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Abstract: The transplantation of bone marrow-derived mesenchymal stem cells (BMMSCs) 
alleviates neuropathology and improves cognitive deficits in animal models with Alzheimer’s 
disease. However, the underlying mechanisms remain to be determined. Available data demon-
strate transplanted BMMSCs can inhibit neuroinflammation, which may be related to microglial 
M1/M2 polarization and is regulated by the secretion of autocrine and paracrine cytokines. 
BMMSCs also mitigate Aβ plaques and Tau tangles in the brain, which may be associated with 
the recruitment of peripheral blood monocytes and the subsequent comprehensive effects. The 
therapeutic effects of stem cells involve potential mechanisms such as immunomodulation, 
apoptosis, and proliferation. BMMSC-mediated functional reconstruction through dynamic 
remodeling develops a novel balance. Herein, present review recapitulates the molecular basis 
of BMMSC-assisted biological processes and summarizes the possible mechanisms related to the 
interaction between BMMSCs and microglia. The transplanted BMMSCs can suppress neuroin-
flammation that plays a key role in the pathogenesis of Alzheimer’s disease. 
Keywords: Alzheimer’s disease, bone marrow-derived mesenchymal stem cells, microglia, 
immunomodulation, apoptosis

Highlights
1. Alzheimer’s disease is characterized by the accumulation of aberrant amy-

loid-beta (Aβ) peptides and Tau aggregates in pathological tissues.
2. Neuroinflammation plays an important role in the pathogenesis of 

Alzheimer’s disease, which can be alleviated by the transplantation of bone 
marrow-derived mesenchymal stem cells (BMMSCs).

3. The functional activity of transplanted stem cells establishes a new balance 
through dynamic reconstruction, which lays a theoretical foundation for stem 
cell therapy.

Alzheimer’s Disease
Alzheimer’s disease (AD) is a neurodegenerative disorder.1–3 Clinical manifestations 
are characterized by memory decline and cognitive deficits, but symptoms may be 
varied due to the location and severity of neuropathology. Pathological features are 
reflected by the extracellular deposition of amyloid-beta (Aβ) peptides, neurofibrillary 
tangles, microglia-driven inflammation, and neuron loss in various areas, such as 
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hippocampus and temporal lobe. Neuronal death is caused by 
different mechanisms, mainly due to apoptosis/necroptosis/ 
necrosis induced by aberrant Aβ plaques, neurofibrillary Tau 
tangles, and inflammatory cytokines. Meanwhile, neuronal 
apoptosis plays an important role in the development of AD, 
especially in the early stage. The apoptosis cascade may be 
initiated through intrinsic and extrinsic pathways (Figure 1). 
The disturbance of intracellular homeostasis triggers intrinsic 
pathway, leading to apoptotic cell death. The intrinsic path-
way can be further divided into mitochondrial failure because 
of abnormal energy metabolism and/or oxidative stress, and 
endoplasmic reticulum (ER) stress due to hyperphosphory-
lated aggregates of the microtubule-associated protein Tau in 
neurofibrillary tangles.4–6 The extrinsic pathway is activated 
by the aberrant Aβ proteins of brain plaques. Inflammatory 
cytokines, such as IL-6, IL-1β, and TNF-α from microglia 
can cause neuronal apoptosis through the mediation of mem-
brane receptors.7–9 Accumulated Aβ plaques and Tau tangles 
are hallmarks in the pathogenesis of AD, which are corre-
lated with neuronal degeneration and cognitive impairment 
in patients with AD. In terms of treatment, there is no cure for 
Alzheimer’s disease. Owing to uncertain pathomechanism, 
most treatments are symptom-related or exploratory. 

Presently, its drug intervention involves the adjustment of 
neurotransmitter release.10,11 There are two types of medi-
cines, including (i) cholinesterase inhibitors (i.e., donepezil 
and galantamine). They may improve neuropsychiatric agi-
tation or depression; (ii) memantine, an uncompetitive 
NMDA antagonist. It can ameliorate memory and awareness 
in moderate or severe patients with AD. Non- 
pharmacological therapies are also supplemented for the 
improvement of patients’ life quality, including health diet, 
regular exercise, and special care. Nowadays, the exact etiol-
ogy of AD remains unknown. Extracellular Aβ deposits and 
intracellular hyperphosphorylated Tau tangles are typical 
changes in the pathogenesis of AD.3,12 These pathophysio-
logical characteristics are highlighted by neuroinflammation. 
Inflammation is an essential mechanism to induce hippocam-
pal neuron apoptosis and synaptic deficits, leading to cogni-
tive impairment and memory decline.13,14

