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Abstract 

Breast cancer is the second leading cause of cancer-related mortality in women. Successful 
development of sensitive nanoprobes for breast cancer cell detection is of great importance for 
breast cancer diagnosis and symptomatic treatment. Herein, inspired by the intrinsic peroxidase 
property of gold nanoclusters, high loading, and targeting ability of ErbB2/Her2 antibody 
functionalized liposomes, we report that gold nanoclusters-loaded, target-directed, functionalized 
liposomes can serve as a robust sensing platform for amplified colorimetric detection of 
HER2-positive breast cancer cells. This approach allows HER2-positive breast cancer cell 
identification at high sensitivity with high selectivity. In addition, the colorimetric “readout” offers 
extra advantages in terms of low-cost, portability, and easy-to-use applications. The practicality of 
this platform was further proved by successful detection of HER2-positive breast cancer cells in 
human serum samples and in breast cancer tissue, which indicated our proposed method has 
potential for application in cancer theranostics. 

Key words: Colorimetric sensor, signal amplification, liposomes, gold nanoclusters, artificial enzymes, breast 
cancer cells 

Introduction 
With one in twenty-nine women dying from the 

disease [1, 2], breast cancer is the second leading cause 
of cancer-related mortality among females worldwide 
[3-6]. Early detection and diagnosis is of great 
importance for the improvement of treatability and 
curability of breast cancer [7]. Human epidermal 
growth factor receptor 2 (HER2), which belongs to a 
family of the tyrosine kinase [8], is a 185 kDa 
transmembrane protein encoded by oncogene 
HER2/neu or c-erbB-2, and its overexpression is 
present in approximately 20%-30% of human breast 
cancers [9]. As compared to other types of breast 
cancer, HER2-positive breast cancer, mainly due to 
HER2 gene amplification [10], is associated with 
increased malignancy, enhanced aggressive behavior, 

higher recurrence, poor prognosis and reduced 
overall survival [11-16]. Therefore, developing a 
sensitive and accurate tool for detection of HER2 
positive overexpressed breast cancer cells would be 
beneficial to cancer diagnosis, prognosis, monitoring 
of tumor sensitivity to anticancer drugs, and further 
symptomatic treatment [17-19]. 

 Gold nanoclusters (AuNCs), as prominent 
fluorescence labels for sensitive detection of cancer 
cells, have attracted considerable interest because of 
their unique optical properties [20-28]. For example, 
Wang et al. prepared the gold nanoclusters-reduced 
graphene oxide nanocomposites. It was observed that 
gold nanoclusters anchored on reduced graphene 
oxide retained their near-infrared fluorescent 
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property for cancer cell imaging while reduced 
graphene oxide could carry anticancer agents such as 
doxorubicin for chemotherapy [23]. In addition, Qi et 
al. developed the novel nanoconjugates containing of 
ultrasmall water-soluble gold nanoclusters as the 
fluorescent part and folic acid as the targeting ligand. 
The receptor specific cancer targeting ability and 
near-infrared fluorescence of the nanoconjugates 
make them as the promising candidates for 
optical-imaging-based cancer detection [24]. These 
fluorescence imaging methods based on AuNCs have 
become an advanced and versatile tool for cancer 
research [29]. However, they require fluorescence 
imaging equipment for readout, which make the 
fluorescence detection not adequate for the 
development of convenient household devices that 
can be practically suited for point-of-care 
applications. 

 Colorimetric detection is a simple and efficient 
method for determining targets by monitoring the 
color change [30-32]. This colorimetric “readout” 
avoids the usage of any advanced or complicated 
instrumentation and thus may provide portable, low 
cost opportunities [33-35]. A variety of colorimetric 
reagents, such as organic chromophoric probes [36-38] 
and plasmonic nanoparticle [39-41] have been used 
for visual detection of specific targets. For example, by 
the chemical dissolution of silver nanoparticles into 
silver ions, together with the subsequent induction of 
aggregation of alkyne-functionalized gold 
nanoparticles, Tian and Long et al. demonstrated a 
metal-linked immunosorbent assay (MeLISA) for the 
colorimetric detection of disease biomarkers in serum 
[42]. Yang et al. also developed a novel method for the 
rapid, sensitive and selective colorimetric detection of 
copper ions as copper ions could decrease 
L-cysteine-induced gold nanoparticles aggregation. 
This platform could be efficiently used for 
colorimetric immunoassays [43]. Specifically, due to 
the high sensitive and obvious color reaction, 
enzyme-based colorimetric detection systems are 
emerging as alternatives to conventional chromogenic 
sensors [44-46]. As compared to natural enzymes, the 
artificial enzymes are attractive as colorimetric probes 
because of their easy preparation, low cost, high 
stability against stringent conditions, tunability in 
catalytic activities and long-term storage [47-49]. Thus 
far, artificial enzyme-based biosensors are extremely 
appealing for a wide range of applications in 
environmental monitoring, disease diagnostics, as 
well as food and water safety [50-56]. Among 
investigated host nanomaterials of artificial enzymes, 
gold nanoclusters (AuNCs) have drawn particular 
attention [57-60]. Compared with other reported 
nanomaterial-based artificial enzymes, the AuNCs are 

more prominent for bioanalysis due to their easy 
modification, ultra-small size and excellent 
biocompatibility [47, 57]. In addition, unlike nature 
enzymes, the BSA-AuNCs have strong robustness and 
can be used over a wide range of pH and temperature 
[57], which hold enormous potential for breast cancer 
cell detection. 

