
Computational and Structural Biotechnology Journal 20 (2022) 4060–4071
journal homepage: www.elsevier .com/locate /csbj
Heterozygosity and homozygosity regions affect reproductive success
and the loss of reproduction: A case study with litter traits in pigs
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Runs of heterozygosity (ROHet) and homozygosity (ROH) harbor useful information related to traits of
interest. There is a lack of investigating the effect of ROHet and ROH on reproductive success and the loss
of reproduction in mammals. Here, we detected and characterized the ROHet and ROH patterns in the
genomes of Chinese indigenous pigs (i.e., Jinhua, Chun’an, Longyou Black, and Shengxian Spotted pigs),
revealing the similar genetic characteristics of indigenous pigs. Later, we highlighted the underlying litter
traits-related ROHet and ROH using association analysis with linear model in these four indigenous pig
breeds. To pinpoint the promising candidate genes associated with litter traits, we further in-depth
explore the selection patterns of other five pig breeds (i.e., Erhualian, Meishan, Minzhu, Rongchang,
and Diqing pigs) with different levels of reproduction performance at the underlying litter traits-
related ROHet and ROH using FST and genetic diversity ratio. Then, we identified a set of known and novel
candidate genes associated with reproductive performance in pigs. For the novel candidate genes (i.e.,
CCDC91, SASH1, SAMD5,MACF1,MFSD2A, EPC2, andMBD5), we obtained public available datasets and per-
formed multi-omics analyses integrating transcriptome-wide association studies and comparative
single-cell RNA-seq analyses to uncover the roles of them in mammalian reproductive performance.
The genes have not been widely reported to be fertility-related genes and can be complementally consid-
ered as prior biological information to modify genomic selections models that benefits pig genetic
improvement of litter traits. Besides, our findings provide new insights into the function of ROHet and
ROH in mammals.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Litter traits are one of the most important traits for breeding in
pig production [1,2]. Improving total number born (TNB) and num-
ber born alive (NBA) traits are of great interest as enhancing the
economic profit, and become the main breeding goals in the mod-
ern pig industry [1,3]. Meanwhile, sow reproductive performances
are limited by embryonic mortality and fetal losses during the
pregnancy period [4]. Recently, the genetic mechanisms of the loss
of reproduction have gradually received attention, and a few stud-
ies have explored underlying genetic architecture of the number of
piglets born dead traits in pigs [3,5,6]. Moreover, the extreme litter
sizes reduce welfare and survival of the piglets at weaning, and
decreasing the variation in litter size will lead to more sustainable
breeding in terms of increasing piglet survival [7]. Generally, litter
traits have low heritability [8,9], therefore, genetic analyses should
be systematically conducted for the traits to generate the in-depth
biological knowledge that can significantly improve the selection
efficiency of genomic selection and benefit genetic improvements
of low heritability traits [10,11]. In addition, swine can be used
as an alternative animal model, which likely overcome the limita-
tions in human and other models, one reason is that swine are
highly similar to humans in many aspects, e.g., hormonal cycle
and physiology [12]. For this reason, pig is considered as the larger
animal model for human infertility in the field of reproduction
research [13].

The rapid development of high-throughput sequencing has
opened up the possibility of characterizing the genome in terms
of homozygosity or heterozygosity. Runs of heterozygosity
(ROHet), known as heterozygosity-rich regions, emerged as a more
recent concept, and have been used to identify genomic regions
that are under gene introgression or admixture [14,15]. ROHet
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avoid the deleterious effects of harmful homozygous genotype
aggregation on specific traits andmaintain heterozygote advantage
at immune-related genes [16], benefiting reproduction perfor-
mance. In the meantime, runs of homozygosity (ROH) have been
a helpful strategy to detect regions under selection [17]. A higher
incidence of ROH could lead to congenital anomalies [18], resulting
in the loss of reproduction. Previous studies mainly used the distri-
bution of ROHet or ROH and the function of genes within ROHet or
ROH to investigate the population characteristics [19,20]. Based on
this, association analyses using ROHet and ROH provide a powerful
strategy to identify genomic regions associated with traits of inter-
est in human [21] and livestock [16].

China has the most genetic resources of domestic pigs [22,23].
Jinhua (JH), Chun’an (CA), Longyou Black (LY), and Shengxian Spot-
ted (SX) pigs originated in eastern China and have similar charac-
teristics to other indigenous breeds, e.g., improved meat quality,
disease resistance, and high fertility in comparison with
intensively-reared commercial pig breeds (e.g., Large white, Lan-
drace, and Duroc pig breeds) [24–26]. These excellent characteris-
tics mark them as the best material to uncover the genetic
mechanism of economic traits and support the sustainable devel-
opment of the pig industry [27]. It is well reported that Chinese
indigenous pigs have excellent litter sizes and contribute to the
improvement of fertility in intensively-reared commercial pig
breeds [28,29]. However, there is a lack of investigating the effect
of ROHet and ROH on litter traits in Chinese indigenous pigs.

