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A multistep deep learning 
framework for the automated 
detection and segmentation of 
astrocytes in fluorescent images  
of brain tissue
Cihan Bilge Kayasandik1, Wenjuan Ru2 & Demetrio Labate3*

While astrocytes have been traditionally described as passive supportive cells, studies during the 
last decade have shown they are active players in many aspects of CNS physiology and function both 
in normal and disease states. However, the precise mechanisms regulating astrocytes function and 
interactions within the CNS are still poorly understood. This knowledge gap is due in large part to the 
limitations of current image analysis tools that cannot process astrocyte images efficiently and to the 
lack of methods capable of quantifying their complex morphological characteristics. To provide an 
unbiased and accurate framework for the quantitative analysis of fluorescent images of astrocytes, 
we introduce a new automated image processing pipeline whose main novelties include an innovative 
module for cell detection based on multiscale directional filters and a segmentation routine that 
leverages deep learning and sparse representations to reduce the need of training data and improve 
performance. Extensive numerical tests show that our method performs very competitively with 
respect to state-of-the-art methods also in challenging images where astrocytes are clustered together. 
Our code is released open source and freely available to the scientific community.

The human brain is a complex network of over 2 × 1011 neural cells comprising neurons and glial cells. Neuroglia 
comprise astrocytes, oligodendrocytes, NG2 glia, microglia and all peripheral glia1. Astrocytes, a subtype of glial 
cells with a complex star-shaped morphology, are the most abundant cells in most part of the human brain2. 
Although they were long characterized as supportive cells only involved in maintaining neuron homeostasis and 
survival, a number of studies during the last decade have revealed that astrocytes play an active role in funda-
mental brain processes underlying neuronal development and function. Several studies have implicated astro-
cytes in controlling the development of the nervous system through axon guidance and synaptogenesis. During 
neural circuit development, astrocytes are responsible for the regularization of the neuronal network by pruning 
abnormal or dysfunctioning synapses3. In addition, together with the pre- and post-synaptic parts of two neu-
ronal synapses, astrocytes can form a so-called “tripartite” synapse that helps modulate synaptic transmission 
via the release of neurotransmitters such as glutamate and ATP4,5. The critical roles of astrocytes in neuronal 
development and connectivity make them among the most promising targets for innovative therapies designed to 
treat a range of brain disorders or neurological injuries6. As a result, the attention on astrocytes has dramatically 
increased in recent years.

Astrocytes have been shown to reflect their diverse abilities and functions on their special structural design, 
and alterations in astrocyte morphology are known to correlate to traumatic brain injury, infection, ischemia, 
autoimmune responses, and neurodegenerative diseases5,7,8. For instance, their intricate arborization and ramifi-
cations allow them to enwrap synaptic terminals and modulate synaptic processes. Additionally, astrocytes have 
the ability to swell and shrink in size – a property that allows them to reduce the leakage of neurotransmitters 
increasing the active concentration in the synapse, and preventing spillover in the case of damage. The functional 
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relevance of morphological changes in astrocytes is further supported by studies relating cell morphology to the 
expression level of markers of astrocyte activation3,8,9.

In spite of the effort to advance understanding of structure-function properties of astrocytes, though, progress 
in this field has been slower due to the difficulty in adapting conventional algorithms for image analysis and cell 
segmentation to images of astrocytes and other glial cells. Automated analysis of microscopy images of astrocytes 
is particularly challenging due to their large variability in size and shapes, the complex topology of processes 
occurring over multiple scales and the highly entangled nature of networks formed by such cells.

There are currently a relatively small number of image analysis methods targeted to glial cells, including astro-
cytes. The simplest methods adapt classical intensity thresholding techniques. Healy et al.10,11 reviewed several 
automated thresholding strategies available as plugins in FIJI and found that the performance of threshold-based 
segmentation of fluorescent images of astrocytes and other glial cells “varies considerably in quality, specific-
ity, accuracy and sensitivity with entropy-based thresholds scoring highest for fluorescent staining”. The main 
drawback of such methods is that their performance is inconsistent and often unpredictable as it depends on a 
multiplicity of factors including conditions of acquisition, cell density and noise level, so that a laborious manual 
tuning of parameters is required to guarantee good performance. Another critical drawback is that such methods 
are unable to automatically separate entangled cells in the image. To address such challenge, Suwannatat et al.12  
have proposed a probabilistic method that uses random walks to separate cells13. This method, however, uses a 
manual approach to detect each cells and its performance degrades rapidly if more than two cells are entangled. 
Another approach, proposed by Kulkarni et al.14, identifies astrocytes in fluorescent images using a fluorescent 
marker of the nucleus (DAPI), and then traces the cell arbors using a tracing method called local priority based 
parallel (LPP) tracing. Authors show that reconstructed traces are useful to define quantitative arbor measure-
ments via Scorcioni’s L-measures15, a rich collection of neuroanatomical parameters for the quantitative charac-
terization of neuronal morphology. However this method does not generate voxel-level segmentation and hence 
does not address the problem of cell separation. More recently, Yang et al.16, have introduced a method for the 
analysis of images of astrocytes in 3D resolution that applies a convolutional neural network (CNN) to segment 
3D images in combination with a shape prior computed by a multiplicative Voronoi diagram to separate touch-
ing cells. Finally, the recent work by Suleymanova et al.17 introduces a method for astrocyte detection based on 
a CNN that provides very accurate result even though training requires a large number of training samples. 
However, this method does not address the problem of segmentation.