Liposomes are nanoscale lipid vesicles consisting 
of single or multiple bilayered membrane structures 
with amphiphilic lipid molecules [61, 62]. Since the 
first description in 1965 [63-65], liposomes have 
attracted great interest as effective drug delivery 
systems, as well as versatile diagnostic and 
therapeutic tools for a lot of diseases. Liposomes 
exhibit good biodegradability and biocompatibility, 
outstanding size controllability, excellent surface 
tuning property, as well as high drug loading capacity 
[66-69]. Up to now, a number of liposome 
formulations have been approved by the U.S. Food 
and Drug Administration (FDA) for clinical 
therapeutic purposes [69-71]. As a platform to detect 
cancer cells, nanomaterial-based signal amplification 
systems have received increasing attention. These 
include the usage of nanomaterial-based artificial 
enzymes as amplifiers. 

In light of the advantages of the liposome and 
artificial enzyme-based signal amplification 
techniques, we sought to develop a robust sensing 
platform for amplified colorimetric detection of 
HER2-positive breast cancer cells by utilizing artificial 
enzyme AuNCs-loaded liposomes. As illustrated in 
Scheme 1, we first obtain the AuNCs-loaded 
liposomes (AuNCs-LPs) by the traditional extrusion 
method. Subsequently, the HER2 antibodies 
(anti-HER2) can be anchored to the surface of 
AuNCs-LPs (BSA-AuNCs-LPs-anti-HER2) via 
EDC/NHS chemistry. Then the 
BSA-AuNCs-LPs-anti-HER2 can efficiently target the 
HER2-positive breast cancer cells via the cell-surface 
HER2 receptor recognition. After centrifugation and 
washes, the peroxidase-like activity of 
BSA-AuNCs-LPs-anti-HER2 adsorbed on 
HER2-positive breast cancer cells can be effectively 
utilized for quantitative colorimetric detection of 
HER2-positive breast cancer cells. Here, we provide 
the first evidence that the BSA-AuNCs-LPs-anti-HER2 
can be applied as a novel signal amplification system 
for HER2-positive breast cancer cell detection. The 
combination of enzymatically catalyzed reactions 
with liposome-enrichment events resulted in a further 
improvement in cancer cell detection [72], 
highlighting the potential of BSA-AuNCs-LPs-anti- 
HER2 to serve as a promising diagnostic tool in 
oncology. 
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Scheme 1. Schematic representation of (a) preparation of anti-HER2 conjugated liposome-AuNCs hybrid (BSA-AuNCs-LPs-anti-HER2) and (b) HER2-positive 
breast cancer cell detection by using BSA-AuNCs-LPs-anti-HER2. 

 

Materials and Methods 
Materials and measurements 

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-
N-dodecanoyl (N-dod-PE) and 1,2-dioleoyl-sn- 
glycero-3-phosphocholine (DOPC) were purchased 
from Avanti Polar Lipids (Alabaster, AL). Human 
ErbB2/Her2 antibody (anti-HER2) was purchased 
from R&D Systems (Minneapolis, MN). 
1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide 
hydrochloride (EDC) was purchased from Alfa Aesar. 
Sulfo-NHS (N-hydroxysulfosuccinimide) was 
purchased from Thermo Fisher Scientific (Pittsburgh, 
PA). Dulbecco’s phosphate buffered saline (PBS) was 
purchased from Invitrogen (Carlsbad, CA). Aptamer 
was purchased from Elim Biopharmaceuticals, Inc. 
(Hayward, CA). The sequence of MUC1 aptamer was 
5’-NH2-GCA GTT GAT CCT TTG GAT ACC CTG 
G-3’. Human serum was purchased from 
Sigma-Aldrich. Breast cancer tissue array with HER2 
from 0, 1+, 2+ and 3+ were purchased from US 
Biomax. All other reagents were all of analytical 
reagent grade and used as received. Nanopure water 
(18.2 MΩ; Millpore Co., USA) was used throughout 
the experiment. Transmission electron microscopy 
(TEM) images were recorded using a JEOL 2100 
transmission electron microscope operating with an 

accelerating voltage of 200 kV. Scanning electron 
microscopic (SEM) images were recorded using a 
Hitachi S-4700 scanning electron microscope. Zeta 
potential and size measurements were performed 
with a ZetaPALS zeta potential analyzer. Absorbance 
measurements were carried out by using a 
spectramax plus 384 microplate reader. 

