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Abstract

The mechanism of action of histone deacetylase inhibitors (HDACi) is mainly attributed to

the inhibition of the deacetylase catalytic activity for their histone substrates. In this study,

we analyzed the abundance of class I HDACs in the cytosolic, nuclear soluble and chroma-

tin bound cellular fractions in breast cancer cells after HDACi treatment. We found that

potent N-hydroxy propenamide-based HDACi induced a concentration dependent decrease

in the HDAC1 associated with chromatin and a lasting concomitant increase in cytoplasmic

HDAC1 while maintaining total protein expression. No such change occurred with HDAC2

or 8, however, an increase in cytoplasmic non-phosphorylated HDAC3 was also observed.

The subcellular re-equilibration of HDAC1 was subsequent to the accumulation of acety-

lated histones and might be cell cycle dependent. This study suggests that the biological

activity of a subset of N-hydroxy propenamide-based HDACi may stem from direct competi-

tion with histone substrates of HDACs as well as from spatial separation from their sub-

strates in the nucleus and/or change in post-translational modification status of HDACs.

Introduction

Gene expression is controlled through modification of histone tails, which relaxes or con-

denses chromatin at different loci and effectively promotes or prevents access of the transcrip-

tional machinery to DNA. Histone deacetylase (HDAC) is a family of 18 human enzymes that

catalyze the removal of acetyl marks form histones and other protein substrates. HDACs are

classified based on sequence homology to yeast and the classical zinc-dependent HDACs are

class I–HDAC1, 2, 3 and 8 –class II–HDAC4, 5, 6, 7, 9 and 10 –and class IV–HDAC11 [1, 2].

Although HDAC11 closely relates to class I HDACs, the sequence similarity is too low to be
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classified as a class I HDAC [3]. Deacetylation of histones is mainly attributed to the class I

HDACs, which has been shown to regulate a variety of cellular processes including cell cycle,

proliferation, DNA repair, differentiation, and apoptosis [1, 4]. Given their role in gene regula-

tion, HDACs have emerged as promising targets for treating various cancers and a range of

autoimmune and neurodegenerative diseases, with four HDAC inhibitors (HDACi) FDA-

approved to treat cutaneous or peripheral T-cell lymphoma or multiple myeloma [1].

In general, HDACi consist of 1) a zinc binding group, 2) surface binding group and 3) a

linker to connect these two components and span the hydrophobic active site channel. Several

structural classes with variation of these components exist, including long chain hydroxamic

acids like suberoylanilide hydroxamic acid (SAHA, Fig 1), a pan inhibitor of class I and II

HDACs; N-hydroxy propenamides such as panobinostat and trichostatin A (Fig 1), also pan

class I and II inhibitors; “linkerless” hydroxamic acids such as PCI-34051 (Fig 1), an HDAC8

selective inhibitor; and ortho-aminoanilides such as entinostat (Fig 1), a class I selective

inhibitor.

The effects of HDACi are mainly attributed to competitive inhibition of the deacetylase cat-

alytic activity for their histone substrates. Under normal physiological conditions, HDAC cata-

lytic activity is regulated through several mechanisms including subcellular localization and

phosphorylation. In general, it has been shown that the class I HDACs reside in three separate

pools: chromatin bound, soluble nuclear and cytosolic [5, 6]. HDAC1 and 2 are generally

thought to be exclusively localized in the nucleus. Phosphorylation of HDAC1 and 2 promotes

enzymatic activity and in the case of HDAC2 its association with chromatin [7]. HDAC3 has

been shown to shuttle between the nucleus and cytosol, which is induced by cell cycle progres-

sion [8], DNA repair, [9] and differentiation [10]. Similar to HDAC1 and 2, HDAC3 phos-

phorylation also promotes enzymatic activity.

In this study, we investigated how HDACi affect the mechanisms that normally regulate the

catalytic activity of class I HDACs in human breast cancer cell lines. MCF-7 and MDA-MB-

231 cell lines were chosen as several HDACi have been shown to induce scaffold dependent

effects on cell cycle and viability [11–14]. We found that the subcellular localization of select

class I HDACs is dose dependently altered in response to a subset of HDACi scaffolds without

changing the total cellular abundance. The re-equilibration of subcellular localization was only

observed for HDAC1. For HDAC3, however, we observed a change in the phosphorylation

state in response to treatment with HDACi. In addition, we noted that the re-equilibration of

HDAC1 localization was subsequent to accumulation of histones and might be related to the

cell cycle. This study adds a spatial and post-translational component to the mechanism of

action of HDACi in conjunction to inhibition of catalytic activity.