In this study, we performed integrated genomic analyses to
explore the genetic mechanisms of reproductive success and the
loss of reproduction in mammal. Firstly, we systematically investi-
gated the distribution of ROHet and ROH in the genomes of indige-
nous pigs to detect and characterize the ROHet and ROH patterns,
as well as to reveal ROHet and ROH islands that contain the candi-
date genes related to breed-specific traits of Chinese indigenous
pig breeds. Then, we conducted association analyses to identify
the litter traits-related regions, and uncovered the effects of the
identified regions and promising candidate genes on reproductive
performance in other pig breeds via traits-specific selection signa-
tures. Furthermore, we performed comparative transcriptome
analysis to identify important fertility-related genes in human,
pig, and mouse.
2. Materials and methods

2.1. Ethics statement

Animal care and experiments were conducted in accordance
with the Chinese guidelines for animal welfare and were approved
by the Animal Care and Use Committee of Zhejiang University,
Hangzhou, China (permit number: ZJU20160346).
2.2. Animal resources, phenotypes, and SNP genotyping

Blood samples of JH (N = 193: 41 sires and 152 dams), CA
(N = 98: 31 sires and 67 dams), LY (N = 94: 32 sires and 62 dams),
and SX (N = 174: 43 sires and 131 dams) were collected from the
national or provincial conservation farms in Zhejiang province of
China. We collected all sires and dams except for full siblings
according to the pedigree records in conservation farms, thus these
individuals represent the most comprehensive genetic diversity of
each pig breed. Litter traits included TNB, NBA, and total number of
piglets born dead (TND). Herein, NBA was identified as the piglets
alive after the farrowing; TND included the number of stillborn
piglets and the mummified piglets at birth. We removed records
if TNB was equal to zero, or if only one record per sow was avail-
able. After data editing, 4742 litter records from 412 sows were
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available. After grouping records according to sow parity, the far-
rowing records were 1236, 624, 537, 507, 645, 543, 489, and 161
for parity groups 1, 2, 3, 4, 5, 6, 7, and 8, respectively. The descrip-
tive statistics of TNB, NBA, and TND per parity were listed in Sup-
plementary Table 1.

To get a better understanding of the genetic architecture of lit-
ter size variability traits, we obtained log-transformed variance of
residuals of TNB (LnVarTNB), NBA (LnVarNBA), and TND
(LnVarTND) traits from the records of each traits following
[9,30]: firstly, we used the formula (1) to calculate a residual for
available observation for TNB, NBA, and TND traits; secondly, a
variance of these residuals was log-transformed to generate a
unique value of LnVar for each of TNB, NBA, and TND traits per
sow.

y ¼ Waþ Zbþ Upeþ e ð1Þ
where y is the TNB, NBA, and TND of the individuals; a is a vector of
fixed effects, including farm-year-season of the farrowing (64
levels) and parity of the sow (8 levels); b is a vector of additive
genetic effects and is set as b � N(0, G r2

b), where G is the genomic
relationship matrix [31]; pe is a vector of permanent environmental
sow effects and is set as pe � N(0, I r2

pe); W, Z, and U are incidence
matrices for a, b, and pe; e is a vector of residuals and is set as e � N
(0, I r2

e ); I is an identity matrix.
Genomic DNA was extracted from blood samples with a stan-

dard phenol–chloroform method and genotyped using the Gene-
Seek Genomic Profiler Porcine SNP BeadChip (Neogen
Corporation, Lansing, MI, USA), which contains 50,697 SNPs. Subse-
quently, quality control was performed using PLINK (v1.9) soft-
ware [32], of which SNPs were filtered out with a call rate less
than 90 % [33]. A final set of 44,901 informative SNPs were used
for further ROHet and ROH analysis.

Furthermore, we obtained whole-genome re-sequencing (WGS)
data of five pig breeds (Erhualian, EHL, N = 12; Minzhu,MZ, N = 10;
Meishan, MS, N = 14; Rongchang, RC, N = 12; Diqing, DQ, N = 12)
from the NCBI SRA database to uncover the evolutionary history
of the regions and potential effects on litter traits in pigs (Supple-
mentary Table 2). These pig breeds contained two extremely pro-
lific breeds (EHL and MS), two prolific breeds (MZ and RC), and
one breed with the lowest litter size (DQ). Herein, raw reads were
filtered using fastp software with default parameters. Filtered
reads were aligned to the latest pig reference genome (Sscrofa11.1)
using the Burrows-Wheeler alignment (v0.7.17-r1188) tool [34]
with the parameters for paired-end reads. Subsequently, SAM files
were merged and sorted using SAMtools (v1.9) software [35]. SNP
calling for each individual was implemented using the Haplo-
typeCaller program and further joint calling using GenotypeGVCFs
program of GATK4 (v4.1.6.0) software [36]. We filtered SNPs using
VariantFiltration program with the parameters: --filter-expression
‘‘QD less than 2.0 || FS > 60.0 || MQ less than 40.0 || SOR > 3.0 ||
MQRankSum < –12.5 || ReadPosRankSum < –8.0.” Quality control
was performed using PLINK (v1.9) software [32], of which SNPs
were filtered out with a call rate less than 90 % and minor allele fre-
quency (MAF) less than 0.01. The remaining 34,265,460 informa-
tive SNPS were used for signatures of selection detection. In
addition, the performance of TNB, NBA, and TND traits for each
available breed was obtain from Animal Genetic Resources in China:
Pigs.