Synthesis of BSA-templated gold nanoclusters 
(BSA-AuNCs) 

The BSA-templated gold nanoclusters 
(BSA-AuNCs) were synthesized by a previously 
one-pot green method [73]. In a typical experiment, 
aqueous HAuCl4 solution (5 mL, 10 mM, 37 °C) was 
added to BSA solution (5 mL, 50 mg/mL, 37 °C) 
under vigorous stirring. NaOH solution (0.5 mL, 1 M) 
was introduced 2 min later, and the reaction was 
allowed to proceed under vigorous stirring at 37 °C 
for 12 h. The solution was then dialyzed in double 
distilled water to remove unreacted HAuCl4 and 
NaOH. The final solution was stored at 4 °C until use. 

BSA-AuNCs-LPs-anti-HER2 preparation 
The gold nanoclusters-loaded liposomes 

(AuNCs-LPs) were prepared by the extrusion method 
[74-79]. Briefly, a mixture of DOPC:N-dod-PE (95:5, 
mol:mol) was solubilized in chloroform and dried in a 
rotary evaporator under reduced pressure. Then the 
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lipid film was dissolved in the solution of gold 
nanoclusters (5 mg/mL, the concentration of BSA was 
adopted to confirm the concentration of BSA-AuNCs) 
while being agitated at 650 rpm with a stir bar to yield 
a 5 mM lipid solution. After that, liposomes were 
extruded via a NorthernLipids Extruder with a 200 
nm polycarbonate nanoporous membrane. After 
extrusion, the solution of AuNCs-LPs was dialyzed in 
H2O using a Slide-A-Lyzer dialysis cassette (MWCO 
300 kDa) overnight at room temperature (RT). 
Liposomes were conjugated to anti-HER2 or aptamer 
via the N-dod-PE anchor. EDC (2 mg) and NHS (3 
mg) were mixed with 1 mmol of liposomes in PBS (pH 
7.4) and incubated for 6 h at room temperature. A 
Slide-A-Lyzer dialysis cassette (MWCO 10 kDa) was 
used to remove unreacted EDC and NHS. Then 
anti-HER2 or aptamer was added to EDC-modified 
liposomes at a molar ratio of 1:1000 (antibody 
(aptamer):phospholipid) and incubated overnight at 
room temperature. Unreacted antibodies (aptamers) 
were removed using a Float-A-Lyzer G2 (MWCO 300 
kDa). 

To determine the antibody density of anti-HER2 
on liposomes, 2 μm borosilicate beads (Duke 
Scientific, Palo Alto, CA), large enough to be detected 
by flow cytometry, were coated with a layer of lipids 
from liposomes by agitating small unilamellar 
liposomes with microbeads in PBS for 6 h. Then, 
microbeads were washed 3 times with PBS through 
centrifugation-suspension cycles to separate free 
liposomes. Conjugation of PE-anti-HER2 to 
microbead encapsulating liposomes was performed 
using EDC/NHS chemistry. The surface density of 
anti-HER2 conjugated to each microbead was 
determined with reference to Quantum Simply 
Cellular microbeads, which have defined numbers of 
antibody binding sites per bead [75, 78, 79]. 

Cell culture 
MCF7, SKBR3, MDA-MB-231, MDA-MB-436, 

MDA-MB-468, MDA-MB-157, HCC1806, Hs578T and 
MCF10A cells were all obtained from American Type 
Culture Collection (ATCC, Manassas, VA). MCF7, 
MDA-MB-231 and MDA-MB-436 cells were cultured 
in DMEM (Corning, Corning, NY), supplemented 
with 10% FBS (Life Technologies, Carlsbad, CA) + 1% 
Pen/Strep (Life Technologies, Carlsbad, CA). SKBR3 
cells were cultured in McCoy5a (Life Technologies, 
Carlsbad, CA) + 10% FBS. MDA-MB-468 and 
HCC1806 cells were cultured in RPMI-1640 (Corning) 
+ 10% FBS. All cell lines were grown in a humidified 
atmosphere (5% CO2) at 37 °C. MDA-MB-157 cells 
were cultured in L-15 (ATCC) + 10% FBS. Hs578T 
cells were cultured in DMEM, supplemented with 
10% FBS + 10 mg/ml of Insulin. MCF10A cells were 

cultured in DMEM/F12 (Life Technologies, Carlsbad, 
CA) + 5% Horse Serum (Life Technologies, Carlsbad, 
CA) + 20 ng/ml of Epidermal Growth Factor (EGF) 
(Peprotech, NJ) + 0.5 mg/ml of Hydrocortisone 
(Sigma-Aldrich, St. Louis, MO) + 100 ng/ml Cholera 
Toxin (Sigma-Aldrich, St. Louis, MO) + 10 mg/ml of 
Insulin (Sigma-Aldrich, St. Louis, MO) + 1% 
Pen/Strep (Life Technologies, Carlsbad, CA). 