Materials and methods

Cell culture and HDACi treatment

Human cell line MCF-7 was obtained from Dr. Debra Tonetti (University of Illinois at Chi-

cago) and was maintained in RPMI supplemented with 10% FBS, 1% non-essential amino

acids, 2 mM L-glutamine, 1% Pen-Strep and 0.01 mg/mL human recombinant insulin at 37˚C

in 5% CO2. MDA-MB-231 human cell line was obtained from Dr. Clodia Osipo (Loyola Uni-

versity Chicago) and was maintained in IMEM media (Corning) supplemented with 10% FBS,

1% non-essential amino acids, 2 mM L-glutamine, 10 mM HEPES and 1% Pen-Strep at 37˚C

in 5% CO2. Cells (2.1x106) were plated in 10-cm plates in culture media for biochemical frac-

tionation and whole cell lysate analysis. For confocal microscopy, cells were plated in an 8-well

chambered slide (Thermo Fischer) at a density of 35,000 cells per well. After 48 hours, culture

media was replaced with serum free media. After 24 hours, cells (80–90% confluence) were
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treated with HDACi (Selleckchem) at a concentration of 0.2, 10, or 50 μM in serum free

medium. These concentrations span above and below all previously reported cell-based EC50

[11, 12, 15, 16]. For cell cycle analysis, cells were seeded in a clear-bottom 96-well plate, serum

starved for 24 hours followed by HDACi treatment for 12 hours. The cells were then fixed with

ice-cold methanol for 15 minutes, stained with propidium iodide for 40 minutes and imaged

with Celigo image cytometer (Nexcelom Bioscience). Cell cycle analysis was conducted using

FCS Express 6 Multicycle application (De Novo Software).

Biochemical cellular fractionation

Our method for biochemical fractionation was developed based on a previous work [17].

Briefly, cells were washed with phosphate buffered saline (PBS) and then scraped with a rubber

policeman in PBS. Cells were then pelleted by centrifugation at 1,000g for 5 minutes at 4˚C in

a 1.7 mL Eppendorf tube (Thermo Fischer). The pellet was then resuspended in 300 μL ice-

cold cytosolic lysis buffer (10 mM HEPES, 10 mM KCl, Igepal CA-630 (Sigma-Aldrich, 0.2%

for MCF-7 cells and 0.05% for MDA-MB-231 cells), 1X cOmplete Protease Inhibitor Cocktail

(Roche), and 1:100 Phosphatase Inhibitor Cocktail Set II (EMD Millipore)) and vortexed for

10 seconds at room temperature (RT). The cells were allowed to swell for 10 minutes at RT

and then vortexed again for 10 seconds at RT. Next, the nuclei were pelleted by centrifugation

at 6,500g for 5 minutes at 4˚C, the supernatant (cytosolic fraction) was collected and the

nuclear pellet was washed with ice-cold cytosolic lysis buffer without Igepal CA-630. The

nuclei were again pelleted at 6,500g for 5 minutes at 4˚C and the supernatant discarded. The

nuclear pellet was resuspended in 150 μL ice-cold no salt lysis buffer (3 mM EDTA, 1X

Fig 1. Structures of a diverse selection of HDACi. Panobinostat, trichostatin A, and SAHA are pan-isoform inhibitors.

Entinostat is a class I selective inhibitor. PCI-34051 is an HDAC8 selective inhibitor.

https://doi.org/10.1371/journal.pone.0186620.g001
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cOmplete Protease Inhibitor Cocktail, and 1:100 Phosphatase Inhibitor Cocktail Set II) by son-

ication (5 seconds) on ice. The solution was then incubated with rotation for 30 minutes at

4˚C. Chromatin was pelleted by centrifugation at 6,500g for 5 minutes at 4˚C, the supernatant

(nuclear soluble fraction) was collected and chromatin was resuspended in ice-cold high salt

lysis buffer (50 mM HEPES, 0.5 M NaCl, 0.05% Igepal CA-630, 1X cOmplete Protease Inhibi-

tor Cocktail, and 1:100 Phosphatase Inhibitor Cocktail Set II) by vortexing for 2 minutes in

30-second rounds at RT. The solution was then incubated with rotation for 30 minutes at 4˚C.

The DNA and nuclear matrix were pelleted by centrifugation at 14,000g for 10 minutes at 4˚C.

The supernatant (chromatin bound fraction) was collected and the pellet was discarded. The

chromatin bound fraction was dialyzed into a lower salt concentration buffer (10 mM HEPES,

100 mM NaCl, 10 mM KCl, 5% glycerol, and 0.3% Igepal CA-630, 1X cOmplete Protease

Inhibitor Cocktail, and 1:100 Phosphatase Inhibitor Cocktail Set II) to improve SDS-PAGE

running conditions as described previously [18]. All fractions were kept on ice until further

analysis and then stored at -20˚C.