Alzheimer’s Disease and Stem Cell 
Therapy
Stem cell therapy as a novel strategy has been explored in 
the treatment of animal models with Alzheimer’s disease 
(Figure 2). According to the tissue sources of stem cells, 
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therapeutic stem cells are approximately classified into auto-
logous and allogenic categories.15–17 Autologous stem cells 
are isolated from brain, fat, dental pulp, and bone marrow. In 
contrast, allogenic stem cells are obtained from placenta, 
umbilical cord, or embryonic tissue. Some studies have used 
iPS-derived stem cells.18,19 iPS-derived stem cells are not 
discussed as an independent tissue source. Comparative 
studies have been conducted among different tissue sources 
of stem cells. There are two problems with allogenic stem 
cells. One is ethical issue and the other is allogeneic immu-
nogenicity. Since these problems cannot be resolved in the 
short term, allogeneic stem cells may be not suitable for the 
treatment of AD in the near future. In the clinical treatment 
of patients with AD, the autologous stem cells derived from 
brain biopsy may front onto unacceptable attitude and 

technical challenges. Therefore, the stem cells from auto-
logous bone marrow or fat are preferred. Interestingly, the 
therapeutic stem cells derived from bone marrow have better 
results than those isolated from the adipose tissue.20,21 

BMMSCs have certain advantages as evidenced in pre- 
clinical studies, but they are still complicated by various 
problems, such as heterogeneity, low viability, and poor 
homing into injured tissue.22,23 Also, therapeutic efficiency 
is affected by preconditioning, cell viability, and delivery 
methods.24,25 There are different methods for the transplan-
tation of stem cells. Usually, autologous MSCs are delivered 
intravenously, intrahippocampally, intracerebroventricu-
larly, or intranasally.26,27 The therapeutic effect of trans-
planted BMMSCs has been verified in several AD-like 
models, such as APP mice, DAL mice, or scopolamine- 

Figure 1 Apoptosis mechanism in Alzheimer’s disease. Extracellular Aβ proteins and inflammatory cytokines (eg, TNF-α, IL-1β) can cause neuronal apoptosis through 
membrane receptors. The interruption of intracellular homeostasis induces apoptosis via intrinsic pathway as evidenced by oxidative stress and the hyperphosphorylated 
aggregates of microtubule-associated protein Tau in neurofibrillary tangles. The release of cytochrome c leads to apoptosome formation, which results in caspase activation 
and subsequent apoptosis. Pro-survival Bcl-2 proteins block the mitochondrial pathway of apoptosis. Endoplasmic reticulum (ER) stress induces apoptosis by initiating 
calcium-signaling and caspase activation. Inhibitors of apoptosis proteins (IAPs) regulate apoptosis by binding and inhibiting caspases. Mitochondrial Smac/Diablo and Omi/ 
HtrA2 can bind to IAPs to facilitate caspase activation and apoptosis. 
Abbreviation: c-FLIP, cellular FLICE-like inhibitory protein.
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induced rats.26 A lot of evidence shows that BMMSCs can 
alleviate neuropathology, memory decline, and behavioral 
deficits. Research data indicate the reduced level of Aβ 
plaques is beneficial to both young and aged TASTPM 
mice.22 Cognitive impairment (i.e., learning ability and spa-
tial memory performance) are improved as demonstrated by 
Morris water maze test, Y-maze alternation test, plus-maze 
discriminative avoidance task, social recognition test and 
open-field evaluation, respectively.26,28–30 Moreover, 
a single transplantation of bone marrow-derived mononuc-
lear cells could obtain a positive result.22,31,32 Today, the 
technical improvement in the preparation of autologous 
BMMSCs provides an assurance for their clinical 
application.

Autocrine and Paracrine Cytokines
Transplanted stem cells have two essential properties, 
including (i) self-renewal; (ii) trans-differentiation into 
tissue-specific cell lineages. Following the transplantation 
of BMMSCs, autocrine and paracrine cytokines are 
secreted, which are conducive to the adaption of new 
microenvironment (Figure 3). Nevertheless, cytokine 
induction and signal transduction are varied due to the 