In this paper, we introduce an innovative image analysis framework for automated detection and segmenta-
tion of astrocytes in 2-dimensional fluorescent images. Our approach brings some significant novel contributions. 
First, we introduce an innovative method for the automated detection of astrocytes in fluorescent images based 
on multiscale directional filters that does not require any nucleus marker. A major advantage of this approach is 
the ability to accurately detect and separate cells that are very close together or even contiguous. Another main 
novelty is that we introduce a modified CNN architecture for astrocyte segmentation that facilitates training and 
reduces the need of training samples by imposing a geometric bias on the convolutional filters. We validate our 
algorithm on fluorescent images of astrocytes from different brain regions, including images where astrocytes are 
densely packed and clustered together. We show that our algorithm is extremely competitive with state-of-the-art 
methods in terms of accuracy and computational efficiency.

By providing an accurate and automated framework for the detection and segmentation of astrocytes, our 
method also provides a platform to facilitate quantitative analysis of astrocytes through the extraction of morpho-
logical features that could be used to classify astrocyte sub-populations or to establish phenotypic characteristics.

Materials and Methods
Method.  As summarized above, methods based on intensity thresholding for cell segmentation are gener-
al-purpose and simple to implement. However, they typically require a significant manual intervention to achieve 
a satisfactory performance. Machine learning methods on the other hand are more complex and require a train-
ing step, but have generally proven to achieve superior performance in applications from biomedical imaging. 
Processing images of astrocytes though is especially challenging due to the highly complex cell morphology and 
the need to separate entangled cells. To address this task, we introduce a novel multi-step algorithmic pipeline 
that first detects each astrocyte in the image (without assuming any cell marker) and next segments each cell sep-
arately. The complete pipeline is illustrated in Fig. 1 and consists of the following steps: 

	 1.	 Pre-processing. It removes image noise to facilitate the successive processing steps.
	 2.	 Cell detection. It finds regions of interest associated with a single astrocyte.
	 3.	 Cell segmentation. It separates the astrocyte from the background.
	 4.	 Post-processing. It refines the segmentation process by eliminating objects that do not satisfy prescribed 

shape criteria.

We describe below how we implemented each processing step by devoting special attention to cell detection 
and cell segmentation - our main novel contributions in the algorithm.

Data pre-processing.  We pre-process images acquired through confocal microscopy to remedy possible degrada-
tion introduced during the acquisition process and facilitate the successive processing steps of the algorithm. The 
main source of degradation is the Poisson noise introduced by the photon-counting process at the detector. To 
remove noise, we applied a denoising algorithm based on shearlets and adaptive thresholding developed by one 
of the authors18. Unlike more traditional denoising methods, this approach is especially effective at preserving cell 
boundaries due to the high directional sensitivity of shearlet filters19,20. Images were also normalized with respect 
to pixel intensity.
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Cell detection.  Astrocytes are visible in the channel marked by GFAP (Glial fibrillary acidic protein), a marker 
used to distinguish astrocytes from other glial cells. Methods for cell detection relying on contrast enhancement 
and intensity thresholding (cf.10,11) are the simplest to implement. However they require a manual intervention 
to perform competitively and are unable to separate contiguous cells - a common situation in fluorescent images 
of brain tissue where astrocyte form dense networks. Alternatively, one can apply DAPI, a nucleus marker, to the 
image. However, this marker is not astrocyte-specific and, since any image will typically contain DAPI-marked 
locations associated with other cell types, the marker cannot be used directly to detect astrocytes14. To avoid this 
issue, in this paper we apply a new approach to automatically detect astrocytes based on the Directional Ratio, 
a multiscale geometric descriptor that estimates the probable location of cell bodies in an image by measuring 
local anisotropy over multiple scales21,22. This method is purely morphology-based, does not require any nucleus 
marker and was originally developed by the authors to detect somas in fluorescent images of neurons23.