Cytotoxicity assays 
MTT assays were used to probe cellular viability. 

SKBR3 Cells were seeded at a density of 5000 cells 
well−1 (100 μL total volume well−1) in 96-well assay 
plates. After 24 h incubation, the as-prepared 
liposome, BSA-AuNCs and BSA-AuNCs-LPs- 
anti-HER2, at the indicated concentrations, were 
added for further incubation of 24 h. To determine 
toxicity, 10 μL of MTT solution was added to each 
well of the microtiter plate and the plate was 
incubated in the CO2 incubator for an additional 4 h. 
Then the cells were lysed by the addition of 100 μL of 
DMSO. Absorbance values of formazan were 
determined with microplate reader at 490 nm 
(corrected for background absorbance at 630 nm). 
Three replicates were done for each treatment group. 

Bioassay 
In a typical test, chemicals were added into 100 

μL buffer solution (PBST, 25 mM Na2HPO4, pH 4.0, 
with 0.05% Tween-20) in an order of certain amounts 
of the BSA-AuNCs-LPs-anti-HER2, 2 μL TMB (final 
concentration 800 μM), and 6.2 μL H2O2 (final 
concentration 50 mM) at 25 °C. After 30 min reaction, 
the peroxidase activities of the mixtures were carried 
out by using a spectramax plus 384 microplate reader.  

Breast cancer cell detection 
Cells were first harvested by centrifugation at 

1000 rpm for 5 min, and washed three times with 
phosphate buffered saline (PBS, pH 7.4). For the 
colorimetric detection, BSA-AuNCs-LPs-anti-HER2 
were incubated with different cells lines at 37 °C for 
1.5 h, then harvested by centrifugation at 1000 rpm, 
and washed three times with phosphate buffered 
saline (PBS, pH 7.4). After that, cells were dispersed in 
detection buffer (PBST, 25 mM Na2HPO4, pH 4.0, with 
0.05% Tween-20). Then, TMB (final concentration 800 
μM) and H2O2 (final concentration 50 mM) were 
added at 25 °C. After 30 min reaction, the peroxidase 
activities of the mixtures were determined. 

Cancer cell detection in human serum samples 
Human serum was diluted with PBS buffer with 

ratio of 1:1 before being spiked with SKBR3 cells at 
different concentrations. The as-prepared 
BSA-AuNCs-LPs-anti-HER2 was then used to detect 



 Theranostics 2017, Vol. 7, Issue 4 
 

 
http://www.thno.org 

903 

SKBR3 cells in diluted serum following the same 
procedure as that for cancer cell detection. 

Detection of HER2-positive breast cancer 
tissues 

For disaggregation, breast cancer tissues with 
HER2 from 0, 1+, 2+ and 3+ were first digested with 2 
mg/ml of collagenase, type IV, 2 mg/mL 
hyaluronidase and 1 mg/mL DNase for 30 minutes at 
37 °C, with intermittent shaking [80-84]. After 
filtering, the resulting cell suspensions were washed 
three times with phosphate buffered saline (PBS, pH 
7.4). For the colorimetric detection, BSA-AuNCs- 
LPs-anti-HER2 were incubated with different cancer 
cells (20000 cells) at 37 °C for 1.5 h, then harvested by 
centrifugation at 1000 rpm, and washed three times 
with phosphate buffered saline (PBS, pH 7.4). After 
that, cancer cells were dispersed in detection buffer 
(PBST, 25 mM Na2HPO4, pH 4.0, with 0.05% 
Tween-20). Then, TMB (final concentration 800 μM) 
and H2O2 (final concentration 50 mM) were added at 
25 °C. After 30 min reaction, the peroxidase activities 
of the mixtures were determined. 

Results and discussion 
Synthesis and characterization of AuNCs-LPs 

We first synthesized the gold 
nanoclusters-loaded liposomes (AuNCs-LPs) using 
the lipid film hydration and membrane extrusion 
method [85, 86]. AuNCs-LPs assembled from a 
mixture of DOPC:N-dod-PE (95:5, mol:mol), 
encapsulating AuNCs (Figure S1) in the liposome 
formulations with the ratio of about 1925 : 1 (AuNCs : 
liposome) (Figure S2) [87-89]. The formation of 
AuNCs-LPs was verified with transmission electron 
microscopy (TEM) and scanning electron microscopic 
(SEM) measurements (Figure S3 and S4). AuNCs-LPs 
had spherical structures with an average diameter 
around 150 nm. Dynamic light scattering (DLS) 
indicated that AuNCs-LPs were narrowly dispersed 
and the diameters of unconjugated AuNCs-LPs were 
175.04 ± 2.45 nm. The smaller size from TEM/SEM 
observations as compared with the DLS measurement 
may be due to dehydration during the TEM/SEM 
sample preparation process [90-92]. Zeta potential 
measurements revealed that the AuNCs-LPs were 