2.3. Runs of heterozygosity and homozygosity detection

ROHet and ROH were detected separately for each individual
using detectRUNS R package v0.9.6. A ROHet was identified based
on a consecutive strategy [37] with the following parameters: (i) a
minimum ROHet length of 1 Mb; (ii) a minimum number of SNPs
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within a ROHet>15; (iii) no homozygous and missing genotypes;
(iv) the maximum gap of 500 kb between consecutive heterozy-
gous SNPs. In addition, a ROH was defined based on a sliding win-
dow strategy [32] with the following parameters: (i) a sliding
window of 50 SNPs; (ii) a minimum ROH length of 1 Mb; (iii) no
heterozygous and missing genotypes; (iv) the maximum gap of
500 kb between consecutive homozygous SNPs; (v) a minimum
SNP density of two SNP per Mb; (vi) a minimum number of SNPs
within a ROH at least 85, 74, 50, and 84 in JH, CA, LY, and SX pigs,
which were computed by the formula (2) [38]. Next, we filtered out
the ROHet and ROH with less than five SNPs and present in less
than 5 % of the individuals.

l ¼
ln a

ns�ni

ln 1� het�ð Þ ð2Þ

where a is the percentage of false positive ROH (set to 0.05), ns is
the number of SNPs per individual, ni is the number of individuals,
and het is the proportion of heterozygosity across all SNPs.

2.4. Rohet and ROH size categories

We categorized the ROHet and ROH for each breed into five
length classes (1–2 Mb, 2–4 Mb, 4–8 Mb, 8–16 Mb,
and > 16 Mb). In addition, we estimated ROH-based inbreeding
coefficients (FROH) using the formula (3) [39].

FROH ¼
P

LROH
LAUTO

ð3Þ

where
P

LROH is the total length of all the ROH detected in an indi-
vidual, LAUTO is the total length of the autosomes covered by SNPs
(2.452 Gb in this study).

Furthermore, we generated the false discovery rate (FDR)
adjusted empirical P-values [40,41] by genome-wide ranking of
the percentage of SNP occurrences to identify highly heterozygous
regions (ROHet island) or highly homozygous regions (ROH
island) via extracting SNPs with the FDR adjusted empirical P-
values less than 0.01 located in a ROHet or ROH.

2.5. Genome-wide ROHet and ROH analysis

We fitted linear model to investigate the association between
unique heterozygous or homozygous regions (presence or absence)
and six reproductions traits using lm function in R v4.0.5 [42] via
the formula (4).

yjkli ¼ breedj þ farmyearseasonk þ regionl þ ejkli ð4Þ
where yjkli is the phenotype of the i individual, i.e., TNB, NBA, and
TND per parity, LnVarTNB, LnVarNBA, and LnVarTND; breedj is the
fixed effect of the j breed; farmyearseasonk is the fixed effect of
the k farm-year-season of the farrowing; regionl is the fixed effect
with two levels of ROHet or ROH (presence as one and absence as
zero); eijkl is the random residual. Here, we used the ROHet
(N = 95) and ROH (N = 203) detected in>1 % of the individuals that
had phenotypic records. Then, the Bonferroni correction was
applied to determine the threshold of ROHet or ROH association
analysis. ROHet or ROH with P-values lower or equal than 0.05/N,
were regarded as genome-wide significant ROHet or ROH. ROHet
or ROH with a P-value higher than 0.05/N but lower than 1/N were
considered as genome-wide suggestive significant ROHet or ROH.

2.6. Signatures of selection detection

We investigated selection signatures across the highest fre-
quency ROHet and ROH using VCFtools version 0.1.14 [43] via FST
[44] and genetic diversity ratio (hp statistic). We calculated hp
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statistic across the highest frequency ROHet and ROH regions in
JH, CA, LY, and SX pigs to measure the variability of polymorphism
levels across the regions between these pigs. To get more compre-
hensive results of genetic differentiation among the extremely pro-
lific breeds, prolific breeds and breeds with the lowest litter size,
five pig breeds (EHL, MZ, MS, RC, and DQ) were further compared
with each other using FST and hp statistic with the use of a sliding
window method (50 kb window and 10 kb step). The hp statistic
between two breeds was calculated as ln(hp|breed1/hp|breed2). More-
over, we divided five pig breeds into two groups (group 1: MS, RC,
and DQ; group 2: EHL, MZ, and DQ) and separately conducted FST
analysis. Here, we uncovered the selection patterns of the highest
frequency ROHet and ROH with the breeds of group 1, then the
breeds of group 2 were further used to check the patterns.

2.7. Gene annotation

Genome annotations were based on Sscrofa11.1, genes overlap-
ping with ROHet and ROH islands were treated as candidate genes.
We downloaded the information of tissue-specific and human-pig
homologous genes from the Pig RNA Atlas [45]. Furthermore, we
collected the results of genome-wide association studies (GWAS)
summary statistic and transcriptome-wide association studies
(TWAS) research for fertility-related traits in human from the
webTWAS database [46] to further explore the potential roles of
the novel genes in female mammalian reproductive function.

2.8. RNA-seq data processing and bioinformatics analysis

The single cell RNA-seq (scRNA-seq) data of in vivo embryos
(oocyte, 2-cell, 4-cell, and 8-cell) from human, mouse [47], and
pig [48] were collected from the GEO public database (GSE44183
and GSE139512) to conduct comparative transcriptome analysis.
Furthermore, the RNA-seq data of gestational diabetes mellitus
(GDM) and healthy control placentas was collected from the data-
base (GSE154414). We downloaded the datasets and further pro-
cessed that using FastQC (v0.11.4) software to obtain clean reads
with default parameters. Clean reads were then mapped to the ref-
erence genome and annotated transcripts (human: GRCh38;
mouse: GRCm39; pig: Sscrofa11.1) by Hisat2 (v2.1.0) software
[49]. The read numbers mapped to each gene were counted and
quantified as fragments per kilobase million mapped reads (FPKM)
using featureCounts (v2.0.3) software [50]. To reduce the bias of
genes and gene expression levels potentially affected by different
library preparation and sequencing platforms, we retained the
transcripts with FPKM larger than zero.