Definition.  Given a collection of multiscale orientable filters  φj,ℓ, where the indices j and  ℓ  are associated with 
a range of scales and orientations, respectively, the (modified) Directional Ratio of an image f at the j-th scale and at 
location p is the quantity
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In a nutshell, Dj f(p) computes the ratio of the smallest directional filter response at location p and scale j 
over the largest one. Hence its value ranges between 1 if p lies in a locally isotropic region (filter response is not 
directional-sensitive) and 0 if p lies withing a local vessel-like structure (filter response is very dependent on the 
orientation). The formula above is a slight modification of the original one, where power-2 in the numerator is 
useful to enhance the filter response in images with relatively low contrast.

By computing the Directional Ratio of an image and applying a threshold (we used 0.7 for our images), we 
distinguish locally isotropic regions – those corresponding to potential cell body locations – from the rest of the 
image. As shown in the Results section below, this method can reliably identify a region inside the cell body of an 
astrocyte despite its highly irregular shape. By computing the centroid of such region and selecting a rectangular 
window of appropriate size (128 × 128 pixels in our Results) centered at this location, we then extract a rectangu-
lar patch containing a single astrocyte plus possible processes from contiguous cells. Any such patch is then fed 
into the segmentation routine below.

Cell segmentation.  Our segmentation method is based on a new CNN that leverages a geometric-enhanced 
enconder-decoder network and transfer learning. The proposed network architecture is illustrated in Fig. 2 and 
consists of two consecutive modified U-nets where the first U-net learns a cell representation and the second one 
generates a segmentation map. We call this network Geometric-Enhanced Stacked U-net (GESU-net).

Recall that a CNN is a neural network consisting of a sequence of convolutional and pooling layers, fol-
lowed by a fully connected layer24. In a CNN, the first section performs feature detection on the input data while 
the last section performs a classification on top of the extracted features. A U-net25 is special CNN where the 
feature-extracting (encoding) section of the network is followed by a decoding section where pooling opera-
tions are replaced by upsampling operators. As a result, the expansive section is approximately symmetric to the 

Figure 1.  Workflow of astrocyte detection and segmentation pipeline. Input fluorescent image (a) is first 
preprocessed to remove noise (b); next cells are detected using the Directional Ratio method (c) and locating the 
cell centroids (d); after identifying a region of interest containing a single cell (e), each cell is segmented (f) using 
our CNN; finally, segmented images are postprocessed to remove unconnected components and discard objects 
that are not recognized as astrocytes (g); next they are refitted into original location of the input image (h).
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contracting section, yielding a u-shaped architecture. U-nets have been shown to perform successfully in prob-
lems of biomedical image segmentation.

A major novelty of our GESU-net is that the encoding section of the first U-net is modified by imposing that 
its convolutional filters are selected from a class of predefined shearlet-like filters. This class of filters consists of a 
low-pass and of multiple high-pass directional filters designed to be both highly sparse and directional sensitive 
according to the framework of multiscale directional framelets in26. During training, only the coefficients of the 
linear combination are learned rather than the entire filter weights. By reducing the flexibility of each convolu-
tional filter while imposing a geometric constraint, this approach has the advantage of facilitating the training 
step. This method is inspired by the theory of structured receptive fields27 where this idea was originally proposed 
in order to reduce the number of network parameters in problems with small data size.

The output of this first U-net is concatenated with the input image and then fed into a second modified U-net 
architecture. Here the contracting part of the network uses weights that are transferred from a VGG16 network 
trained on ImageNet with the goal to improve the efficiency of the representation28.

Justification of proposed of GESU-net.  To motivate and justify the proposed GESU-net, we compared its per-
formance against alternative simpler architectures consisting of single U-nets.

We first examined a simplified network obtained by removing the second U-net from our GESU-net. Hence 
the resulting network is a modified U-net whose encoding section learns linear combinations of predefined filters 
according to the strategy described above. As shown in Fig. 3 (left), the learning capability of this simpler network 
decreases with respect to the GESU-net. The loss function decays more slowly and it converges to a higher error 
value indicating that the modified U-net with transferred weights which is part of the GESU-net is important to 
improve segmentation accuracy. We next examined another simplified network obtained by eliminating the first 

Figure 2.  The proposed Geometric-Enhanced Stacked U-net architecture. Our GESU-net consists of two 
stacked U-nets. The first U-net includes filters (black boxes) in the encoding sections that are selected from a 
family of multiscale directional filters. The second U-net is fed by concatenating its input to the output of the 
first U-net. The weights of the encoding section of the second U-net are transferred from a VGG-16 network 
pretrained on Imagenet.