Whole cell lysate preparation

Cells were washed with PBS, scraped with a rubber policeman in PBS and pelleted by centrifu-

gation at 1,000g for 5 minutes at 4˚C in a 1.7 mL Eppendorf tube. Next, the pellet was resus-

pended in 300 μL ice-cold RIPA lysis buffer (150 mM NaCl, 0.5% sodium deoxycholate, 0.1%

sodium dodecyl sulfate, 50 mM Tris pH 8.0, 1% Igepal CA-630, 1X cOmplete Protease Inhibi-

tor Cocktail, and 1:100 Phosphatase Inhibitor Cocktail Set II) and incubated with rotation for

30 minutes at 4˚C. Insoluble cellular matrix was pelleted at 14,000g for 10 min at 4˚C and the

supernatant was collected and kept on ice until further analysis and then stored at -20˚C.

Western blotting

Protein concentration of each cellular fraction was characterized with the Pierce BCA Assay Kit

(Thermo Fischer). Proteins were diluted 3:1 with 4X Laemmli sample buffer containing 5% β-mer-

captoethanol (Bio-Rad), boiled for 5 minutes, loaded onto a 12% polyacrylamide gel and electro-

phoretically separated (100 V, 1.5 hours). Equal portions of cytosolic, nuclear soluble and chrom-

atin bound fractions were used for each experiment. After electrophoresis, proteins were transferred

to a nitrocellulose membrane (iBlot 2 (Invitrogen) mode P3 for 7 minutes). Equal protein loading

was confirmed with Ponceau S staining (Sigma-Aldrich). After staining, the membranes were

blocked with Odyssey blocking buffer (Li-Cor) for 2 hours at RT, and then incubated with primary

antibodies in blocking buffer for HDAC1 (Abcam, ab7028, lot GR188529-1, rabbit), HDAC2

(Abcam, ab124974, lot GR97402-7, rabbit), HDAC3 (Abcam, ab7030, lot GR121157, rabbit), non-

phosphorylated HDAC3 (Ref [19]; Millipore, 05–813, lot 2726719, mouse), GAPDH (Abcam,

ab128915, lot GR90965-22, rabbit), TATA-binding protein (Abcam, ab818, lot GR131329-14,

mouse), H3 (Abcam, ab1791, lot GR242835-1, rabbit) and Acetyl-histone H3 (Millipore, 06–599,

lot 2153150, rabbit) overnight at 4˚C. The membranes were then washed three times with PBS con-

taining 0.1% Tween-20 (PBST) for 5 minutes at RT. The membranes were then incubated with an

anti-rabbit or anti-mouse IRDye-conjugated secondary antibody (Li-Cor) for 1 hour at RT. The

membranes were then washed 3 times with PBST for 5 minutes and visualized using the Odyssey

Sa scanner (Li-Cor). Densitometry analysis was performed with Image Studio version 5.2 (Li-Cor).

Confocal microscopy

Cells were washed two times with PBS and fixed by incubating with 4% formaldehyde (Sigma-

Aldrich) in PBS for 10 minutes at RT. Cells were then washed two times with PBS for 5 min-

utes at RT. Next, the cells were permeabilized by incubating with 0.1% Triton X-100 (Thermo
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Fischer) in PBS for 1 min at RT. After permeabilization, the cells were washed two times with PBS

and then blocked with 10% goat serum (Thermo Fischer) for 1 hour at RT. The blocking buffer

was decanted and rabbit monoclonal HDAC1 antibody (Abcam) in blocking buffer was added.

After incubation at 4˚C overnight, the cells were washed two times with PBS for 5 minutes at RT

and then incubated for 1 hour at RT with Alexa Flour 488-conjugated goat anti-rabbit secondary

antibody (Thermo Fischer) in 1% goat serum (Thermo Fischer). The cells were then washed two

times with PBS for 5 minutes at RT, dried for 5 minutes, mounted with Prolong Gold Antifade

Mountant containing DAPI (Thermo Fischer) and allowed to cure in the dark for 24 hours. The

slide was visualized with a Zeiss LSM 710 (25 mW Multi-line Ar laser for Alexa Flour 488, 30

mW diode UV laser for DAPI) containing a 63x/1.46 Oil alpha Plan-Apochromat objective.

The correlation between the HDAC1 fluorescence signal and the DAPI stain signal was

analyzed with JACoP (ImageJ) and the Pearson’s coefficient calculated for each HDACi optical

section. Pearson’s coefficient range from 1 to −1, with 1 standing for complete positive correla-

tion and −1 for a negative correlation, and zero standing for no correlation.