2.9. Functional enrichment analyses

In addition, all ROHet and ROH islands were annotated using
the Animal QTL Database (Hu et al., 2019). We conducted QTL
enrichment analyses using GALLO (Fonseca et al., 2020). We used
ClusterProfiler package [51] to perform Gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses. Here, QTLs and terms with the FDR less than
0.05 were retained.
3. Results

3.1. Runs of heterozygosity detection and annotation

In total, we detected 117, 353, 1,505, and 676 ROHet in the CA,
JH, LY, and SX populations, with an average of 1.19, 1.83, 16.01, and
3.89 ROHet for each pig breed, respectively (Fig. 1A). The average
number of SNPs in each ROHet was 18.68 ± 4.11, 18.69 ± 3.55,



Fig. 1. ROHet in the genomes of Chun’an (CA), Jinhua (JH), Longyou Black (LY), and Shengxian Spotted (SX) pig populations. (A) Number of ROHet; (B) Average number of SNPs
in ROHet; (C) Average ROHet length; (D) Number of total ROHet per chromosome; (E) Number and total length of ROHet per individual; Manhattan plot of the incidence of
heterozygotes within ROHet in CA (F), JH (G), LY (H), and SX (I) populations.
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21.09 ± 7.33, and 19.57 ± 4.66, and the mean length of ROHet was
1.35 ± 0.55, 1.58 ± 0.55, 1.67 ± 0.84, and 1.55 ± 0.51 Mb in the CA,
JH, LY, and SX populations (Fig. 1B, C). Further, we observed that a
higher number of ROHet on sus scrofa chromosome (SSC) 1 and 13,
which had the longest chromosome length. To note, the SX popu-
lation had the highest number of ROHet on SSC 7, showing an
extremely different pattern with other populations (Fig. 1D). The
short fragment (1–2 Mb) of ROHet accounted for the largest frac-
tion of ROHet, and no ROHet with the length>8 Mb was observed
(Table 1). Meanwhile, the number of ROHet decreased with the
increasing of ROHet length (Fig. 1E).

To explore the function of ROHet islands, we conducted tissue-
specific genes annotation and QTL enrichment analysis (Fig. 1F-I).
Table 1
Number, percentage, and average length for ROHet categories.

Categories Jinhua Chun’an

Count Percentage
(%)

Average
(Mb)

Count Percentage
(%)

Average
(Mb)

ROHet: 1-
2 Mb

301 85.27 1.39 113 96.58 1.26

ROHet: 2-
4 Mb

52 14.73 2.67 2 1.71 3.08

ROHet: 4-
8 Mb

– – – 2 1.71 4.75

ROH: 1-2 Mb 55 0.73 1.81 20 0.98 1.64
ROH: 2-4 Mb 1205 15.94 3.23 419 20.55 3.06
ROH: 4-8 Mb 2870 37.97 5.69 687 33.69 5.77
ROH: 8-

16 Mb
1960 25.93 11.22 528 25.89 11.08

ROH: >
16 Mb

1469 19.43 33.54 385 18.89 35.95
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For CA pigs, 17 out of 167 candidate genes were specifically
expressed in a single tissue. The genome regions overlapping with
ROHet islands were mostly significantly related to days to 100 kg,
carcass weight (cold), umbilical hernia, backfat at last rib, and
shear force at first peak traits (Supplementary Fig. 1A). For JH pigs,
a total of 137 candidate genes were located in ROHet islands, and
involved in production (e.g., days to 100 kg), meat and carcass
(e.g., intramuscular fat content), and health (e.g., actinobacillus
pleuropneumoniae susceptibility) traits (Supplementary Fig. 1B).
For LY pigs, we detected 179 candidate genes, of which had 12
tissue-specific genes. These genes were linked with basophil num-
ber, intramuscular fat content, days to 100 kg, blood non-esterified
fatty acid level, and fat androstenone level traits (Supplementary
Longyou Black Shengxian Spotted

Count Percentage
(%)

Average
(Mb)

Count Percentage
(%)

Average
(Mb)

1219 81 1.34 625 92.46 1.44

228 15.15 2.66 48 7.1 2.74

58 3.85 4.68 3 0.44 4.51

171 11.25 1.64 28 0.46 1.86
563 37.04 2.95 726 11.84 3.18
417 27.43 5.71 1999 32.63 5.9
236 15.53 10.65 1685 27.5 11.38

133 8.75 31.79 1689 27.57 35.45
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Fig. 1C). For SX pigs, we detected 146 candidate genes, which were
associated with average backfat thickness, meat color a*, shear
force at first peak, fat androstenone level, and backfat at last rib
traits (Supplementary Fig. 1D). Furthermore, we found that there
were 66 ROHet shared by at least two pig breeds, and 41, 99,
658, and 116 unique ROHet detected in the CA, JH, LY, and SX pop-
ulations, respectively (Supplementary Fig. 2A).