Figure 3.  Advantages of transfer weights and pre-defined filters: Left: When transfer learning section is 
eliminated from the GESU-net and only the first U-net with pre-defined filters is used, the capability of the 
model decreased significantly. Learning is slower and loss converges to a higher value. Right: When pre-defined 
filters are eliminated and only the second U-net with transferred weights is used, training starts with a large 
error and loss value converges more slowly.

https://doi.org/10.1038/s41598-020-61953-9


5Scientific Reports |         (2020) 10:5137  | https://doi.org/10.1038/s41598-020-61953-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

U-net from our GESU-net; that is, the simplified network is a U-net with transferred weights in the contracting 
section. Fig. 3 (right) shows that the loss function decreases very slowly as compared with the GESU-net. Fig. 4 
shows that the slow convergence of the loss function and the inferior performance is especially evident when the 
size of training data size is small showing the importance of predefined filters to facilitate training.

We remark, that even though the difference in loss values shown in Figs. 3 and 4 is apparently small, this can 
lead to a significant difference in the segmentation quality. For an image of size 1024 × 1024, a %2 increase in loss 
value corresponds to over 300 miss-classified pixels and this can cause a significant error since the average area of 
an astrocyte is about 1500 pixels.

To quantitatively assess the impact of each block of our network into the overall design, in the Results section 
we compare the performance of our GESU-net against a simple U-net and a U-net with a pre-trained VGG16 
module.

Network training and parameter setting.  Our GESU-net was implemented in Python 2.7+ using the standard 
deep learning library Keras29. Our code is available in https://github.com/cihanbilge/AstrocyteSegmentation. All 
our computations were carried out using Intel Xeon CPU E5-2699 v4 @ 2.20 GHz–32 CPUs 256 GByte RAM 300 
GByte IBM Storwize V7000 Flash Drive.

To train our network for segmentation, we extracted patches from three images (fluorescent images of mice 
cortex) of size 1024 × 1024. Specifically, after preprocessing the images to remove noise, we applied our cell 
detection routine to generate sub-images of size 128 × 128 pixels containing single astrocytes; next, astrocytes in 
the sub-images were manually segmented by domain experts. Through this procedure we generated 118 training 
images of size 128 × 128 containing manually segmented astrocytes. As the size of training samples is small and it 
is impractical to increase it due to the laborious annotation process (and limited availability of experimental data), 
we applied classical data augmentation to increase the training size30. Specifically, we generated 20 extra images 
for each training image by applying rigid translations and rotations.

After training, we found that the mean absolute error of the loss function was 0.0004 for the training data and 
0.0007 for the validation data.

Post-processing.  Before re-assembling the segmented image patches into the final segmented image, we need to 
(i) eliminate possible processes from neighboring cells contained in the patch; (ii) discard segmented cells that 
do not satisfy prescribed shape criteria and are not recognized as mature astrocytes. The first task is due to the 
fact that, during the process of generating a patch centered on a detected cell, it is possible that processes from 
neighboring cells are included in the patch. We eliminate these processes by the segmented patches using stand-
ard method to identify and then discard disconnected image components that are below a certain size (see Fig. 1, 
steps f-g). The second task is due to the presence in our images of string-like GFAP-stained objects that can be 
associated with astrocytes precursors (non-mature cells that have not yet acquired a stellate morphology31). To 
eliminate these objects, we developed a method to separate star-shaped objects from string-like ones that applies 
the same type of directional filters used during cell detection. In brief, we applied our directional filters (with 20 
orientations) and tested for prominent directional responses. If a shape is star-like, filtering generates at least 2 
prominent directional responses due to the presence of processes with at least 2 distinct orientations. If a shape is 
string-like, filtering generates one prominent directional response only. Figure 5 shows that using this method we 
can detect and eliminate objects that do not satisfy this criterion for star-shape morphology. In the Result section, 
we include numerical tests to quantify the effect of our post-processing module on the overall performance.

Preparation of samples and image sets.  For the development of our algorithm and part of our numer-
ical validation, we used fluorescent microscopy images of mouse brain previously collected32 in the laboratory of 
Dr. S. Tang from the Department of Neuroscience, Cell Biology and Anatomy at the University of Texas Medical 
Branch.