tissue sources (eg, placenta, cord blood, and bone marrow) 
of mesenchymal stem cells.33–35 Those autocrine and para-
crine cytokines have special functions as demonstrated in 
previous studies. In cardiology, the autocrine and paracrine 
cytokines from transplanted hBMSCs could upregulate the 
expression of angiogenic factors, such as VEGF-A, HGF, 
bFGF, Ang1, Ang2, and PDGF-B, which promoted cardi-
omyogenesis for the repair of myocardial damage.35–39 In 
hepatology, the transplantation of autologous BMSCs 
improved liver function in patients with acute liver failure. 
MSCs secreted a mixture of growth factors (eg, PCNA, 
SDF-1, HGF, VEGF), immunoregulatory factor (eg, IL- 
10), chemokines, and other constituents.40–43 The thera-
peutic effects of autologous BMSCs could be maintained 
more than six months. Further long-term effects are still 
under observation.44 Currently, there are no data on stem 
cell therapy for patients with Alzheimer’s disease, 
although clinical trials using hMSCs has been carried out 
for the therapeutic purposes.45 The favorable effects of 
BMMSCs observed in other organs (eg, heart, liver) 
should be carefully translated to central nervous system, 
because the secretion of autocrine and paracrine cytokines 
can be influenced by local environment. Up to now, most 

Figure 2 Potential mechanisms of stem cell therapy. The pathological basis of Alzheimer’s disease is neuronal death and the impairment of synaptic transmission, which are 
concomitant with aberrant Aβ deposits. The transplantation of stem cells derived from bone marrow, adipose tissue, amnion, umbilical cord, or embryonic tissue inhibits 
neuroinflammation, removes Aβ proteins, and attenuates Tau pathology in the lesion of AD. The comprehensive effect of different mechanisms alleviates neuropathology and 
improves cognitive deficits in animal models with Alzheimer’s disease.
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studies on the transplantation of BMMSCs belong to pre-
liminary stage. The comprehensive effects of autocrine 
and paracrine cytokines are under investigation.

The types of autocrine and paracrine factors are classi-
fied as follows: (i) pro-inflammatory cytokines such as IL- 
1β, IL-6, IL-8 and TNF-α;46,47 (ii) fibrosis-related cyto-
kines FGF, bFGF, TIMP-1, and TIMP-2;34,48 (iii) chemo-
kines CXCL-12, CXCL-10, CCL5 and so forth;36,48,49 (iv) 
leucocyte chemoattractant factors CINC-1, G-CSF, SCF, 
GM-CSF or IL-3;50 (v) transcription factors, such as 
GATA-4, Nkx2.5, and MEF2C;51 (vi) growth factors 
HGF and IGF-1;23,36 (vii) anti-inflammatory cytokines 
such as IL-4, IL-10 and IL-11;46,52,53 (viii) other active 
factors, including Ang-1, Ang-2, PDGF-B, MCP-1, 
VEGF-A, and OPG.36,54 Gene analysis has proved that 
certain cytokines such as MIF (GIF, DER6), IL-8 
(CXCL8), Serpin E1 (PAI-1), GROα (CXCL1) and IL-6, 
can be secreted by the most types of stem cells.33 MCP-1, 
however, is produced in the MSCs from bone marrow and 
amnion.33,55 CXCL-12 (SDF-1) is only expressed in 
BMMSCs.33,56 There are significant differences in the 
expression levels of autocrine and paracrine factors, 
which have been tested in APP/PS1 transgenic mice or 

rat model following the transplantation of 
BMMSCs.23,47,49,57 Now, certain cytokine profiles 
mediated by transplanted BMMSCs have been clarified, 
but the overall spectrum and their respective patterns still 
need to be investigated. For instance, the proteomics of 
BMMSC-mediated cytokines was characterized by the 
predominant hybridization signal for IL-6 and the moder-
ate elevation signals for IL-8, TIMP-2, MCP-1, VEGF and 
OPG.54

The types and levels of autocrine and paracrine cyto-
kines are regulated by various factors, including (i) age. 
The constitutive secretion of IL-6 in human bone marrow 
is positively correlated with age.46 The basal secretion of 
immunoreactive IL-6 and IL-11 is increased when the cell 
culture time is extended. Moreover, the secretion of IL-6 
and IL-11 can be stimulated by IL-1β in a dose-dependent 
manner;46,58 (ii) gender. The cytokines secreted by human 
bone marrow are modulated by estrogen status. Women 
receiving estrogen replacement therapy show a low secre-
tion of IL-6 and IL-11 as compared with those of age- 
matched controls;46,59 (iii) injection site and delivery 
method. When MSCs are injected into APP/PS1 mice via 
the tail vein, there are no significant changes in the 