highly negatively charged (-37.67 ± 0.32 mV). 
Afterwards, anti-HER2 was conjugated to the 
AuNCs-LPs through EDC/NHS chemistry 
(BSA-AuNCs-LPs-anti-HER2). TEM and SEM images 
(Figure 1a-c) indicated the BSA-AuNCs-LPs- 
anti-HER2 remained spherical and monodispersed. 
The loading of AuNCs in the liposome was confirmed 
by energy dispersive X-ray spectroscopy (EDS). As 
shown in Figure 1d, the EDS measurement of the 
as-prepared nanohybrid showed primarily Au 
signals, suggesting that the vast majority of AuNCs 
incorporated in the liposome. The diameters of 
BSA-AuNCs-LPs-anti-HER2 were 173.80 ± 1.80 nm as 
indicated by DLS analysis, which were similar to the 
AuNCs-LPs. And the surface charge of 
BSA-AuNCs-LPs-anti-HER2 was altered from -37.67 
mV for AuNCs-LPs to -36.17 mV. The antibody 
density was quantified using standardized 
microbeads of known density (Table 1). The average 
antibody density was 1680 ± 20 molecules/μm2 or 159 
± 2 molecules/liposome. 

 

 
Figure 1. (a, b) TEM images of the BSA-AuNCs-LPs-anti-HER2 under different 
magnifications; (c) SEM images of the BSA-AuNCs-LPs-anti-HER2; (d) EDS 
spectra of the as-synthesized BSA-AuNCs-LPs-anti-HER2. 

 

Table 1. Characterization of liposome, AuNCs and liposome-AuNCs hybrids. 

 Size (DLS, nm) Polydispersity Index (PDI) Zeta potential (mV) HER2 antibody density (molecules/μm2) 
liposome 162.44 ± 1.49 0.082 -38.04 ± 0.29  
BSA-AuNCs 5.82 ± 0.92 0.174 -19.71 ± 2.08  
BSA-AuNCs dispersed in PBST 5.76 ± 0.87 0.168   
AuNCs-LPs 175.04 ± 2.45 0.112 -37.67 ± 0.32  
BSA-AuNCs-LPs-anti-HER2 173.80 ± 1.80 0.084 -36.17 ± 0.85 1680 ± 20 
BSA-AuNCs-LPs-AptMUC1 174.12 ± 2.26 0.106 -37.32 ± 0.48  
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Peroxidase-like catalytic activity of 
BSA-AuNCs-LPs-anti-HER2 

The peroxidase-like activity of 
BSA-AuNCs-LPs-anti-HER2 was evaluated in the 
catalysis of peroxidase substrates 3,3′,5,5′-tetrame-
thylbenzidine (TMB). BSA-AuNCs-LPs-anti-HER2 in 
PBST could catalyze the oxidation of TMB in the 
presence of H2O2, and produce a deep blue color, with 
maximum absorbance at 652 nm [93]. Tween-20 in 
PBST could effectively cause the breakdown of the 
liposomes and the release of AuNCs (Figure S5), 
leading to the enzymatic colorimetric reactions. TEM 
in Figure S6 confirmed the breakdown of the 
liposomes in the presence of PBST. In contrast, 
BSA-AuNCs-LPs-anti-HER2 or H2O2 alone did not 
produce the significant color change (Figure 2a). 
These results confirmed that the peroxidase-like 
activity toward TMB came from the intrinsic catalytic 

property of AuNCs in BSA-AuNCs-LPs-anti-HER2. 
Figure 2b shows the absorbance changes against 
different concentrations of BSA-AuNCs-LPs- 
anti-HER2. Dramatic improvement in catalytic 
activity was observed with the steady increase of the 
concentration of the BSA-AuNCs-LPs-anti-HER2. To 
optimize the enzymatic reaction of the 
BSA-AuNCs-LPs-anti-HER2, we investigated the 
time-dependent absorbance evolution at 652 nm of the 
as-prepared BSA-AuNCs-LPs-anti-HER2 incubated 
with TMB and H2O2 solutions. The characteristic 
absorbance at 652 nm increased gradually with time 
and reached a plateau at ≈ 30 min (Figure S7). Thus, 30 
min was selected as the incubation time. Furthermore, 
like other nanomaterial-based peroxidase mimics, the 
activity of BSA-AuNCs-LPs-anti-HER2 was also 
dependent on pH (Figure 2c), temperature (Figure 2d) 
and H2O2 concentrations (Figure S8). 