Figure 4.  Benefits of including predefined filters for different training dataset sizes: Left: Loss function where 
%75 of training samples are used to train the models; no data augmentation. Right: Loss function using entire 
train dataset and data augmentation.
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Animals.  Animal procedures and experiments were in line with standards and regulations to reduce the suffer-
ing of the animals approved by the Institutional Animal Care and Use Committee (IACUC) of University of Texas 
Medical Branch (UTMB). UTMB complies with the USDA Animal Welfare Act (Public Law 89-544) as amended 
by PL91-579 (1970), PL94-279 (1976) and 45 CFR37618 (1980); Health Research Extension Act of 1985 (Public 
Law 99-158); follows the Public Health Service Policy on Humane Care and Use of Laboratory Animals (revised 
September, 1986); and the Guide for the Care and Use of Laboratory Animals (revised September 1986); the 
Guide for the Care and Use of Laboratory Animals DHEW (NIH) 85–23 revised 1985.

Immunohistochemistry.  Briefly, mice were anesthetized with inhaled isoflurane and perfused transcardially with 
PBS. Brains were isolated rapidly. Tissues were fixed in 4% paraformaldehyde in 0.1 M PBS overnight, cryopro-
tected in 30% sucrose for at least 24 hrs at 4 °C, and then embedded in optimal cutting temperature (OCT) com-
pound (Sakura Finetek, Torrance, CA). Frozen sections (35 μm) were prepared for immunofluorescent staining.

For immunofluorescent staining, sections were rinsed with PBS two times and incubated with blocking buffer 
(5% with 0.3% Triton X-100 in PBS) for 2 hrs at room temperature (RT). After incubation with with anti-GFAP 
(1:500) in blocking buffer for 24 hrs at at 4 °C. Then, the sections were incubated with secondary antibody for 2 
hrs at RT and stained with DAPI to visualized nuclei before mounting.

All images were captured using a confocal microscope system by Nikon. 15–25 consecutive optical sections 
with 1 μm interval thickness at 20x magnification were captured for each z-stack image. Acquisition parameters, 
including photomultiplier gain and offset, were kept constant throughout each set of experiments.

Evaluation metrics.  To assess detection and segmentation performance, we used the standard binary clas-
sification metrics of sensitivity, precision and Dice’s coefficient33.

The sensitivity (or True Positive Rate or recall) measures the proportion of correctly detected cells (or points) 
with respect to the total number of cells that are manually identified by a domain-expert without knowledge of the 
algorithm results. Denoting by TP (=true positive) the number of correct detections and by FN (=false negative) 
the number of missed detections, we define the sensitivity as 

=
+
TP

TP FN
S

(2)

 The precision measures the proportion of correctly detected cells over all detected cells. That is, denoting by FP 
(=false positive) the number of wrongly detected cells, the precision is 

=
+
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 Finally, the Dice’s Coefficient (also known as F1 score) can be considered a measure of the overall effectiveness of 
the classification algorithm and is given by 
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 DC ranges between 0 and 1 with DC = 1 describing perfect classification.

Results
In this section, we illustrate the application of our method for the detection and segmentation of astrocytes. As 
a validation set, we used a collection of 5 GFAP-stained fluorescent images of mice astrocyte cells in the cortex 
collected by the laboratory of Dr. Tang from the Department of Neuroscience and Cell Biology at the University 
of Texas Medical Branch. We refer below to this set as Set_1. To further validate the performance of our method, 

Figure 5.  Post-processing eliminates string-like objects. Left: Segmentation before post-processing. Right: 
Segmentation after post-processing. Arrows point to objects being eliminated.
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we also considered 11 randomly selected images from the publicly available image set BBBC042 from the Broad 
Bioimage Benchmark Collection (https://data.broadinstitute.org/bbbc/image_sets.html)34. This set consists of 
brightfield images of rat astrocyte cells in different brain regions containing chromogen-based staining against 
GFAP and will be henceforth denoted as Set_2. Both image sets Set_1 and Set_2 were acquired using 20x magni-
fication. Images in Set_1 were manually labeled (full cell segmentation) by domain experts without prior knowl-
edge of our results; annotations (detection only) for the images in Set_2 were also generated by domainn experts 
and are provided in the website indicated above.