Figure 3 Stem cell therapy induces the inhibition of neuroinflammation and recruitment of peripheral blood monocytes. The transplantation of stem cells leads to the 
secretion of the autocrine and paracrine factors, which recruits peripheral blood monocytes into the lesion of Alzheimer’s disease. The activated monocytes can accelerate 
the elimination of aberrant Aβ proteins. Recruited monocytes may facilitate microglial M1/M2 polarization. Neuroinflammation can be inhibited by transplanted stem cells. 
Immunoregulation participates in functional reconstruction through dynamic remodeling.
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expression of IL-10, CCR5, and IFN-γ;21 (iv) the interac-
tion between stem cells and immune cells. The trans-
planted stem cells can facilitate the shift of microglial 
M1 to M2 phenotype and thereby decrease the secretion 
of pro-inflammatory cytokines.21,48,60 The polarization of 
M1/M2 phenotype can even be elicited by the intranasal 
delivery of BMMSC-derived exosomes, rather than whole- 
cell transplantation, which also exerts immunomodulatory 
and neuroprotective effects in the 3xTg model;61 (vi) the 
modification of stem cells. The preconditioning MSCs 
with dimethyloxalylglycine enhance the therapeutic effi-
ciency of Aβ-induced animal models.62 Other precondi-
tioning methods, such as hypoxia, LPS, inflammatory 
cytokines, vitamin E, electromagnetic stimulation and low- 
level lasers, can also improve the viability and immuno-
modulatory activity of MSCs.25,63 Chemokine receptor 
CXCR4 is involved in the homing processes to injured 
tissues.64 The expression of CXCR4, CCR2, Nrf2 and 
HIF-1α is upregulated in the MSCs, which mediates the 
rescue of learning and memory function in Aβ-injected 
rats.62 When anti-apoptotic microRNA Let-7f-5p is used 
in APP/PS1 transgenic mice, the prolonged survival of 
BMMSCs can increase the therapeutic effect of 
BMMSCs.65 Paracrine effects are reflected by the secre-
tion of soluble cytokines, such as TGF-β, IL-10, VEGF, 
BDNF, NGF, and neurotrophin-3 in human MSCs.66 In 
addition, paracrine cytokines are modulated by local 
blood supply, metabolic activity, and nutrition.

Transplanted BMMSCs Inhibit 
Neuroinflammation
Transplanted stem cells not only provide cell sources for 
regeneration but also regulate inflammatory and immune 
responses.67,68 Immunomodulation is an important func-
tion of stem cells that play an inhibitive role as neuroin-
flammation in an active state. Stem cell treatment 
suppresses neuroinflammation through different mechan-
isms, including (i) direct roles. Transfused stem cells 
secrete anti-inflammatory cytokines such as IL-4, IL-10, 
and IL-11.46,52,53 Furthermore, anti-inflammatory IL-11 
can activate downstream signaling pathways to regulate 
neurogenesis;69 (ii) indirect roles. Growth factors such as 
HGF and IGF-1 are upregulated by stem cells.23,36 

Neurotrophic factors such as BDNF and NGF are also 
enhanced.70,71 All these mediators have indirect effects 
on the inhibition of neuroinflammation; (iii) microglial 
M1/M2 polarization. In the classic M1 state, the 

expression of CD86 and the release of pro-inflammatory 
cytokines are increased, including TNF-α, iNOS, IL-1β, 
IL-6, IL-12, and IL-23.72,73 In contrast, the M2 phenotype 
can be determined by candidate markers, such as CD206 
and Arg1, which has neuroprotective effects by enhancing 
anti-inflammatory cytokines and growth factors, such as 
IL-4, IL-10, IGF-1, and TGF-β. The heterogeneity of 
microglia is discovered through high-throughput single- 
cell transcriptomics, showing at least nine transcriptional 
states that are affected by age and pathological 
conditions.24 The transcriptomic responses of microglia 
may be used to identify signaling pathways, particularly 
focusing on pro- and anti-inflammatory signatures.74,75 

The transplantation of stem cells modifies the resident 
microglia to trigger M1/M2 polarization.76,77 This process 
prevents M1 microglia from secreting pro-inflammatory 
cytokines, but stimulates M2 microglia to produce anti- 
inflammatory cytokines.78 A series of comprehensive 
effects result in the mitigation of neuroinflammation.

In the lesion of AD, microglia are activated by (a) the 
direct effect of Aβ peptides; (b) Aβ protein-caused apop-
totic bodies; and (c) paracrine cytokines. Transplanted 
BMMSCs can mediate microglial M1/M2 polarization 
through autocrine and paracrine factors, which represses 
microglial M1 activity and decrease the release of pro- 
inflammatory cytokines. Microglia reside in the parench-
yma of central nervous system in activated or quiescent 
state. The activated microglia are distributed in the area of 
Aβ deposits.79–81 After phagocytosis, the morphology of 
microglia is changed from ramified to amoeboid, which is 
considered to be in an activated state.82 The degree of 
microglial activation can be measured using frequent mar-
kers such as CD68 and IBA-1. For example, hMSC treat-
ment could significantly down-regulate IBA-1 levels in the 
young and aged brains of APP/PS1 transgenic mice.32 