 

 
Figure 2. (a) The absorbance spectra and visual color changes of TMB in different reaction systems: (1) TMB + H2O2, (2) BSA-AuNCs-LPs-anti-HER2 + TMB, and (3) 
BSA-AuNCs-LPs-anti-HER2 + TMB + H2O2 in PBST (25 mM Na2HPO4, pH 4.0, with 0.05% Tween-20) at 25 °C after 30 min incubation. (b) The absorbance spectra 
and visual color changes of TMB in presence of different concentrations of BSA-AuNCs-LPs-anti-HER2 after 30 min incubation. Inset: the absorption values at 652 nm 
depend on the concentrations of BSA-AuNCs-LPs-anti-HER2. (c, d) The peroxidase-like activity of the BSA-AuNCs-LPs-anti-HER2 is dependent on pH (c) and 
temperature (d). 
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Figure 3. HER2-positive breast cancer cell detection by using BSA-AuNCs-LPs-anti-HER2. (a) The absorbance spectra and visual color changes upon analyzing 
different number of SKBR3 cells. (b) The absorption values at 652 nm depend on the number of SKBR3 cells. Inset: the linear plot. The error bars represent the 
standard deviation of three measurements. (c-d) Selectivity analysis for HER2-positive breast cancer cell detection using BSA-AuNCs-LPs-anti-HER2 by monitoring 
the absorbance spectra (c) and color changes (d). The error bars represent the standard deviation of three measurements. 

 
Breast cancer cell detection using AuNCs-LPs 

We then applied the peroxidase-like activity of 
BSA-AuNCs-LPs-anti-HER2 for quantitative 
colorimetric detection of cancer cells (Figure 3a). 
Upon conjugation of anti-HER2 to the AuNCs-LPs, 
the BSA-AuNCs-LPs-anti-HER2 could serve as a 
novel probe for selective, quantitative, and fast 
colorimetric detection of HER2-positive breast cancer 
cells. The BSA-AuNCs-LPs-anti-HER2 showed 
negligible cytotoxicity to the cells as shown by MTT 
results (Figure S9). To calculate the sensitivity, 
different amounts of HER2-positive SKBR3 cells [94] 
were first incubated with BSA-AuNCs-LPs-anti-HER2 
in PBS for 1.5 hours and subsequently centrifuged. 
The precipitate was collected and rinsed with PBS 
three times to remove the unattached 
BSA-AuNCs-LPs-anti-HER2. The control experiments 
indicated that free BSA-AuNCs-LPs-anti-HER2 could 
be completely removed from the HER2-positive 
breast cancer cells by centrifugation (Figure S10). In 
the presence of TMB and H2O2, the cell conjugated 
BSA-AuNCs-LPs-anti-HER2 in PBST would catalyze a 

color reaction that could be judged by the naked eye 
and easily be quantitatively monitored by UV–Vis 
absorbance spectrometry. Figure 3a showed 
absorbance changes as a function of cell number. 
Results indicated an increase in the absorbance with 
increasing number of SKBR3 cells, which suggested 
that more BSA-AuNCs-LPs-anti-HER2 bound to 
HER2 receptor on the surface of SKBR3 cells. The 
absorbance of TMB at 652 nm linearly depends on the 
number of target cells ranging from 5 cells to 1000 
cells, with a detect limit as low as 5 cells (Figure 3b). 
As compared with BSA-AuNCs-anti-HER2 without 
the lipid component, the detection sensitivity of 
BSA-AuNCs-LPs-anti-HER2 is significantly enhanced 
because of the liposome-enrichment method (Figure 
S11). Similarly, the ability of BSA-AuNCs-LPs- 
anti-HER2 to detect the other type of HER2-positive 
breast cancer cell line MCF7 [95] was also proved 
(Figure S12). This colorimetric detection method also 
demonstrated the specificity of BSA-AuNCs-LPs- 
anti-HER2 for HER2-positive breast cancer cells 
(Figure 3c, d). In our experiments, nine different 
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human breast cell lines were used, including one 
nonneoplastic, fibrocystic breast cell line (MCF10A), 
two HER2-positive breast cancer cell lines (SKBR3 and 
MCF7) and six triple negative breast cancer cell lines 
(MDA-MB-231, MDA-MB-436, MDA-MB-468, 
MDA-MB-157, HCC1806, Hs578T) [6]. Following 1.5 h 
in culture, BSA-AuNCs-LPs-anti-HER2 showed much 
stronger binding to HER2-positive breast cancer cells 
than other cells. The absorbance changes for SKBR3 
and MCF7 cells were more than 4 times higher than 
those for other breast cells. The differences were due 
to the high levels of HER2 receptor expression on 
SKBR3 and MCF7 cells. 