Astrocytes detection.  We start by assessing the astrocyte detection performance. Figure 6 illustrates the 
astrocytes detection performance of our method on representative images from the image sets Set_1 and Set_2. 
Images in Set_1 exhibit a dense astrocyte population of about 30-65 cells per image. Images in Set_2 are less 
dense and contain about 10-30 cells per image. The detection results show that our method is very effective also 
in the situation of cells that are relatively close together. However, images in Set_1 occasionally contain small 
sub-regions of highly dense clusters of astrocytes where even manual annotators were unable to separate cell 
boundaries reliably. Since it is not possible to evaluate the performance of our method in these (small) regions, we 
ignored these regions in our analysis.

To quantify performance of our algorithm for astrocytes detection, we examined its performance on the 5 
images in Set_1 and the 11 images we extracted from Set_2. We remark that the two image sets are comparable 
with respect to cell count since Set_1 contains a total of 231 astrocytes and Set_2 contains a total of 227 astrocytes. 
We found that our method correctly detected 404 cells out of 458 cells. To benchmark our detection performance 
against existing and state-of-the-art methods, we applied on the same dataset the ILASTIK software35 – a general 
purpose cell detection and classification software –, the algorithm FindMyCells (FMC)17 – a recent cell detection 
software especially targeted to astrocytes, and a standard U-net. All these methods rely on a supervised learning 
approach with the difference that while FMC and U-net use a deep learning approach, ILASTIK uses traditional 
machine learning (random forest).

We report detection performance results for each method in Table 1, where we list the performance metrics 
of sensitivity (S), precision (P) and Dice’s coefficients (DC). The table shows that our method performs very 
competitively overall. The FMC algorithm performs slightly better that our algorithm on Set_2 – the set on which 

Figure 6.  Astrocyte detection performance. Left: Representative images from set Set_1 (top) and Set_2 
(bottom). Right: Detected astrocytes are tagged with blue dots. The yellow boxes contain the astrocytes that were 
manually detected by domain experts.
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the FMC algorithm was developed – but significantly worse than our method on Set_1. The slightly lower perfor-
mance of our method on Set_2 is due to the more elongated shape of astrocytes in Set_2 (astrocyte morphology is 
region-dependent) with respect to Set_1 that was used to develop our method. Despite this difference though, our 
method’s performance is very satisfactory. ILASTIK performs rather poorly on these image sets due to the known 
difficulty of detecting astrocytes as compared to cells of more regular shape (see additional comments in the 
Discussion below). The performance of the standard U-net is, as expected, intermediate between our GESU-net 
and FMC: its DC value on Set_1 is better than FMC but worse than GSU-net and, on Set_2, its DC value is worse 
than FMC and worse than GESU-net.

Astrocytes segmentation.  We next examine the task of astrocyte segmentation. As we observed above, the 
major challenge in address such task is the accurate recovery of the finer processes of each cell as they are often 
difficult to tell apart from the background. Another challenge is the separation of cells that are close together and 
have overlapping processes.

 Figure 7 illustrates the segmentation performance of our method on a representative image from Set_1 that 
contains 65 astrocytes (according to manual annotation). As shown by the figure, our method is very efficient 
to recover the cell bodies of most astrocytes and the processes emanating from it. We report the corresponding 
quantitative performance results in Table 2 using again Sensitivity, Precision and Dice’s Coefficient. Note that, to 
compute these quantities in this case, TP is the number of correctly identified pixels, FN the number of missed 
pixels and FP the number of detected cells that are wrongly identified.

To benchmark our result, we compared our method against the BioVoxxel plugin in FIJI11 – an automated method 
for astrocyte segmentation that uses intensity thresholding – and against a standard U-net25. The visual comparison 
of the BioVoxxel segmentation in Fig. 7(c) with our result shows that this method performs rather poorly as it misses 
many cell processes and is unable to separate close or contiguous cells. The quantitative result in Table 2 underscores 
the poor performance of BioVoxxel on our data (DC = 0.53 vs DC = 0.76 for our method). The U-net performs sig-
nificantly better (DC = 0.64) than BioVoxxel but worse than our more sophisticated deep learning strategy.

Since the BioVoxxel algorithm applies a global threshold on the image, its poor performance is not surprising 
as compared to our method that processes the astrocytes locally. Therefore, to better highlight the advantage of 
a learning based approach, we developed a modified version of the BioVoxxel algorithm that first applies our 
routine to detect the astrocytes and find an appropriate region of interest (as shown in our pipeline in Fig. 1) and 
next applies the BioVoxxel algorithm within each region of interest. The visual result in Fig. 7(d) shows that this 
approach is significantly more accurate than the direct application of the BioVoxxel algorithm to the entire image 
and this is reflected by the higher Dice’s Coefficient (DC = 0.65) reported in Table 2 that is now comparable to the 
U-net performance. We visually illustrate the difference in performance between our method and this local ver-
sion of the BioVoxxel algorithm in Fig. 8 where we compare the segmentation results on selected image patches. 
These result show the superior ability of our approach to recover fine astrocyte processes as well as the ability of 
our approach to separate contiguous cells as compared with the BioVoxxel approach.