There was a dramatic decline in the panel of cerebral 
cytokines, such as IFNγ, diverse interleukins (IL-1β, IL- 
2, IL-5, IL-6, and IL-12p70), KC/GRO, and TNF-α.32 

Even, a single injection of hMSC might reduce levels of 
IL-1, IL-2, IL-12p70, TNF-α and IFNγ in APP/PS1 
mice.32,47 The anti-inflammatory role of BMMSCs was 
also confirmed in the rat model of spinal cord injury.83 

BMMSCs could secret anti-inflammatory factors, such as 
IL-4, IL-10, and IL-11. When the IL-4 and IL-10 were 
utilized to treat microglia, they had different effects on 
proliferation and differentiation, suggesting that the type 
of microglial activators could change cell fate and affected 
neuronal damage and repair.84,85 Moreover, the 
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transplanted BMMSCs could elevate the expression of 
Nrf2 and seladin-1 in Aβ-injected AD rats as well as 
aluminium chloride-induced AD rats.62,86 The function of 
Nrf2 was to regulate the levels of antioxidant proteins and 
protect neurons from oxidative damage.5 Seladin-1 inhib-
ited the activation of caspase-3 and mediated neuronal 
apoptosis, improving neuroprotective effects.87 Moreover, 
MSCs could release mediators to mediate the gene expres-
sion in astrocyte cultures, including intermediate filaments 
(GFAP, vimentin), pro-inflammatory enzymes (iNOS, 
COX-2), and receptors (TLR4, CD14, mGluR3, 
mGluR5).88 Astrocytes participate in the secretion of 
inflammatory factors. Previous studies demonstrated 
BMMSCs could decrease the levels of pro-inflammatory 
genes (IL-1β, TNF-α, IL-6) in astrocytes.37,88 In the lesion, 
neurons produce Aβ peptides and take part in the initiation 
of inflammatory reaction. Microglia secrete pro- 
inflammatory as well as anti-inflammatory cytokines, 
showing an obvious duality. All three types (neurons, 
astrocytes, and microglia) are implicated in the inflamma-
tory process. There are complicated mechanisms involved 
in intercellular interactions. Many details need to be clar-
ified by future study. Clearly, the transplanted stem cells 
inhibit neuroinflammation and regulate the dynamic remo-
deling of tissue function, which stimulates neurogenesis 
and synaptogenesis. The therapeutic effects of BMMSCs 
are highlighted by the alleviation of neuropathology and 
the improvement of cognitive deficits in different AD-like 
models.

Transplanted BMMSCs Recruit 
Peripheral Blood Monocytes
Certain cytokines secreted by transplanted BMMSCs have 
positive chemotactic effect and can recruit peripheral leu-
kocytes into the lesion, including CCL5, G-CSF, SCF, and 
GM-CSF. CCL5 derived from BMMSCs can be activated 
by Aβ protein to promote microglial migration.49 GM-CSF 
or CSF2 functions as a cytokine to recruit granulocytes 
and macrophages. SCF is a costimulatory factor, which 
combines other cytokines to produce a synergistic effect 
on the proliferation, differentiation, and survival of stem 
cells. In particular, its synergy with G-CSF has biological 
and clinical significance.89 G-CSF is an endogenous neu-
rohematopoietic factor, which has a strong neuroprotection 
in vivo and in vitro. The therapeutic effect of G-CSF 
significantly improved the motor coordination and the 
exploratory behavior of Aβ-induced rats.90 The 

improvement of memory in Aβ-induced rats and Tg2576 
mice was associated with the significant reduction of lipid 
peroxidation, the inhibition of acetylcholinesterase, and 
the main increase of antioxidant enzymes.90,91 The long- 
term effect of G-CSF could improve the cognitive function 
of Aβ-induced mice and APP/PS1 transgenic mice, which 
might be through potential mechanisms, such as peripheral 
blood monocyte recruitment, microglial activation and 
polarization, neurogenesis, and synaptogenesis.77,91–93 

The analysis of cytokine expression revealed there was 
a high secretion of chemoattractive factor CCL5 after 
BMMSCs were transplanted into the brains of APP/PS1 
mice.49 The levels of leukocyte-chemoattractant factors 
are affected by stem cell concentration, inoculation posi-
tion, delivery method, and survival rate. The differential 
expression profiles of autocrine and paracrine factors 
remain to be determined when MSCs are transplanted by 
different methods, such as intrahippocampal, intracerebro-
ventricular, or intravenous. The expression of leukocyte- 
chemoattractant factors may be regulated by growth factor, 
cell cycle, and nutrition state.

