the presence of neu-
rofibrillary pathology. The severity of AD pathology can 
be indicated by Braak staging, which follows the progres-
sion of neurofibrillary changes in AD brain [13]. Whereas 
in early Braak stages the temporal cortex is almost devoid 
of neurofibrillary changes, increased presence of G1 phase 
markers is observed in this area of the brain [37, 38]. It also 
seems that the correlation between the presence of amyloid 
plaques and the occurrence of cell cycle proteins is not con-
sistent (Table  1). Post-mortem studies have, however, not 
addressed the relationship between soluble, nonfibrillar 
Aβ and cell cycle activation. Since oligomeric Aβ has been 
linked to cell cycle protein expression and the induction of 
DSBs, this will be an interesting topic for further research.

According to Braak staging the emergence of neuronal 
cell cycle protein expression is prominent in stages that 
precede the occurrence of plaques and tangles. This sup-
ports our hypothesis that re-expression of cell cycle pro-
teins is an early event in AD, and could be associated with 
an adaptive response related to DNA repair or neuroplasti-
city. We next put forward that with disease progression, the 
building up of oxidative stress, genotoxic insults and dete-
rioration of DNA repair mechanisms lead to the accumula-
tion of DSB lesions, which have been found to be increased 
in AD patients [20, 88], eventually to an extent that is no 
longer repairable. This will increasingly drive neurons to 
progress to more advanced stages in the cell cycle, as will 
be reflected by increased expression of S phase markers, 
and eventually result in neurodegeneration (Fig. 2). A rise 
in cyclin E, involved in G1/S phase transition, has indeed 
been reported in the dentate gyrus, subiculum, CA2 and 
CA4 of the hippocampus of AD patients compared to pre-
AD patients [71]. Another study reported a similar trend 
for Ki-67 in the CA2, CA3 and CA4 of the hippocampus, 
whereas an inverse relationship with disease stage was seen 
in the subiculum, dentate gyrus and CA1 of the hippocam-
pus [91]. Finally, in transgenic mice carrying the Swedish 
(K670M/N671L) mutation of the human amyloid precursor 
protein, a dramatic increase in cyclin D1 and cyclin A was 
witnessed between 6 months and 12 months of age in fron-
tal cortical layers V/VI [97].

Lastly, we propose that with the development of AD 
pathology and loss of synaptic connections, the demand 

for neuroplasticity is gradually increased, as will also be 
reflected in cell cycle protein expression (Fig.  2). In line 
with this, cell cycle proteins were found to be upregulated 
in hippocampal areas of preclinical AD patients that did 
not match the expected pattern of neurodegeneration [72]. 
Additionally, cyclin E expression in the dentate gyrus was 
found to be significantly correlated with neuritic plaque 
load in the neocortex [71]. Neurodegeneration in one area 
eventually also results in activity deprivation-induced 
cell death in connected areas, which will be reflected in 
increased cyclin B-CDK1 complex expression [51, 52, 
107]. In keeping with this, cyclin B was found to be ele-
vated in the dentate gyrus of full-blown AD patients com-
pared to pre-AD patients [71]. Finally, as neuroplastic sig-
nals might be (increasingly) misinterpreted for mitogenic 
signalling in AD post-mitotic neurons, cell cycle activation 
and neurodegeneration are even further enhanced [3].

An important question is whether cell cycle proteins in 
neurons can carry out their functions independent of full 
cell cycle re-entry. Using fluorescent in situ hybridization 
(FISH) at least partial chromosomal replication has been 
shown to be increased in neurons in AD brain tissue  [69, 
102]. In addition, increased numbers of neurons with a 
more-than-diploid content of DNA are most notable in pro-
dromal and mild stages of AD [4]. Fully or partial replica-
tion of separate genetic loci on different chromosomes has 
been observed in hippocampal and basal forebrain neurons 
in AD cases while these abnormalities were absent in age-
matched controls [102]. However, aneuploidy also occurs 
in healthy human brain tissue [42, 69, 79]. These signs of 
aneuploidy could indicate that post-mitotic neurons can 
truly re-enter the cell cycle, although sometimes leading to 
incomplete DNA replication. However, aneuploidy in post-
mitotic neurons could also arise due to failed DNA replica-
tion in a neuronal progenitor cell. To differentiate between 
these two causes, the link between aneuploidy and cyclin 
B1 has been investigated, as the combination of the two 
would indicate an active cycle [69]. The majority of neu-
rons in AD with a tetraploid content of DNA express cyclin 
B1, whereas this seemed not to be the case for healthy con-
trols. The association between an elevated content of DNA 
and expression of cyclin B1 in AD indicates that some 
neurons have reactivated their cell cycle and progressed 
toward S phase and beyond [69]. This has been challenged 
by another observation that tetraploid nuclei are similarly 
prevalent in AD and control brains and are exclusively 
non-neuronal [100], thus suggesting that differentiated neu-
rons could not fully replicate their DNA during S phase. 
However, cell cycle markers of G2 and early M phase have 
been repetitively observed in post-mitotic neurons, suggest-
ing that these neurons have completed S phase. An expla-
nation for this paradox might be that neurons could reach 
G2/M phase without completely replicating their DNA 
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[108]. Forthcoming studies are therefore advised to further 
investigate the mechanism of cell cycle protein expression 
in relation to the physiological functions they fulfil in post-
mitotic neurons, by addressing the occurrence of aneuploid 
neurons in the brain using a combination of appropriate 
markers and specifically address the different stages of AD 
pathology.