Statistical analysis

Statistical analyses were performed with GraphPad Prism 7 software. All data are shown as

mean ± standard deviation. Student’s t-test (two-tailed) was used to measure statistically sig-

nificant differences between groups. P value< 0.01 was considered statistically significant for

this study.

Results

HDACi affect the subcellular localization of HDAC1

As three separate pools of HDACs, cytosolic, nuclear soluble, and chromatin bound fractions

have been previously reported [5, 6], we sought to analyze the effect that HDAC inhibition

may have on the abundance of HDACs in these fractions. We treated serum starved MCF-7

cells with five structurally diverse pan and isoform selective HDACi (Fig 1) at 0.2, 10, and

50 μM for 12 hours followed by biochemical fractionation of cells into cytosolic, nuclear solu-

ble, and chromatin bound portions. These concentrations of inhibitors were chosen as they

span both above and below the reported cell-based EC50’s [11, 12, 15, 16] and in vivo plasma

concentrations [20–24] for all the compounds evaluated in this study. We treated cells aligned

at G0/G1 with HDACi so that only one cell cycle was analyzed, as the doubling time of MCF-7

cells is 24 hours [25]. Western blot analysis of these fractions shows that 12-hour treatment

with panobinostat and trichostatin A, but not SAHA, entinostat or PCI-34051, induce a statis-

tically significant concentration-dependent decrease of the chromatin bound HDAC1 fraction

and a concomitant increase in the cytoplasmic fraction (Fig 2A and 2B, S1 Fig). This was exclu-

sive for HDAC1, in comparison to the other class I HDACs 2, 3 or 8 (S1 Fig).

At 0.2, 10, and 50 μM, panobinostat reduced HDAC1 bound to chromatin to 74±10, 58±11

and 44±5.0 percent of the DMSO control, respectively. At the same concentrations, trichosta-

tin A reduced the HDAC1 bound to chromatin to 95±1.5, 73±7.0 and 45±0.048 percent of the

DMSO control, respectively. Both panobinostat and trichostatin A did not significantly affect

cell viability compared with DMSO control (S2 Fig). Neither of the HDACi affected the abun-

dance of HDAC1 in the nuclear soluble cellular fraction (Fig 2A). Similar to MCF-7 cells, we

also observed trichostatin A, but not entinostat affected the subcellular distribution of HDAC1

in another cell line, MDA-MB-231 (S3 Fig). To investigate whether the total abundance of

HDAC1 was changing in response to the HDACi that were affecting its subcellular localiza-

tion, we prepared whole cell lysates from cells treated with 0.2, 10, and 50 μM panobinostat.

We observed no difference in the total abundance of HDAC1, HDAC2, 3 and 8 at any
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Fig 2. Potent HDACi alter the subcellular localization of HDAC1. MCF-7 cells were treated with indicated concentrations

of panobinostat or trichostatin A for 12 hours. A) Western blot analysis of the abundance of HDAC1 in the cytosolic, nuclear

soluble, and chromatin bound fractions. B) Densitometry analysis of the abundance of HDAC1 normalized to GAPDH

(cytosolic fraction) or to TATA-binding protein (TBP, nuclear soluble and chromatin bound fractions). C) Western blot analysis

of the total abundance of class I HDACs and the loading controls TBP, GAPDH, and histone H3 after treatment with indicated

concentrations of panobinostat for 12 hours. * Statistically significant difference compared with DMSO control (Student’s t-

test, P<0.01). Western blots shown are representative of at least two independent experiments. HDAC1 fold change is

presented as the mean of at least two independent experiments ± standard deviation.

https://doi.org/10.1371/journal.pone.0186620.g002
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concentration of panobinostat in comparison to DMSO control (Fig 2C). The validity of the

biochemical fractionation was confirmed by the absence of GAPDH and HDAC8 [26–28] in

the nuclear soluble and chromatin bound cellular fractions, and the absence of TATA-binding

protein (TBP) in the cytosolic cellular fraction (data not shown). Moreover, HDACi treatment

did not alter the total cellular abundance of these loading controls (Fig 2C). We initially

attempted to use histone H3 (H3) as the nuclear loading control, however, we observed that

treatment with panobinostat increased its abundance in comparison to DMSO (Fig 2C).