Discussion
We have introduced a novel method for automated detection and segmentation of astrocytes in 2D microscopy 
images to address a challenging problem for which where very few methods are currently available.

To benchmark our detection approach, we have considered for comparison the ILASTIK software – a 
general purpose and user-friendy method for cell detection and classification – and FindMyCell (FMC) – a 
state-of-the-art method specifically designed for astrocyte detection. ILASTIK uses an approach based on 
machine learning that requires a training phase. However, feature selection filters available in ILASTIK are lim-
ited to conventional Gaussian and Hessian filters. As a result, while the method is able to detect bright and large 
cells, it is not as effective with cells exhibiting a more complex morphology like astrocytes. In the images we 
considered, ILASTIK tends to miss cells that appear elongated and to miss-classify large noisy regions as cells, so 
that its overall detection performance is rather poor (DC < 0.30). This result highlights the difficulty in applying 
general-purpose methods for cell analysis to astrocytes.

FMC on the other hand is designed for astrocyte detection and applies a supervised method based on deep 
learning. Compared with the machine learning method in ILASTIK, FMC is more flexibility and this explains its 
superior astrocyte detection performance. One drawback of this method is its high sensitivity to parameter selec-
tion. The FMC software requires to set two parameters: one for controlling overlapping cells and one for thresh-
olding. We observed that even a very modest 10−8 change in the parameters may affect the quality of the model 
significantly. During the numerical experiments, we run careful tests to find the best parameters before reporting 
the results in Table 1. Results in the table for the image set Set_2 are consistent with the published ones17. As we 
notice above, though, the performance of the method is significantly lower on the image set Set_1 that does not 
belong to the Broad Bioimage Benchmark Collection on which FMC was trained.

Dataset

GESU-net U-net FMC ILASTIK

S P DC S P DC S P DC S P DC

Set_1 (231 cells) 0.90 0.72 0.80 0.92 0.57 0.71 0.30 0.71 0.42 0.40 0.14 0.21

Set_2 (227 cells) 0.87 0.59 0.70 0.96 0.21 0.35 0.68 0.83 0.75 0.56 0.18 0.28

Table 1.  Astrocytes detection performance using our GESU-net algorithm, a standard U-net, FindMyCells 
(FMC)17 and ILASTIK35. Performance metrics include Sensitivity (S), Precision (P) and Dice’s Coefficient (DC).
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Our method for astrocyte detection combines an unsupervised method based on Directional Ratio to detect 
the cells and a postprocessing routine that discards objects that do not satisfy prescribed shape criteria. Results 
in Table 1 show that our method significantly outperforms FMC on the image set Set_1 and its performance on 

Figure 7.  Astrocyte segmentation. (a) GFAP-stained astrocyte image of mouse cortex displayed in gray-scale 
and (b) corresponding segmented astrocytes generated by our GBSU-net (green) overlaid on the original image 
(red). (c) Segmentation of the same image generated by the BioVoxxel plugin in FIJI11 and (d) segmentation 
generated by applying the BioVoxxel plugin locally to the astrocytes detected by our method (color green: True 
Positive; black: False Positive; white: False Negatives). Yellow boxes in (b) contain cells detected by GESU-
net but not by modified BioVoxxel in (d) and, vice versa, blue boxes in (d) contain cells detected by modified 
BioVoxxel but not by GESU-net (b). Dice’s Coefficient (DC) is indicated on top with additional measures 
reported in Table 2.

S P DC

GESU-net 0.69 0.86 0.76

U-net 0.77 0.55 0.64

U-net with VGG16 0.87 0.58 0.70

BioVoxxel 0.62 0.46 0.53

BioVoxxel with GESU-net detection 0.69 0.61 0.65

Table 2.  Astrocyte segmentation performance on a representative image from our dataset Set_1 (same as 
Fig. 7) measured using Sensitivity (S), Precision (P) and Dice’s Coefficient (DC). The performance of our GESU-
net algorithm is compared against a standard U-net, a U-net with pretrained VGG16 module, the BioVoxxel 
toolbox in FIJI11 and a local application of the same toolbox on the cells detected by our method based on 
Directional Ratio.
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Set_2 is only slightly worse than FMC. This shows that our approach performs consistently on general star-shaped 
cells in contrast to FMC that does not generalize well to images outside the set on which it was trained. To 
compare the overall detection performance between our method and FMC, we computed weighted average per-
formance measures that reward accurate detection on image set other than the one on which the method was 
developed or trained. Namely, for our method we assigned a 1/3 weight when applied to Set1 and a 2/3 weight 
when applied to Set_2; viceversa, for FMC we assigned a 1/3 weight when applied to Set_2 and a 2/3 weight when 
applied to Set_1. The weighted average performance measure of the two methods are reported in Table 3 and 
show that our method exhibit a superior performance according to this aggregated measure.