Aberrant Aβ Plaques and 
Neurofibrillary Tau Tangles
The neurotoxicity of over-produced Aβ peptides is 
a critical mechanism in the pathogenesis of AD. The 
extracellular removal of Aβ deposits is conducted by 
microglia, astrocytes, and neurons. So far, no evidence 
demonstrates that transplanted stem cells can directly 
eliminate aberrant Aβ peptides. However, a multitude of 
high-profile studies support that the transplanted BMMSCs 
alter microenvironmental homeostasis by facilitating inter-
cellular communication and participating in molecular 
transfer among neurons, astrocytes, and microglia, which 
promote the removal of aberrant Aβ peptides.47,94,95 

Moreover, the transplanted BMMSCs can recruit periph-
eral blood monocytes into the lesion through leucocyte 
chemoattractant factors, such as GM-CSF and SCF. In 
neurodegenerative tissue, the functional conversion of 
monocyte/microglia could accelerate the clearance of Aβ 
deposits via effective phagocytosis in the Aβ-injected 
C57BL/6 mice.82 In addition, recruited monocytes might 
facilitate microglial M1/M2 polarization.96,97 Microglia 
account for 10–15% of the total brain cells. They act as 
the main cell type in inflammatory response to phagocy-
tose damaged cells and pathogens.20,84 Adult microglia are 
a combined population of residents and migrants into the 
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brain by myeloid progenitors. Under normal circum-
stances, there are a few microglia in the ramified or quies-
cent state. The quiescent microglia move at a speed of 1.5 
µm/min, covering 15–30µm wide territory. Focal brain 
damage induces a rapid and concerted movement.84 As 
part of the cellular response, microglia secrete cytokines, 
chemokines, prostaglandins, NO and reactive oxygen spe-
cies, which take part in immunoregulation. Additionally, 
the M2 phenotype of microglia is instrumental in the 
resolution of the inflammatory response by producing anti- 
inflammatory cytokines such as IL-4 and IL-10.85,93 The 
shift of M2 phenotype reduces cerebral amyloid-β 
load.76,98

The transplantation of BMMSCs could improve cog-
nitive deficits by alleviating neuropathology in animal 
models of Alzheimer’s disease.26 Potential mechanisms 
involve (i) the accelerated removal of Aβ protein. 
Transplanted BMMSCs secret chemoattractant factors, 
such as G-CSF, SCF, and GM-CSF. GM-CSF takes part 
in the shift of microglial M1/M2 phenotype to facilitate 
the removal of Aβ protein;76,99 (ii) the alleviation of Tau 
pathology. Stem cell therapy decreases intercellular Tau 
hyperphosphorylated aggregates or Tau tangles, which 
may be related to the secretion of exosomes and the 
degradation of p-Tau;57,101,102 (iii) the mitigation of apop-
tosis due to the clearance of aberrant proteins and the 
attenuation of oxidative stress; and (iv) the inhibition of 
neuroinflammation. Transplanted BMMSCs suppress pro- 
inflammatory IL-1, IL-2, TNF-α and IFN-γ, and enhance 
anti-inflammatory IL-4 and IL-10.47,52,53 Microglial M1/ 
M2 polarization can be mediated by the recruitment of 
peripheral blood monocytes, which is an essential 
mechanism for the functional reconstruction of damaged 
tissues; (v) synaptogenesis. Transplanted BMMSCs stimu-
late the production of neurotrophins such as BDNF and 
NGF.62,103 Their functional activities promote synaptic 
formation and endogenous neural growth. Furthermore, 
BMMSCs can shape the crosstalk between T cells and 
microglia to mediate synaptic plasticity in the 
brain.25,104,105

The Establishment of Novel Balance 
Mechanism
The transplantation of stem cells alters the pathological state 
in the brain. A series of characteristic changes are induced, 
which are regulated by autocrine and paracrine cytokines. 
The BMMSC-mediated functional reconstruction through 

dynamic remodeling tends to establish a new balance 
(Figure 4). The new balance mechanism is based on multi-
ple signaling pathways.