3.2. Runs of homozygosity detection and annotation

In total, we identified 17,245 ROH in the 559 individuals consid-
ered (Table 1). In terms of average number of ROH per individual,
the JH population had the largest number (39.17 ROH per animal),
followed by the SX (35.21 ROH), CA (20.81 ROH), and LY (16.17
ROH) populations (Fig. 2A). The average number of SNPs in each
ROH was 238.66 ± 241.91, 230.93 ± 228.94, 132.84 ± 173.59, and
300.21 ± 275.92 for the CA, JH, LY, and SX populations (Fig. 2B).
Meanwhile, the LY population had the lowest average value
(7.28 Mb) of the total ROH length, and the SX, CA, and JH popula-
tions were 15.21, 12.25, and 12.12 Mb, respectively (Fig. 2C). Fur-
ther, we found that the patterns of the number of ROH on each
chromosome were mostly similar in the four populations consid-
ered, whereas the SX population showed slightly different trends
on SSC 7, 15, 16 (Fig. 2D). In addition, the number and length of
ROH had negative correlations (Fig. 2E). The FROH showed that
the SX and JH populations had the highest level of inbreeding
(0.24 and 0.21, respectively), followed by the CA (0.11) and LY pop-
ulations (0.05) (Supplementary Table 3). Nevertheless, we
observed the similar trends of the FROH on each chromosome in
the studied populations, except for the LY population (Supplemen-
tary Fig. 3).
Fig. 2. ROH in the genomes of Chun’an (CA), Jinhua (JH), Longyou Black (LY), and Shengxi
ROH; (C) Average ROH length; (D) Number of total ROH per chromosome; (E) Number and
within ROH in CA (F), JH (G), LY (H), and SX (I) populations.
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There were 136 ROH shared by at least two pig breeds, and
1372, 5355, 1184, and 4112 unique ROH detected in the CA, JH,
LY, and SX populations, respectively (Supplementary Fig. 2B). We
found several shared candidate genes overlapping with the ROH
islands of the studies breeds, e.g., UHRF1, UBA6, GC, AFP and
CHN3. In addition, the QTLs overlapping with the ROH islands were
mostly related to meat and carcass traits (e.g., backfat at last rib,
intramuscular fat content, and fat androstenone level traits). Nev-
ertheless, we found some QTLs associated with exterior traits (e.g.,
ear weight and thoracic vertebra number traits) reached the signif-
icant threshold (Supplementary Fig. 4).

3.3. Litter traits-related ROHet and ROH detection

The association analysis revealed 17, 7, 14, and 1 genome-wide
significant ROHet for TNB, NBA, TND, and LnVarNBA traits, and 37,
39, 16, 4, and 2 ROHet reached the suggestive significance level for
TNB, NBA, TND, LnVarNBA, and LnVarTND traits, respectively (Sup-
plementary Table 4). Later, we counted the genome-wide signifi-
cant ROHet and the ROHet reached the suggestive significance
level, 44.22–46.11 Mb on SSC 5, 61.31–63.40 Mb on SSC 6, and
107.32–109.23 Mb on SSC 8 had the highest frequency (Fig. 3A).
Herein, 13 out of 40 promising candidate genes were located on
the highest frequency ROHet and overlapped with ROHet islands
completely or partly, e.g., CAMK2D, UGT8, ARSJ, and OVCH1 (Supple-
mentary Table 5).

Meanwhile, we identified 7, 6, 17, 1, and 2 genome-wide signif-
icant ROH for TNB, NBA, TND, LnVarTNB, and LnVarNBA traits.
There were 40, 23, 37, 6, 2, and 1 ROH reached the suggestive sig-
nificance level for TNB, NBA, TND, LnVarTNB, LnVarNBA, and
LnVarTND traits (Supplementary Table 6). In addition, 94.43–
an Spotted (SX) pig populations. (A) Number of ROH; (B) Average number of SNPs in
total length of ROH per individual; Manhattan plot of the incidence of homozygous



Fig. 3. The association degree between the highest frequency (A) ROHet or (B) ROH and litter traits among parties.
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99.41 Mb on SSC 6 got the highest frequency, followed by 16.60–
19.73 Mb on SSC 1, 19.82–26.83 Mb on SSC 8, and 1.79–6.12 Mb
on SSC 15 (Fig. 3B). We found 5 out of 63 promising candidate
genes were located on the highest frequency ROH and ROH islands,
i.e., EPC2, MMADHC, MBD5, KIF5C, and ACVR2A (Supplementary
Table 7).

Furthermore, we observed that the different association degree
between the highest frequency ROHet (or ROH) and litter traits
among parities (Fig. 3), which revealed that the genomic structures
of piglets born alive and dead were different among parity groups.

3.4. Pattern of selection at the highest frequency litter traits-related
ROHet

We calculated hp statistic across the highest frequency ROHet
in JH, CA, LY, and SX pigs, however, no trend was observed in com-
parison of these pigs (Supplementary Fig. 5). These might be
caused by the similar reproduction performance of these pigs.
Thus, we used the high-density genotypes of other pig breeds con-
tained the extremely prolific (MS and EHL), prolific (MZ and RC),
and lowest litter sized (DQ) breeds to detect selection signatures.
Later, we correlated the median hp statistic across the highest fre-
quency litter traits-related ROHet for each breed comparison to the
difference in mean breed value for TNB, NBA, and TND traits. One
ROHet (44.22–46.11 Mb on SSC 5) was significantly associated
with TNB and NBA traits (Supplementary Fig. 6). It was also
detected in the FST analysis with the breeds of group 1 and contains
nine genes: OVCH1, ERGIC2, FAR2, CCDC91, PTHLH, KLHL42,MANSC4,
MRPS35, and PPFIBP1. Herein, OVCH1 and CCDC91 were two strong
candidates with the peak of selection falling (Fig. 4). The similar
selection patterns were also shown in the analysis with the breeds
of group 2 (Supplementary Fig. 7), precisely revealing the genetic
Fig. 4. Patterns of selection at the ROHet: 44.22–46.11 Mb on SSC 5. (A) The correlatio
differences in number born alive trait between each pair of pig breeds; (B) The FST stati
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differentiation at the ROHet between the prolific pig breeds and
pig breeds with the lowest litter size. Meanwhile, the peak of selec-
tion was overlapped with the QTLs that were related to reproduc-
tion traits (i.e., teat number, number of stillborn, reproductive tract
weight, uterine horn length, and uterine horn weight traits).