To confirm the HDACi-induced change in HDAC1 subcellular distribution in an orthogonal

assay, we prepared MCF-7 cell microscope slides treated with HDACi under the same conditions

as those for the biochemical fractionation. Optical sections were obtained for each HDACi by

laser scanning confocal microscopy (Fig 3, S4 Fig) and correlated well with the results obtained

by biochemical fractionation for HDAC1 (Fig 2A and 2B, S1 Fig). HDAC1 colocalized with

nuclear DAPI staining in the DMSO-treated cells for all experiments (Fig 3, optical sections A,

E), whereas it localized in the cytosol when treated with panobinostat or trichostatin A (Fig 3,

optical sections B-D and F-H, respectively). Both results were confirmed by quantitative colocali-

zation analysis (Fig 3). The cells treated with SAHA or entinostat did not exhibit any significant

change in subcellular localization of HDAC1 even at 50 μM, the highest concentration tested, (S4

Fig, optical sections B-D and F-H, respectively) and were similar to the DMSO-treated cells (S4

Fig, optical sections A and E, respectively). Cells treated with PCI-34051 did not exhibit any

change in subcellular localization of HDAC1 at 0.2 or 10 μM in comparison to DMSO control

(S4 Fig, optical sections I-K). At 50 μM PCI-34051, cells became elongated in morphology and

did not adhere to the glass slide preventing reproducible staining (S4 Fig, optical section L).

Re-equilibration of HDAC1 subcellular localization is subsequent to

accumulation of acetylated histones and is affected by mitogens

The efficacy of HDACi is generally attributed to changing gene expression by leading to an

accumulation of acetylated histones. As we have observed a change in the subcellular localiza-

tion of HDAC1 induced by HDACi, we wondered whether this precedes or is subsequent to

accumulation of histone acetylation. We tested this hypothesis by comparing histone acetyla-

tion after treatment with 10 μM trichostatin A for two and 12 hours, and compared to the

abundance of HDAC1 in the cytosol (Fig 4A and 4B). We used 10 μM trichostatin A as this

concentration robustly affected subcellular localization of HDAC1 (Fig 2A and 2B). At the

two-hour time point, there was an accumulation of total acetylation of H3, a known HDAC1

substrate, whereas no increase in cytosolic HDAC1 was observed, suggesting acetylation pre-

cedes accumulation of HDAC1 in the cytosol (Fig 4A and 4B). We also analyzed the change in

acetylation of H3 in response to 12-hour treatment with 0.2, 10, and 50 μM trichostatin A or

the other four HDACi used in this study (Fig 4C). We found change in H3 acetylation corre-

lated well with the previously reported in vitro IC50 values for each of the compounds [13].

However, the change in H3 acetylation did not correlate with the compounds’ ability to change

HDAC1 subcellular localization, given entinostat showed a large increase in H3 acetylation,

but did not affect HDAC1 subcellular localization. Taken together, the in vitro HDAC inhibi-

tor activity of the compounds reported previously ([12, 13, 29, 30]) and the increase in histone

acetylation rule out cell permeability as the reason for the differences these compounds impose

on HDAC1 subcellular localization.

As others have noted a cell cycle dependent association of HDAC1 with chromatin [7, 31],

our experimental investigation into its subcellular localization after treatment with HDACi

was initially conducted after serum starvation (without mitogens). In addition, we obtained

optical sections of cycling MCF-7 cells treated with 0.2, 10, and 50 μM panobinostat for 12
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hours (data not shown). Unlike our experiments with quiescent cells, HDAC1 localization in

DMSO controls depended on cell cycle (Fig 4D), with HDAC1 diffusing from chromatin dur-

ing mitosis, confounding interpretation of samples treated with HDACi.

Re-equilibration of HDAC1 subcellular localization is sustained after

removal of HDACi

As we saw a large percentage, up to 60%, decrease of the HDAC1 associated with chromatin

upon treatment with panobinostat, we questioned whether this was a sustained change, or

Fig 3. HDACi-induced re-equilibration of HDAC1 is confirmed by confocal microscopy. MCF-7 cells were treated with indicated

concentrations of panobinostat (optical sections A-D, respectively) or trichostatin A (optical sections E-H, respectively) for 12 hours, fixed,

permeabilized and optical sections were obtained by laser scanning confocal microscopy. Fluorescence signal for HDAC1 is shown in green

(left panels), DAPI staining is shown in blue (middle panels), and merged optical sections are shown in the right panels. Colocalization analysis

of HDAC1 fluorescence signal and the DAPI stain signal was performed with JACoP (ImageJ) and shown below. * Statistically significant

difference compared with DMSO control (Student’s t-test, P<0.01). Pearson’s Coefficient is presented as the mean of at least two independent

experiments ± standard deviation. Optical sections shown are representatives of at least two independent experiments.

https://doi.org/10.1371/journal.pone.0186620.g003
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whether the cell could recover. To answer this question, we pulsed MCF-7 cells with 10 μM

panobinostat treatment for 12 hours, and allowed the cells to recover for approximately one

cell cycle (24 hours) in fresh media without the inhibitor. We observed that the cytosolic frac-

tion of HDAC1 remained increased, and the chromatin bound fraction remained decreased in

response to treatment with panobinostat (Fig 5A and 5B). In addition, the nuclear soluble frac-

tion of HDAC1 decreased (Fig 5A and 5B), which did not occur with 12-hour treatment of

panobinostat (Fig 2A). Furthermore, H3 acetylation remained increased similar to 12-hour

treatment with panobinostat (Fig 4B).