(a) Cytokine signaling. After stem cell therapy, non- 
specialized BMMSCs have the potential for self- 
renewal and differentiation, accompanied by the 
secretion of autocrine and paracrine cytokines. For 
instance, G-CSF recruits peripheral blood mono-
cytes and exerts neuroprotective effect.89,91,100 

The low expression of seladin-1 and nestin in alu-
minium-induced AD rats is reversed by trans-
planted BMMSCs via PI3K/Akt and ERK1/2 
signaling pathways.86 An increased level of 
BDNF and total antioxidant capacity are revealed 
in the hippocampus of Aβ-injected rats following 
the transplantation of MSCs.62 Of note, the patho-
physiological role of autocrine and paracrine fac-
tors is a double-edged sword. Some cytokines may 
be harmful to neurons at certain stages. The ther-
apeutic effects of stem cells are associated with 
functional construction through new balance 
mechanism, which involve multi-level signaling 
crosstalk, including inflammation, peripheral 
blood monocyte recruitment, and microglial M1/ 
M2 polarization.

(b) Removal of Aβ peptides and plaques. The trans-
plantation of BMMSCs inhibits neuroinflammation. 
However, the transplanted BMMSCs can also 
recruit peripheral blood monocytes into the lesion 
and further activate them. Activated monocytes 
exert neuroprotective effect by eliminating Aβ 
proteins.49 It seems to be a contradictory, but this 
does happen. Functional cytokines such as CCL5, 
G-CSF and GM-CSF play a crucial role in the 
recruitment of peripheral blood monocytes. These 
monocytes are then activated by extracellular Aβ 
proteins, which accelerate Aβ clearance as demon-
strated in APP/PS1 mice.81,106 The enhanced pha-
gocytosis of aberrant proteins attenuates cortical 
and hippocampal Aβ deposits, thereby improving 
memory and cognitive deficits. Similar result has 
also been observed in the Aβ-injected AD mice.82

(c) The alleviation of Tau tangles. As compared with 
the age-matched control brains, AD patients have 
numerous Aβ plaques and Tau tangles observed in 
different regions, such as hippocampus, temporal 
and parietal lobes.107,108 Neurofibrillary tangles are 
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the hyperphosphorylated aggregates of microtu-
bule-associated protein Tau, which are accumulated 
in neurons of AD. Tau protein can activate caspase- 
3 activity and cause neuronal apoptosis.12,109 Early 
studies demonstrated that Tau protein could be 
abated subsequent to the transplantation of 
BMMSCs.57,101 However, the underlying mechan-
ism for reducing Tau aggregates still needs to be 
investigated. It may be associated with oxidative 
stress and mitochondrial pathway.3,109

(d) Apoptosis. Transplanted BMMSCs modulate the 
apoptosis via direct and indirect pathways. Direct 
pathway includes immediate effects on apoptotic 
cascade, such as the inhibition of caspase-3 and 
the enhancement of survivin expression.110,111 

Indirect pathway may involve other mediators 
such as nuclear factor p53 and neuroprotective 

cytokines BDNF, NGF, IGF-1, and VEGF.112,113 

BMMSCs can decrease Aβ-induced apoptotic cell 
death in the primary culture of hippocampal 
neurons.114 The transplantation of stem cells sup-
presses apoptosis and contributes to the functional 
remodeling of synaptic plasticity.15,22,26,110,115–117 

Apoptosis mechanism also regulates the survival 
of transplanted BMMSCs in the brain, which 
affects the therapeutic efficiency of stem cells.65

(e) Oxidative stress. The accumulation of Aβ peptides 
induces the production of free radicals, oxidative 
stress, and lipid peroxidation. The transplanted 
BMMSCs can mitigate Aβ deposits and ameliorate 
Aβ-induced oxidative stress in Aβ-injected mice, 
which improve spatial memory impairment in the 
hippocampus.26,115 Oxidative stress and free radi-
cals in neurons stimulate the release of cytochrome 

Figure 4 The establishment of new balance mechanism. Under physiological conditions, there is a dynamic equilibrium between the production and elimination of Aβ 
peptides. If the intrinsic homeostasis is altered, the excessive accumulation of extracellular Aβ proteins results in pathological changes, as shown in the pathogenesis of 
Alzheimer’s disease. Autocrine and paracrine cytokines are secreted subsequent to the transplantation of BMMSCs, which regulate inflammatory/immune processes. The 
transplantation of stem cells is key regulator for the establishment of new balance mechanism.
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c and the activation of caspase-9, which induces 
intrinsic apoptosis in the pathogenesis of 
Alzheimer’s disease. The transfused MSCs allevi-
ate ROS-induced damage and initiate neuroprotec-
tive mechanisms via the combined action of 
neurotrophic factors NGF and BDNF.112

The functional activities of transplanted stem cells involve 
distinct mechanisms such as inflammation, immunoregula-
tion, autophagy, apoptosis, angiogenesis, and synaptogen-
esis. Their comprehensive role changes the pathological 
state in the hippocampus and establishes a new dynamic 
balance by integrating various signal pathways. The novel 
balance in the hippocampal microenvironment is a key 
mechanism by which transplanted BMMSCs alleviate neu-
ropathology and improve cognitive impairment in animal 
models with Alzheimer’s disease.22,26,62,86

Challenge and Perspective
(a) Uncertainty. Following the transplantation of 

BMMSCs, a novel balance is established based on 
dynamic remodeling, but it is unsure how long the 
functional state of new balance can be maintained.