3.5. Pattern of selection at the highest frequency litter traits-related
ROH

In addition, there was no trend of selection patterns across the
highest frequency ROH has been observed in comparison of JH, CA,
LY, and SX pigs (Supplementary Fig. 5). Likewise, we investigated
the correlation between the median hp statistic across the highest
frequency litter traits-related ROH for each breed and difference in
mean breed value for TNB, NBA, and TND traits with other five pig
breeds (Supplementary Fig. 8). The median hp statistic at the ROH:
16.60–19.73 Mb on SSC 1 had a significant correlation with differ-
ence in mean of TNB and NBA (Fig. 5A). There were eight promising
candidate genes (i.e., TAB2, UST, SASH1, SAMD5, STXBP5, RAB32,
GRM1, and SHPRH) located on the ROH: 16.60–19.73 Mb on SSC 1
(Fig. 5B and Supplementary Fig. 7). The peak of selection across
the ROH were overlapped with QTLs of number of stillborn and
teat number traits. In the meanwhile, we observed the significant
correlation between the median hp statistic for each breed
(Fig. 5C) and TND at the ROH: 94.43–99.41 Mb on SSC 6 where
43 promising candidate genes (e.g., MACF1, MFSD2A, CAP1, PPT1,
ZMPSTE24, MC2R, and PTPRM) and a set of QTLs of reproduction
traits (i.e., age at puberty, gestation length, litter size, non-
functional nipples, number of mummified pigs, and teat number
traits) were located (Fig. 5D). The further detection of selection sig-
natures with group 2 proved the accuracy of the genetic differen-
tiation between the extremely, prolific pig breeds, and pig breeds
n between the median genetic diversity ratio at the ROHet and the corresponding
stics at the ROHet in selected breed comparisons.



Fig. 5. Patterns of selection at the ROH: 16.60–19.73 Mb on SSC 1 and 94.43–99.41 Mb on SSC 6. (A) ‘The correlation between the median genetic diversity ratio at the ROH
16.60–19.73 Mb on SSC 1 and the corresponding differences in number born alive trait between each pair of pig breeds; (B) The FST statistics at the ROH 16.60–19.73 Mb on
SSC 1 in selected breed comparisons; (C) The correlation between the median genetic diversity ratio at the ROH 94.43–99.41 Mb on SSC 6 and the corresponding differences in
total number of piglets born dead trait between each pair of pig breeds; (D) The FST statistics at the ROH 94.43–99.41 Mb on SSC 6 in selected breed comparisons.

Z. Chen, Z. Zhang, Z. Wang et al. Computational and Structural Biotechnology Journal 20 (2022) 4060–4071
with the lowest litter size detected by FST analysis with group 1
(Supplementary Fig. 7).
3.6. The potential roles of the promising candidate genes in
reproductive function

We further explored the potential roles of the genes (i.e.,
CCDC91, SASH1, SAMD5, MACF1, MFSD2A, EPC2, and MBD5) that
have been recorded in the webTWAS database and not been widely
reported to be fertility-related genes (Table 2). Interestingly, we
found that the promising candidate genes were associated with
polycystic ovary syndrome, thyroid problem, and diabetes.
Table 2
The potential roles of the genes that have not been widely reported to be fertilize-related

Gene
symbol

Pig gene ID Human Gene ID Associated disease

CCDC91 ENSSSCG00000024232 ENSG00000123106 Polycystic ovary syndrome
[54]

SASH1 ENSSSCG00000033175 ENSG00000123106 Thyroid problem, Hypothyr
SAMD5 ENSSSCG00000004112 ENSG00000203727 Thyroid problem, Local infe

Diseases of veins, lymphati
MACF1 ENSSSCG00000003654 ENSG00000127603 Type 2 Diabetes, Diabetes [

MFSD2A ENSSSCG00000003669 ENSG00000168389 Type 2 Diabetes [53], Diabe
[56]

EPC2 ENSSSCG00000027211 ENSG00000135999 Diabetes [56]
MBD5 ENSSSCG00000015667 ENSG00000204406 Diabetes mellitus [55]
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According to the associated diseases and tissues given in the
database, we further explored the changes in expression level of
the genes from oocyte to 8-cell in three mammalian species (i.e.,
human, pig, and mouse), and the differences in expression level
of the genes between GDM and healthy control placentas. We
observed that the expression level of CCDC91, MACF1, MFSD2A,
EPC2, and MBD5 has a significant fluctuation during the develop-
ment of early embryo in at least one out of three species (Fig. 6-
A-C). In addition, SASH1 and SAMD5 were only detected from
oocyte to 8-cell in mouse and showed a significantly high expres-
sion level at the period of oocyte comparison with other periods
(Supplementary Fig. 9). The results elucidated the potential roles
of the promising candidate genes in the early embryonic develop-
genes.