HDAC3 phosphorylation state is affected by HDACi treatment

In addition to subcellular localization, we also investigated HDAC3 phosphorylation state in

response to HDACi treatment, as this isoform’s subcellular localization was not affected (S1

Fig). Using an antibody found to be specific for non-phosphorylated HDAC3 [19], we ana-

lyzed the amount of non-phosphorylated HDAC3 after treatment with 0.2, 10 and 50 μM

Fig 4. HDAC1 re-equilibration induced by HDACi is subsequent to histone acetylation and is affected

by mitogenic stimuli. A) Western blot analysis of cytosolic fractions of MCF-7 cells treated with indicated

concentrations of trichostatin A for 2 hours. B) Densitometry analysis of western blots of chromatin fractions

from MCF-7 cells treated with 10 μM trichostatin A for 2 and 12 hours; change in AcH3 was normalized to

TBP. C) Western blot analysis of chromatin bound fractions from MCF-7 cells treated with indicated

concentrations of HDACi for 12 hours. D) Laser scanning confocal microscopy of MCF-7 cells, grown with

10% serum and treated with DMSO for 12 hours. Fluorescence signal for HDAC1 is shown in green (left

panels), DAPI staining is shown in blue (middle panels), and merged optical sections are shown in the right

panels. Representative optical section from two independent experiments is shown. Arrows indicate mitotic

cells where HDAC1 is dispersed off chromatin, as indicated by DAPI staining. * Statistically significant

difference compared with DMSO control (Student’s t-test, P<0.01).

https://doi.org/10.1371/journal.pone.0186620.g004
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Fig 5. Increase in cytosolic HDAC1 is irreversible up to 24 hours. MCF-7 cells were treated with 10 μM

panobinostat for 12 hours, the compound was then removed and cells allowed to recover for 24 hours. A)
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panobinostat, trichostatin A, SAHA, entinostat or PCI-34051 (Fig 6A). We observed 1.8–3.8

and 1.8–2.3-fold increase in non-phosphorylated HDAC3 in response to panobinostat and tri-

chostatin A, respectively (Fig 6B). We found SAHA, entinostat, and PCI-34051 did not induce

a significant change in non-phosphorylated HDAC3 (Fig 6A and 6B). These results along with

the HDACi-induced re-equilibration of the subcellular localization are summarized in Fig 7.

Discussion

HDAC catalytic activity is normally regulated by controlling subcellular localization and phos-

phorylation status, among other mechanisms. In this study, we found that HDACi, whose

effects are generally thought to be associated with competition with endogenous histone sub-

strates, also affect subcellular localization and phosphorylation of class I HDACs in a chemo-

type dependent manner.

In particular, the pan HDACi panobinostat and trichostatin A induced a dose dependent

increase in the cytosolic HDAC1 and a decrease in chromatin bound HDAC1 in MCF-7 and

MDA-MB-231 cells. This response was not detected for the other class I HDACs. Instead, we

observed a change in the phosphorylation state of HDAC3. Both panobinostat and trichostatin

A dose dependently increased non-phosphorylated HDAC3 in the cytoplasm, with no change

in total HDAC3 expression. Given that the total HDAC1 expression was not affected as well,

the change in HDAC1 subcellular localization could either be caused by a translocation from

chromatin to cytosol, or a degradation of chromatin bound HDAC1 coupled with a matching

increase in translation of HDAC1 in the cytoplasm. HDACs are key regulators of gene expres-

sion, and the set of HDACi used in this study differentially affects gene expression in breast

cancer cell lines used [15, 32–35]. Others have also observed that trichostatin A treatment

increases HDAC1 mRNA levels [36]. As cells respond to trichostatin A by increasing HDAC1

mRNA production, a degradation/increased translation mechanism is likely responsible for

our observation, which warrants future validation by blocking protein synthesis with cyclohex-

imide or actinomycin D. The re-equilibration of HDAC1 subcellular localization likely play a

role in the mechanism of action of HDACi given that it was significant starting at 200 nM and

10 μM for panobinostat and trichostatin A, respectively, which are within concentrations

reported in vitro and in vivo [15, 16, 20–22]. The observations appear to be independent of the

estrogen receptor (ER) status considering that they were observed in ER+ MCF-7 and ER-

MDA-MB-231 cells.