(b) Stem cell parameters. In order to achieve therapeu-
tic effects, it may be necessary to transplant 
BMMSCs repeatedly. At this moment, relevant 
parameters on the transplantation of BMMSCs 
need to be determined, including stem cell concen-
tration, time interval, inoculation position, and 
delivery method. At present, the most important 
task is to standardize the protocol for BMMSC 
administration.

(c) Biomarkers for surveillance. Currently, monitoring 
markers (i.e., Aβ42, T-Tau and P-Tau, or exosomes 
in cerebrospinal fluid and/or peripheral blood-
stream) need to be optimized for the evaluation of 
therapeutic effects.

(d) The integration of various mechanisms. 
Transplanted BMMSCs have diverse functions 
such as immunoregulation, anti-apoptosis, neuro-
genesis, the activation of autophagy, and angiogen-
esis. Meantime, immunoregulation can interact 
with different mechanisms, which is a key regulator 
in the pathogenesis of AD. However, some details 
need to be elucidated, including inflammation and 
synaptic remodeling, the interaction between astro-
cytes and microglia, and inflammation and 
autophagy.

(e) Exosomes. During stem cell therapy, stem cells can 
produce extracellular vesicles or exosomes to com-
municate with recipient cells. In transgenic APP/ 
PS1 mice, exosome-mediated immunomodulation 
and neuroprotection are similar to transplanted 
stem cells.94,118 However, there are still many influ-
encing variables. The therapeutic advantages of 
stem cells and exosomes will be determined 
through parallel comparative studies in the future.

Summary
The transplantation of BMMSCs can improve memory and 
cognitive deficits by alleviating neuropathology in animal 
models with Alzheimer’s disease. The underlying mechan-
isms involve (i) the inhibition of neuroinflammation; (ii) 
the migration of Aβ and Tau pathology through immunor-
egulation; (iii) the attenuation of neuronal apoptosis by 
reducing oxidative stress and ROS generation; (iv) other 
effects, such as neurogenesis, synaptic plasticity, autop-
hagy, and angiogenesis. The therapeutic effect of stem 
cells comes from the integral regulation of different 
mechanisms. The transplantation of BMMSCs acts as 
a new balance driver and leads to beneficial improvements 
in AD-like animals. Stem cell therapy may be prospective 
for the patients with Alzheimer’s disease.

Abbreviation
AD, Alzheimer’s disease; BMMSCs, bone marrow- 
derived mesenchymal stem cells; Aβ protein, amyloid- 
beta protein; hBMSCs, human bone marrow stem cells; 
hMSC, human mesenchymal stem cells; PPARγ, peroxi-
some proliferator-activated receptor γ; RXRs, retinoid 
X receptors; FGF, fibroblast growth factor; TIMP-1, tissue 
inhibitor of metalloproteinases-1; TIMP-2, tissue inhibitor 
of metalloproteinases-2; CINC-1, cytokine-induced neu-
trophil chemoattractant-1; IL-1β, interleukin-1β; IL-6, 
interleukin-6; IL-10, interleukin-10; TNF-α, tumor necro-
sis factor-α; G-CSF, granulocyte-colony stimulating fac-
tor; GM-CSF granulocyte-macrophage colony-stimulating 
factor; SCF, stem cell factor; IFN-γ, interferon-γ; Seladin- 
1, selective Alzheimer’s disease indicator-1; Nrf2, nuclear 
factor erythroid 2–related factor 2; VEGF-A, vascular 
endothelial growth factor A; NGF, nerve growth factor; 
BDNF, brain-derived neurotrophic factor; CREB, cAMP 
response element binding; APP, amyloid precursor pro-
tein; GSK-3β, glycogen synthase kinase-3β; SCD-1, stro-
mal cell–derived factor-1α; CXCL-12, C-X-C motif 
chemokine 12; CXCL-10, C-X-C-motif ligand 10; 
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CCL5, chemokine (C-C motif) ligand 5; Ang-1, angio-
poietin-1; Ang-2, angiopoietin-2; AIF, apoptosis-inducing 
factor; PCNA, proliferating cell nuclear antigen; SDF-1, 
stromal cell-derived factor 1; HGF, hepatocyte growth 
factor.
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