Associated tissues

[52], Type 2 Diabetes [53], Osteoarthritis Ovary, testis, brain hippocampus

oidism/myxoedema [55] Thyroid, brain hippocampus
ctions of skin and subcutaneous tissue,
c vessels and lymph nodes [55]

Brain hypothalamus, spleen, testis

56], hypertensive diseases [55] Ovary, pancreas, thyroid, brain
hippocampus, pituitary, spleen, liver

tes mellitus, hypertension [55], diabetes Uterus

Liver
Colon Sigmoid



Fig. 6. Comparative transcriptome analysis on the promising candidate genes. The expression level of CCDC91, MACF1, MFSD2A, EPC2, and MBD5 during the development of
early embryo in human (A), pig (B), and mouse (C).
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ment of mammals. Furthermore, the expression level of MBD5 and
SAMD5 were significantly different (t-test, P-value = 0.03549 and
0.01884, respectively) between GDM and healthy control placentas
(Supplementary Fig. 10).

4. Discussion

4.1. The factors affecting ROHet and ROH detection

In general, genotyping errors, the minimal SNP density per seg-
ment, the minimum length of a ROHet or ROH, the number of
genotyping errors allowed and the minimum number of SNPs
included in a ROHet or ROH are likely to affect the detection of
ROHet and ROH [17,57–59]. These factors are especially relevant
for populations with fewer number of individuals, which may lack
pedigree records, therefore, genomic analyses help fill the gap to
their genetic characterization. The density of the SNP chip is
related to the minimum ROH length, fewer and shorter ROH will
be detected with higher density of SNP [57]. Furthermore, the min-
imal SNP density affect genome coverage of the ROH analysis and
is crucial for medium density genotypes [33]. With medium den-
sity SNP panel, one heterozygous call is allowed since genotyping
errors in SNP chip data may occur [57], and allowing a number
of genotyping errors in long ROH may minimize the underestima-
tion of them [58]. In addition, Meyermans et al. [33] has shown
that MAF and LD pruning severely impact ROH analyses and rec-
ommend to avoid MAF and LD pruning prior to ROH analyses based
on medium density genotypes. Meanwhile, ROHet has far less
characterized than ROH in livestock, especially in pigs [16,60]. Bis-
carini et al. [57] presented the results of the first sensitivity analy-
sis for ROHet and varied the number of missing and homozygous
SNPs allowed inside ROHet. In comparison with the detection of
ROH, they found a significant increase in the number and average
size of the detected ROHet when increasing numbers of missing
and/or homozygous SNPs are allowed.

4.2. Distribution of heterozygous and homozygous loci

According to previous studies [61,62], indigenous pigs studied
in this study had lower heterozygosity than intensively-reared
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commercial pig breeds. The results of ROHet detection showed that
a few ROHet were detected in indigenous pigs, except LY pigs,
which might have gene introgression from intensively-reared com-
mercial pig breeds (data not shown). A study reported that Man-
galarga Marchador horses were inbred, leading to reduced
heterozygosity and only a few ROHet were formed [19]. In this
study, the number of ROHet were lower than that of ROH, which
reflected the breed conservation of the studied pig populations.
In addition, the number and length of ROH or ROHet had negative
correlations, which have been observed in previous studies [57,63].
In spite of this heterogeneity of methodology and data, all studies
found that heterozygosity-regions were much rarer and shorter
compared to ROH.
4.3. The potential roles of the shared ROHet and ROH

The shared ROHet showed the possibility of similar selection
patterns on growth, meat quality, health, and reproduction traits
in Chinese indigenous pigs. Here, we noticed the tissue-specific
genes located on the shared ROHet, which might reflect the same
breed characteristics of indigenous pigs more typically. The cerulo-
plasmin (CP) gene potential participated in iron transport during
spleen development [64] and the growth of piglets [65]. The time-
less circadian regulator (TIMELESS) gene was linked to cell survival
after damage or stress [66], which might help disease resistance
of indigenous pigs. Two testis tissue-specific genes, the testis speci-
fic serine kinase substrate (TSKS) and dynein axonemal heavy chain 17
(DNAH17) genes, were essential for spermatogenesis and fertility in
mammals [67,68].

Likewise, we investigated the tissue-specific genes at the shared
ROH to uncover the same breed characteristics of the studied pop-
ulations. The ubiquitin like with PHD and ring finger domains 1
(UHRF1) gene involved in porcine adipogenesis [69]. The GC vita-
min D binding protein (GC) gene was associated with bone meta-
bolic pathways [70]. The alpha fetoprotein (AFP) gene encodes a
major fetal protein and may promote fetal ovarian follicular devel-
opment in Chinese indigenous pigs [71]. To sum up, the shared
ROH might cause broadly similar fat deposition, litter size and
body length characteristics in indigenous pigs.
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4.4. Litter traits-related ROHet and ROH detection

In this study, we highlighted the genetic characteristics of litter
traits in indigenous pigs. The highest frequency litter traits-related
ROHet within the genome might be able to achieve optimal pro-
duction performance in indigenous pigs. We identified three high-
est frequency litter traits-related ROHet among parity groups and
each litter traits. Several promising candidate genes at the ROHet
involved in reproductive pathways in mammals. The calcium/-
calmodulin dependent protein kinase II delta (CAMK2D) gene partic-
ipated in GnRH signalling pathway, as one of the most important
reproductive pathways [72]. The UDP glycosyltransferase 8 (UGT8)
gene was down-regulated in the endometrium of women affected
by implantation failure [73]. Whereas, we noticed that these genes
had pleiotropic effects on the growth of muscle and fat deposition
in adipose tissues [74,75]. This implied these genes might lead to
lighter piglets born, and give birth to more piglets.