In order to further broaden the utility of 
AuNCs-LPs-based colorimetric detection system, we 
used an aptamer instead of antibody as the 
recognition agent for cancer cell detection. Aptamers, 
an emerging class of targeting ligands selected by an 
in vitro iterative process called systematic evolution of 
ligands by exponential enrichment (SELEX) [96], are 
well recognized as an alternative to antibodies [97]. 
Aptamers consist of single-stranded oligonucleotides; 
unique sequences may exhibit high affinity to a broad 
range of targets including metal ions, organic 
molecules, amino acids, peptides, proteins, and even 
whole cells and bacteria. Aptamers have certain 
advantages as target ligands, such as ease of synthesis 
and modification [98], relatively small size, excellent 
affinity, outstanding specificity, and lack of 
immunogenicity [99], which may serve as excellent 
targeting ligands in the construction of biosensors 
[100-104], biosystem imaging [105-107] and targeted 
therapeutic systems [108-111]. MCF7 cells were 
selected as model cells to prove the viability of the 
developed analytical approach as MCF7 cells 
represent one of the most widely used experimental 
models on breast cancer studies [112]. The tumor 
biomarker MUC1 is a transmembrane glycoprotein, 
whose expression increases at least 10-fold on the 
surface of MCF7 cells when compared to normal 
breast cells [7, 108, 113]. The 25-base oligonucleotide 
aptamers of MUC1 (AptMUC1) presented high 
affinity to MUC1 proteins [7, 108, 114] and were 
conjugated to the AuNCs-LPs (BSA-AuNCs- 
LPs-AptMUC1) (Table 1, Figure S13) to serve as the 
recognition agent for selective MCF7 detection. The 
sensitivity of our provided strategy was investigated 
by monitoring the absorbance change of TMB in the 
presence of different numbers of MCF7 cells (Figure 
S14). In the absence of the target cancer cell (MCF7 
cell), the BSA-AuNCs-LPs-AptMUC1 would be 
removed from the detection system by centrifugation 
and wash steps. In the presence of MCF7 cell, the 
BSA-AuNCs-LPs-AptMUC1 would efficiently adsorb 
onto the target cells for following colorimetric 

analysis. A target-concentration-dependent signal 
intensity was observed in the MCF7 cells. With our 
proposed strategy, a high detection sensitivity of 20 
cells can be achieved on the basis of the synergistic 
action of high catalytic activity of AuNCs and high 
recognition ability of AptMUC1 to MUC1 on the 
MCF7 cells [115]. The detection sensitivity of 
BSA-AuNCs-LPs-AptMUC1 is much higher as 
compared with AuNCs-AptMUC1 without the lipid 
component (Figure S15). These results demonstrate 
that the proposed assay presents a sensitive sensing 
platform for breast cancer cell detection. 

Determination of HER2-positive breast cancer 
cells in biological fluids and HER2-positive 
breast cancer tissues 

The high sensitivity combined with excellent 
specificity of BSA-AuNCs-LPs-anti-HER2 to 
HER2-positive breast cancer cells indicated that our 
strategy might be directly applied for detecting 
HER2-positive breast cancer cells in real samples. 
Therefore, we examined the practicality of the assay 
for detection of SKBR3 cells in human serum samples. 
As can be seen in Figure 4a-b, the absorbance of TMB 
at 652 nm linearly depends on the number of target 
cells ranging from 5 to 1000 cells and the slope of this 
curve is very close to that of SKBR3 cell detection in 
buffer solution from Figure 3b. To further explore the 
feasibility of the developed method for clinical 
analysis, the as-prepared BSA-AuNCs-LPs-anti-HER2 
was used to detect HER2-positive breast cancer 
tissues (Figure 4c-h). Immunohistochemistry (IHC) 
images shown in Figure 4c-f indicated the breast 
cancer tissues with HER2 from 0, 1+, 2+ and 3+. 
Samples scored as 0 or 1+ were considered negative 
for HER2 overexpression, 2+ was weak positive and 
3+ was strong positive, with complete membrane 
staining in ≥10% of tumor cells [8, 116]. As compared 
to samples of HER2-negative breast tissue, the 
samples of HER2-positive breast cancer tissue showed 
much higher absorbance signal at 652 nm owing to the 
BSA-AuNCs-LPs-anti-HER2 oxidation of TMB 
(Figure 4g-h). The response enhanced with increase in 
HER2 IHC score indicating that the developed 
biosensor is able to effectively detect HER2-positive 
breast cancer tissue, hence valuable in the clinical 
diagnosis. All these results reveal the practicality of 
using BSA-AuNCs-LPs-anti-HER2 for the detection of 
HER2-positive breast cancer cell and tissue in real 
samples. Compared with other probes for the 
detection of HER2-positive breast cancer cells (Table 
2) [117-124], our probe has the advantages of easy 
preparation, excellent compatibility, high sensitivity 
and low cost, which holds great promise in cancer 
theranostics. 
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Figure 4. (a-b) HER2-positive breast cancer cell detection by using BSA-AuNCs-LPs-anti-HER2 in human serum (50%). (a) The absorbance spectra upon analyzing 
different number of SKBR3 cells. (b) The absorption values at 652 nm depend on the number of SKBR3 cells. Inset: the linear plot. The error bars represent the 
standard deviation of three measurements. (c-f) Immunohistochemistry (IHC) staining of breast cancer tissues with HER2 from 0 (c), 1+ (d), 2+ (e) and 3+ (f). Scale 
bar = 100 μm. (g-h) HER2-positive breast cancer tissue detection by using BSA-AuNCs-LPs-anti-HER2. The absorbance spectra response (g) and absorption values 
at 652 nm (h) enhanced with increase in HER2 IHC score (0, 1+, 2+, 3+). 