In addition, we observed that the re-equilibration of HDAC1 subcellular localization is sen-

sitive to mitogenic stimuli. Re-equilibration of HDAC1 subcellular localization induced by

panobinostat could be clearly observed by confocal microscopy only after cells were serum

starved. When cells were cultured in the presence of serum, HDAC1 subcellular localization

varied greatly in the DMSO control, depending on what part of the cell cycle an individual cell

was in. Others have observed mitogens can induce HDAC1 dissociation from chromatin [37]

and cell cycle dependent histone hyperacetylation has been noted going from G1 to S phase

[37] and hypoacetylation leading into mitosis [31]. In our study, we found that histone hypera-

cetylation precedes re-equilibration of HDAC1 subcellular localization. Taken together these

data suggest that HDACi, initially induce histone hyperacetylation, which may be recognized

Western blot analysis of the abundance of HDAC1 in the cytosolic, nuclear soluble, and chromatin bound

fractions. B) Densitometry analysis of the abundance of HDAC1 normalized to GAPDH (cytosolic fraction) or

to TATA-binding protein (TBP, nuclear soluble and chromatin bound fractions). * Statistically significant

difference compared with DMSO control (Student’s t-test, P<0.01). Western blots shown are representative of

at least two independent experiments. HDAC1 fold change is presented as the mean of at least two

independent experiments ± standard deviation.

https://doi.org/10.1371/journal.pone.0186620.g005
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Fig 6. Potent HDACi increase the abundance of non-phosphorylated HDAC3. MCF-7 cells were treated with indicated

concentrations of panobinostat, trichostatin A, or SAHA for 12 hours and then biochemically fractionated. A) The abundance of

non-phosphorylated HDAC3 was characterized by Western blot analysis in the cytosolic fraction. B) Densitometry analysis of the
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PLOS ONE | https://doi.org/10.1371/journal.pone.0186620 October 18, 2017 12 / 18

https://doi.org/10.1371/journal.pone.0186620


by the cell as a G1 to S phase transition, inducing a shift of HDAC1 from chromatin to cytosol,

as would occur during normal cell cycle progression. As HDAC1 remains in the cytosol, the

cell cannot progress from G2 to M phase when deacetylation is necessary for chromatin con-

densation, leading to arrest, which is in line with the observed G2/M arrest induced by HDACi

(data not shown).

Curiously, we observed a sustained increase in cytosolic and decrease in chromatin bound

HDAC1 after the pulse treatment with panobinostat followed by recovery for 24 hours,

roughly one cell cycle. In addition, acetylation of H3 remained increased after 24-hour recov-

ery. This model is depicted in Fig 7. Longer recovery times after pulse treatment of HDACi

may yield a return to basal HDAC1 levels in the cytosol; however, pulse treatment with pano-

binostat has been shown to induce cell death starting around 12 hours [13], which is the same

time necessary to induce re-equilibration of HDAC1 subcellular localization. Therefore, re-

equilibration of HDAC1 subcellular localization may be irreversible and may play role in

HDACi induced cell death, given their similar kinetics. Others have observed inhibitor bind-

ing and histone acetylation kinetics do not correlate well with the time to induce cell death

[38]. Our study identifies a plausible additional component of the mechanism of action of

HDACi that may better correlate with induction of cell death. This mechanism may be useful

in drug discovery efforts since this subset of HDACi is associated with increased efficacy in a

number of cancer cell types [13].

The re-equilibration of HDAC1 subcellular distribution and change in HDAC3 phosphory-

lation was HDACi scaffold dependent. We only observed significant changes in either of these

phenomena with panobinostat and trichostatin A, but not SAHA, entinostat or PCI-34051

treatment. Both trichostatin A and panobinostat feature alkenyl groups in the linker portion

which have been shown to affect the tertiary structure of targeted HDACs differently than

compounds with alkyl linkers like SAHA [39]. Changes in tertiary structure could potentially

affect HDAC protein-protein interactions, which is known to control HDAC subcellular local-

ization [40]. Indeed, others have shown that trichostatin A disrupts HDAC1 complex forma-

tion more potently than SAHA [41].

The changes in subcellular localization or phosphorylation were not dependent upon

the relative induction of histone H3 acetylation. While panobinostat and trichostatin A,

caused the largest increase in H3 acetylation and the most significant change in HDAC1

subcellular localization or HDAC3 phosphorylation, SAHA and entinostat also induced

H3 acetylation without significantly affecting HDAC1 subcellular localization. No change

in histone acetylation was observed with PCI-34051 treatment, which is in line with reports

showing it is an HDAC8 selective inhibitor; HDAC8 cannot deacetylate histones as we

found it exclusively localized in the cytosol. Taken together our data show that only N-

hydroxy propenamide-based HDACi scaffolds induce the change in HDAC subcellular

localization or phosphorylation.