High levels of inbreeding are directly related to a higher inci-
dence of ROH, which could result in inbreeding depression [76].
Previous studies reported several genes likely caused fetal mortal-
ity in mutant homozygous pigs [77]. Here, the roles of the activin A
receptor type 2A (ACVR2A), kinesin family member 5C (KIF5C) and
Metabolism of cobalamin associated D (MMADHC) gene in reproduc-
tive pathways have been previously reported [78–80]. In the
meantime, we reported for the first time the potential effects of
other two promising candidate genes (EPC2 and MBD5) on fertility.

In addition, the analyses of association degree between the
highest frequency ROHet (or ROH) and litter traits revealed that
the genomic structures of piglets born alive and dead were differ-
ent among parity groups, which were consistent with previous
studies [3,81]. In view of the vary genetic background of traits of
born alive and dead among parities, the different parities should
be considered as different traits to proceed selection and breeding
works.

4.5. Porcine litter traits-related regions detection via selection
signatures

Furthermore, we deeply investigated the roles of the highest
frequency litter traits-related ROHet and ROH in pigs via litter
traits-specific selection signatures. There was no trend of selection
patterns has been observed in comparison of the hp of JH, CA, LY,
and SX pigs across the highest frequency ROHet and ROH. These
might be caused by the similar reproduction performance of these
pigs. Thus, we used the high-density genotypes of other five pig
breeds with different levels of reproduction performance to detect
selection signatures. A set of known and novel candidate genes
associated with litter size were located on the peak of selection.
The ovochymase 1 (OVCH1) and coiled-coil domain containing 91
(CCDC91) genes were two strong candidates with the peak of selec-
tion across the ROHet that were related to TNB and NBA traits.
Herein, The OVCH1 gene encodes oocyte extracellular polyproteins
and has pleiotropic effects on fertility and the development of
muscle [82,83]. And, it has been established that the CCDC91 gene
involved in skeletal development [84], but its potential role in litter
traits remains unknown.

As mentioned above, the genes of which were homozygous
might lead to fetal mortality. The ROH: 16.60–19.73 Mb on SSC 1
and ROH: 94.43–99.41 Mb on SSC 6 were overlapped with several
QTLs of the loss of reproduction traits, e.g., non-functional nipples,
number of mummified pigs, and number of stillborn. In addition,
the promising candidate genes located across the ROH were asso-
ciated with embryonic and fetal development. The microtubule
actin crosslinking factor 1 (MACF1) gene has been linked to ovarian
function [85]. Themajor facilitator superfamily domain containing 2a
(MFSD2A) gene was needed in body growth, lipid metabolism and
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brain integrity [86]. The TGF-beta activated kinase 1 binding pro-
tein 2 (TAB2) gene were associated with non-heterotaxic foetuses
[87].
4.6. The promising candidate genes with reproductive function

Previous studies have showed that the homozygous variants
could lead to human infertility with early embryonic arrest [88]
and zygotic cleavage failure [89]. In this study, we deeply explored
the potential fertility-related function of the promising candidate
genes that have not been widely investigated. The expression level
of CCDC91, MACF1, MFSD2A, EPC2, and MBD5 has a significant fluc-
tuation during the development of early embryo, but showed dif-
ferent trends in human, pig, and mouse. The phenomenon was
consistent with previous studies, which stated that the molecular
mechanisms of embryonic development shared many similarities,
but also several marked differences in mammals [90,91]. In addi-
tion, the infants born to GDM females had reduced size at birth
and persisting reductions in adiposity [92].MBD5 and SAMD5 likely
involved in the occurrence of GDM. The results showed that the
promising candidate genes played potential roles in mammalian
fertility-related pathways.
4.7. The use of the promising biological priors

To our knowledge, few ROHet and ROH analyses have been sys-
tematically conducted in pigs. And amounts of ‘‘omics” data were
generated and released by some consortiums (e.g., the FarmGTEx
[93] and FAANG consortium [94]), providing opportunities to
explore the potential roles of the causal genome regions and
promising candidate genes. Here, we integrated the findings of
ROHet and ROH with transcriptome analyses to better elucidate
the potential causal genes that determine the genetic and pheno-
typic differences among animals. Many studies have proved that
modifying the models to incorporate prior knowledge (e.g., the
potential causal genes) improves the performance of genomic pre-
diction or selection [95–97]. Meanwhile, animal models have been
widely used for the understanding of human physiological pro-
cesses. The porcine anatomy and physiology are similar to human
anatomy and physiology (e.g., all-eating and hormonal cycle),
therefore, some breeds with size and weight similar to human
adults making the breeds attractive in biomedical research
[98,99]. In this study, the in-depth cross-species transcriptome
comparison reveals the conserved and divergent features of the
promising candidate genes in human, mouse, and pig, the results
will benefit animal model selection for fertility-related traits and/
or diseases.

Taken together, we present a multi-omics analyses integrating
transcriptome and genome analyses that captures the underlying
chromosome regions of litter traits. The in-depth analyses pro-
vided the evidence for the roles of the promising candidate genes
that can be used as biological priors to improve the accuracies of
genomic selection and further benefit pig genetic improvement.
Besides, the results offer a genome-wide understanding of the rela-
tionships between heterozygosity or homozygosity regions and
reproductive success and the loss of reproduction in mammals.
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