 

Conclusion 
In summary, we have demonstrated a naked-eye 

detection of HER2-positive breast cancer cells using 
peroxidase mimetic-based colorimetric method 
combined with signal amplification via gold 
nanoclusters-loaded liposomes (AuNCs-LPs). With 
the conjugation of ErbB2/Her2 antibody (anti-HER2) 
to the AuNCs-LPs, the nanostructures can be applied 
for the highly sensitive detection of the HER2-positive 
breast cancer cell lines SKBR3 and MCF7, as well as 
discrimination of SKBR3 and MCF7 cells from other 
different breast cell lines. In addition, aptamer instead 

of antibody was also utilized as the recognition probe 
for breast cancer cell detection, which proved 
university of our platform. This strategy is simple and 
economic in operation, and no sophisticated 
experimental techniques or equipment are required. 
Furthermore, the usage of the target-specific antibody 
or aptamer imparts good selectivity, and the 
application of the amplified colorimetric method also 
brings excellent sensitivity. More importantly, the 
proposed method can be successfully used to detect 
HER2-positive breast cancer cells in human serum 
samples and in breast cancer tissue. Therefore, we 
expect that this approach may offer a new approach 



 Theranostics 2017, Vol. 7, Issue 4 
 

 
http://www.thno.org 

908 

for developing low cost, sensitive and simple sensor 
for detecting of HER2-positive breast cancer cells, and 
will be extraordinarily beneficial in a wide spectrum 

of applications including clinical diagnostics, 
bioanalysis, and bionanotechnology. 

 

Table 2. Comparison of methods for detection of HER2-positive breast cancer cells. 

Probe Detection method Cell type and 
detection limit  

Assay 
time 

Application Ref 

Herceptin-conjugated liquid crystal microdroplets Polarized optical microscopic 
images 

SKBR3 3 h Detection of SKBR3 cells in biological 
fluids 

[117] 

Anti-HER2 IgY antibody-functionalized 
single-walled carbon nanotubes 

Raman signal SKBR3 24 h Detection and destruction of breast 
cancer cells 

[118] 

Anti-Her2 antibody conjugated superparamagnetic 
iron oxide nanoparticles 

Superconducting quantum 
interference device-detected 
magnetic relaxometry 

MCF7/Her2-18 
(940,000 cells at a 
depth of 4.5 cm) 

16 
min 

In vivo breast tumor cell detection [119] 

Herceptin-conjugated super paramagnetic iron 
oxide nanoparticles 

Iron staining with 
Prussian blue staining method 

SKBR3 and T47D 1 h Detection tumor cells [120] 

Polyhedral oligomeric silsesquioxanes-containing 
conjugated polymer loaded PLGA nanoparticles 
with trastuzumab (herceptin) functionalization 

Fluorescence imaging SKBR3 2 h Targeted biological imaging and 
detection 

[121] 

EP1045Y conjugated CdSeTe/CdS/ZnS quantum 
dots 

Fluorescence imaging MCF7 2 h Identify the HER2 overexpressed breast 
tumor subtype in tumor-bearing mouse 

[122] 

HER2-specific monoclonal antibodies conjugated 
quantum dots 

Fluorescence imaging SKBR3 2 h Detection of HER2 expression in breast 
cancer cells and tissues 

[123] 

Multifunctional (monoclonal anti-HER2/c-erb-2 
antibody and S6 RNA aptamer-conjugated) 
oval-shaped gold-nanoparticle-based 
nanoconjugate 

A simple colorimetric and 
highly sensitive two-photon 
scattering assay 

SKBR3 (100 
cells/mL) 

30 
min 

Diagnosis of cancer cell lines [124] 

HER2 antibodies anchored AuNCs-loaded 
liposomes 

Colorimetric detection SKBR3 (5 cells) 2 h Detection of HER2-positive breast cancer 
cells in human serum samples and in 
breast cancer tissue 

Our 
work 
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