A large body of research has focused on the selective recruitment of HDACs to individual

genes, to determine whether the gene is epigenetically silenced in a context of interest. These

studies often employ chromatin immunoprecipitation (ChIP) and are typically validated with

use of an HDACi to show that the HDAC activity is necessary for changing the expression of

the gene. This study clearly demonstrates that some HDACi induce up to 60% dissociation of

abundance of non-phosphorylated HDAC3 normalized to GAPDH. * Statistically significant difference compared with DMSO

control (Student’s t-test, P<0.01). Western blots shown are representative of at least two independent experiments. HDAC3 fold

change is presented as the mean of at least two independent experiments ± standard deviation.

https://doi.org/10.1371/journal.pone.0186620.g006
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Fig 7. A model of the mechanism of action of propenamide-based HDACi including re-equilibration of the subcellular

distribution and modulation of the post-translational modification of HDACs. Treatment of with N-hydroxy propenamide-based

HDACi modulate subcellular localization and PTM state of class I HDACs
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the total HDAC1 bound to chromatin, which should be taken into consideration when inter-

preting ChIP data.

This study suggests that the biological activity of a subset of N-hydroxy propenamide-based

HDACi may stem from direct competition with histone substrates of HDACs as well as from

spatial separation from their substrates in the nucleus and/or change in post-translational

modification status of HDACs. Future studies are needed to investigate other HDACi chemo-

types, elucidate the mechanism, expand beyond breast cancer cells, and determine if the same

phenomenon is observed in vivo.

Supporting information

S1 Fig. The impact of HDACi treatment on the subcellular localization of class I HDACs.

MCF-7 cells were treated with indicated concentrations of panobinostat, trichostatin A,

SAHA, Entinostat, or PCI-34051 for 12 hours and then fractionated biochemically. The abun-

dance of class I HDACs was characterized by Western blot analysis in the cytosolic (top

panel), nuclear soluble (middle panel), and chromatin bound (bottom panel) fractions. West-

ern blots shown are representative of at least two independent experiments.

(TIF)

S2 Fig. HDACi treatment does not significantly affect MCF-7 cell viability. MCF-7 cells

were serum starved for 12 hours and treated with indicated concentrations of panobinostat or

trichostatin A. Cells were fixed, stained with propidium iodide (PI), and cell cycle analysis was

conducted with Celigo image cytometer. Three-dimensional plot on left shows integrated PI

intensity and table on right shows percentage of apoptotic cell population for each treatment.

Percentage values are expressed as mean ± standard deviation of three replicates.

(TIF)

S3 Fig. Trichostatin A treatment induces re-equilibration of HDAC1 subcellular localiza-

tion in MDA-MB-231 cells. MDA-MB-231 cells were treated with 50 μM trichostatin A or

entinostat for 12 hours and then fractionated biochemically. A) The abundance of HDAC1

was characterized by Western blot analysis in the cytosolic (top panel), and chromatin bound

(bottom panel) fractions. B) Densitometry analysis of the abundance of HDAC1 normalized to

GAPDH loading control.

(TIF)

S4 Fig. HDACi-induced re-equilibration of HDAC1 analysis by confocal microscopy.

MCF-7 cells were treated indicated concentrations of SAHA (optical sections A-D, respec-

tively), entinostat (optical sections E-H, respectively), or PCI-34051 (optical sections I-L,

respectively) for 12 hours, fixed, permeabilized and optical sections were obtained by laser

scanning confocal microscopy. Fluorescence signal for HDAC1 is shown in green (left panels),

DAPI staining is shown in blue (middle panels), and merged optical sections are shown in the

right panels. Colocalization analysis of HDAC1 fluorescence signal and the DAPI stain signal

was performed with JACoP (ImageJ). Pearson’s Coefficient is presented as the mean of at least

two independent experiments ± standard deviation. Optical sections shown are representatives

of at least two independent experiments.

(TIF)

HDACi increase histone acetylation at 2 hours without affecting the subcellular localization or the phosphorylation status of HDACs.

At 12 hours, re-equilibration of subcellular localization as well as a decrease in phosphorylation of HDACs is observed, along with a

greater increase in histone acetylation. The induced change in subcellular localization and phosphorylation of HDACs is sustained 24

hours after removal of HDACi. This is in line with the time necessary to induce commitment to cell death with HDACi.

https://doi.org/10.1371/journal.pone.0186620.g007
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