Concluding remarks

Here we propose that cell cycle proteins may play a key 
role in DSB repair and neuroplasticity and that aber-
rant control of these physiological functions may eventu-
ally contribute to cell cycle-mediated neurodegeneration 
in AD (Fig.  2). The observed neuronal expression of cell 
cycle proteins in early pathological and preclinical stages 
of AD could represent an increased need for DSB repair. 
With disease progression, DSBs will gradually accumulate 
in post-mitotic neurons to a point where they can no longer 
be repaired. Consequently, these neurons will progress 
to more advanced stages in the cell cycle and eventually 
degenerate. The accumulating pathology and progressive 
neurodegeneration increase the need for neuroplasticity, as 
will also be reflected in the expression of cell cycle proteins 
in fairly intact neurons. In addition, aberrant activation of 
signalling pathways involved in neuroplasticity in AD neu-
rons might also contribute to cell cycle-mediated neurode-
generation. This broad involvement of cell cycle proteins 
could explain the incongruence between the large amount 
of neurons expressing cell cycle markers and the estimated 
rate of neurodegeneration in AD [102, 105], as not all cell 
cycle proteins should be interpreted as predictors of neu-
ronal cell loss. Since the balance between DNA repair, neu-
roplasticity and neurodegeneration may change depending 
on disease stage, it can be argued that each AD stage could 
be characterised by a specific pattern of cell cycle protein 
expression in post-mitotic neurons.

Considering a physiological role for cell cycle proteins 
in the early stages of AD, several aspects require attention 
in future studies. First, little is known about NHEJ activ-
ity and DSB prevalence in the different stages of AD. In 
addition, the spatial overlap between DSBs and cell cycle 
markers has unfortunately been poorly addressed in previ-
ous post-mortem studies. Future studies will therefore need 
to address the relationship between cell cycle markers and 
DSBs in post-mortem brain tissue, with specific attention 
to the NHEJ response and DSB prevalence in the differ-
ent stages of AD pathology. Second, cell cycle proteins 
characteristic of G2 phase and M phase have been reported 
in control cases [12, 15, 20, 65, 98], early AD cases [72, 
105] and neurons without apparent pathology [15, 20, 71]. 
Because their expression is unlikely attributable to DNA 

repair, prospective studies need to elucidate whether G2 and 
M phase markers can be ascribed to neuroplastic events or 
(age-related) neurodegeneration. Subcellular distribution of 
cell cycle proteins and colocalization with markers for neu-
rodegeneration and neuroplasticity might provide clues as 
to which mechanism is being employed. And third, future 
studies are advised to investigate whether different types of 
aneuploidy, such as triploidy and chromosome 21 trisomy, 
can be correlated with protein expression of specific cell 
cycle stages and markers of apoptosis, DSBs and neuro-
plasticity. This will ultimately tell us if full cell cycle acti-
vation is required to initiate or carry out neurodegenerative 
processes or neuroplastic events.

A potential approach to obtain more insight in the role 
of cell cycle control and related physiological mecha-
nisms during disease progression is proteomics on disease 
staged human brain samples. Previous proteomic studies on 
human brain tissue have shown the potential of detecting 
proteins associated with the cell cycle, oxidative stress and 
cell death [2, 64, 70]. Proteomics on human brain tissue 
samples could provide increased insight in the correlation 
of neurodegeneration and deregulation of the cell cycle in 
AD in different stages of the disease. A common problem 
in analysing these data with bioinformatics tools is that it 
is hard to estimate the relative contribution of the differ-
ent cell types present in the original sample. Especially 
in investigating neuronal cell cycle changes, one wants to 
rule out cell cycle changes occurring in glia or other cell 
types than neurons. Bioinformatics tools are available to 
estimate the relative role of cell population using databases 
of transcripts enriched in astrocytes, neurons, and oligo-
dendrocytes [16, 33]. Whether this could work for generic 
pathways like the cell cycle remains questionable. A more 
promising approach would be proteomic analysis of iso-
lated neurons using laser capture microscopy (LCM) or flu-
orescence activated cell sorting (FACS). Current technical 
advances in this field have overcome problems in obtain-
ing enough material using these approaches and the yield 
of identified proteins with proteomics. A clear advantage of 
this approach is that neurons labelled for specific cell cycle 
markers can be isolated and analysed.

In conclusion, increased cell cycle protein expression 
occurs in post-mitotic neurons during the progression of 
AD. Whereas the role of cell cycle proteins in neurons in 
disease mechanisms associated with apoptosis is widely 
recognised, their physiological functions are underappre-
ciated. Here we discussed two physiological functions for 
cell cycle proteins in post-mitotic neurons, i.e. DNA repair 
and neuroplasticity. Aberrant control of these processes 
may, in turn, trigger cell cycle-mediated neurodegenera-
tion. Understanding the physiological and pathophysiolog-
ical role of cell cycle proteins in AD could give us more 
insight in the neurodegenerative process in AD.
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