To assess the impact of post-processing on the detection performance of our algorithm, we included in Table 3 
a comparison with our GESU-net without post-processing and a standard U-net. Results show that the post-
processing has the effect of increasing the Dice’s Coefficient of our approach from 0.67 to 0.75. The performance 
by the U-net is inferior to both FMC and GESU-net (with and without post-processing).

For the segmentation task, we could not compare our approach with FMC since this method does not include 
a segmentation routine, nor with ILASTIK since it is not designed to process star-shaped cells like astrocytes. Also 
we could not include a comparison with the recent work by Yang et al.16 since their methods is designed to work 
with 3D images and cannot be applied directly in the 2D setting.

We compared our method with the Biovoxxel algorithm that was proposed specifically for astrocyte segmen-
tation11 and a standard U-net. As we observed above, the direct application of the BioVoxxel algorithm performs 

Figure 8.  Comparison of astrocyte segmentation performance. (a,e,i,m) Representative image patches 
extracted from Fig.7(a) and containing mouse cortex astrocytes; (b,f,j,n) corresponding segmentation 
generated by the BioVoxxel algorithm in FIJI (applied locally, on the patch); (c,g,k,o) segmentation result 
using our GESU-net without post processing step; (d,h,l,p) segmentation result using our GESU-net including 
the post processing step; panels (l,p) use different colors (green, yellow, blue) to illustrate the separation of 
contiguous cells (red color indicates processes that cannot be reliably attributed to either cell). Dice’s Coefficient 
(DC) values are reported using GESU-net before and after postprocessing.
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poorly as it misses a large number of processes emanating from the cells. We have shown that the modified 
BioVoxxel algorithm that works in combination with our cell detection routine and then applies the automated 
threshold locally performs significantly better. However, as shown in Fig. 8, it is not as accurate as our approach 
in segmenting finer astrocyte processes and cannot separate contiguous cells unlike our pipeline does. This high-
lights the advantages of using a targeted learning based strategy.

To better illustrate the advantages of our network design and the relative merit each block of our algorith-
mic pipeline on the segmentation performance, we reported in Table 2 a comparison of our GESU-net not only 
with a standard U-net but also with a modified U-net that includes a pre-trained VGG16 module, like the sec-
ond block of our network. The table shows that U-net with VGG16 performs better than amstandard U-net but 
not as well as our GESU-net in terms of Dice’s Coefficient. Inspection of the table shows that the improvement 
is due to the higher Precision suggesting that GESU-net improves the True Positive count reducing potential 
over-segmentation.

In summary, we have shown that our multistep network-based approach for astrocyte detection and segmen-
tation is very reliable even in images that contain dense cell populations and is very competitive against existing 
methods.

Even though we developed method using fluorescent images of astrocytes in the mouse cortex, we have shown 
that its approach is sufficiently robust to deal with astrocyte from brightfield microscopy images of astrocytes 
acquired from other brain regions. While it is known though astrocytes exhibit a rather diverse morphology in 
various brain regions, we expect that our approach would still be effective with other astrocyte populations. To 
ensure high segmentation performance though, it might be necessary to re-train our GESU-net including train-
ing samples representative of the populations of interest.

Finally we remark that our new pipeline offers a substrate for further quantitative analysis of astrocytes. While 
our network-based approach learns to segment an astrocyte, it also learns a representation of its morphology 
that is encoded in the network coefficients. This can be exploited to generate feature vectors according to the 
principles of representation learning36,37. Since we have shown that our pipeline has the ability to automatically 
detect, extract and segment astrocytes in a multicellular image with high efficiency, the same framework could be 
adapted to compute morphological characteristics and developed into an efficient methods for astrocyte profiling 
and classification.

Data availability
Code and imaging set Set_1 are available at https://github.com/cihanbilge/AstrocyteSegmentation. Imaging set 
Set_2 is available at https://data.broadinstitute.org/bbbc/image_sets.html.
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