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Abstract: In this paper, nano/microfibrils were applied to enhance the mechanical and hydrophobic
properties of the sugarcane bagasse fiber films. The successful preparation of nano/microfibrils was
confirmed by scanning electron microscope (SEM), X-ray diffraction (XRD), fiber length analyzer
(FLA), and ion chromatography (IC). The transparency, morphology, mechanical and hydrophobic
properties of the cellulose films were evaluated. The results show that the nanoparticle was formed
by the hemicellulose diffusing on the surface of the cellulose and agglomerating in the film-forming
process at 40 ◦C. The elastic modulus of the cellulose film was as high as 4140.60 MPa, and the water
contact angle was increased to 113◦. The micro/nanostructures were formed due to hemicellulose
adsorption on nano/microfilament surfaces. The hydrophobicity of the films was improved. The
directional crystallization of nano/microfibrous molecules was found. Cellulose films with a high
elastic modulus and high elasticity were obtained. It provides theoretical support for the preparation
of high-performance cellulose film.

Keywords: bagasse; nano/microfibrils; hydrophobicity; high pliability; high-consistency refiner

1. Introduction

Due to the extensive use of petroleum-based materials, a great deal of white pollution
brings a critical menace to the ecotope [1]. In recent years, people have paid more and
more attention to the development and application of green, sustainable, and renewable
environment-friendly materials [2,3]. Cellulose films (i.e., nanofibrils film [4], microfib-
rils film [5], and nano/microfibrils film) had attracted intensive interest during the past
decade due to its green sustainable nature and constant advances in micro and nanoscale
patterning [6] for many applications of functional materials [7,8], including the filler [9],
composite material manufacturing [10–12], packaging coating [13,14], medicine [15,16],
high-performance green flexible electronics [17], and biotechnology [18].

Cellulose can be pretreated and machined to produce nanocrystalline cellulose (CNC),
nanofibrils cellulose (NFC) [19], and microfibrils cellulose (MFC) [20]. It has unique
attributes, such as enhanced capabilities [21], high mechanical strength, and adjustable
self-assembly in an aqueous solution, due to its unique surface chemistry, size, shape,
and high crystallinity [22]. At present, cellulose film research mainly focuses on the
film properties of cellulose uniform system (i.e., uniform nanocellulose system, uniform
microcellulose system), such that combining nanofibrils with renewable polymers could
prepare partially degradable materials to improve material performance deficiencies and to
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address white pollution [23,24]. Shu et al. [25] prepared cellulose-based bioplastics, which
were reorganized by the aggregation structure of cellulose. However, the hydrophobicity
of regenerated cellulose membrane was not studied.

However, the application of cellulose films developed to date has been impeded
by their poor mechanical performance and poor water resistance [26]. In the literature,
a number of approaches have been reported to improve the increased hydrophobicity
from cellulose films, such as low surface energy organic compounds [27], e.g., esterifica-
tion [28], silanization [29], amidation [30], carboxymethylation [31], and fluoropolymer [32].
Unfortunately, this approach had a poor modification effect and resulted in problems
related to organic pollution. The performance of nano/microfibril films dictates their hy-
drophobicity and pliability in relevant applications; however, utilizing the inherent structure of
nano/microfibrils within the films for materials applications was an approach still in its infancy.

The method of the nano/microfibrils film for improving hydrophobicity and pliabil-
ity, which aims to enhance the hydrophobic and pliability of the nano/microfibrils film
without surface modification (i.e., unitary nano/microfibrils component), has not been
reported. This study provides a simple pathway to improve hydrophobic and pliability
properties of sugarcane bagasse nano/microfibrils film isolated by a high-consistency
refiner and exhibiting a great potential for the further utilization of cellulose. We used
enzymatic pretreatments to investigate the grinding of sugarcane bagasse fiber using a
high-consistency refiner grinding to reproduce nano/microfibrils films to determine the
mechanical and hydrophobicity properties. The main advantage compared to previous
methods is its simplicity in preparation with less environmental pollution and a better
economic benefit. The morphology, particle size distribution, structure, and transparency of
the obtained nano/microfibrils were analyzed with a scanning electron microscope (SEM),
an atomic force microscopy (AFM), a fiber length analyzer (FLA), a zetasizer nanoanalyzer,
an X-ray diffraction (XRD), an ion-exchange chromatography (IC), and an ultraviolet and
visible spectrophotometer (UV–Vis). The water resistance and mechanical properties of the
nano/microfibrils films were analyzed by contact angle determination (CA), water vapor
transmission rate (WVTR), and tensile tests.

2. Materials and Methods
2.1. Materials and Chemicals

Bleached sugarcane bagasse pulp was procured from Guitang Co., Ltd. (Guangxi,
China). Celluclast (1.5 L, from T. reesei) was purchased from Novoxin Biotechnology Co.,
Ltd. (Beijing, China).

2.2. Methods
2.2.1. Enzyme Pretreatment

Enzymatic hydrolysis pretreatment was carried out with untreated sugarcane bagasse
samples. The fibers were treated with cellulase. The fibers and the appropriate amount
of cellulase were mixed at a ratio of 1:500. A 1 mL enzyme solution was added to every
500 mL 30 wt% bagasse samples. The enzyme activity was 16 FPU/mL. The most suitable
pH was 6.0–8.0. After constant temperature stirring at 50 ◦C for 30 min, the enzyme activity
was eliminated with a constant temperature water bath at 100 ◦C for 10 min and washed
with distilled water multiple times to remove residual enzyme liquid.

2.2.2. Preparation of Nano/Microfibrils by Mechanical Grinding

The enzyme pretreated sugarcane bagasse pulp was diluted to 30% (w/w) with dis-
tilled water and ground with a high-consistency refiner at a disc gap of 0.1 mm, and with 10,
20, 25, 30 rounds of grinding. After grinding, a mixture of nanocellulose and micro-cellulose
was stored in a refrigerator at 4 ◦C for subsequent analysis.
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2.2.3. Preparation of Nano/Microfibrils Film

A nano/microfibrils film was formed by pouring nano/microfibrils into a polystyrene
template by the flow-edge method, which could be prepared by drying nano/microfibrils
in oven at 40 ◦C for 24 h, as shown in Figure 1.
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2.3. Characterization

To evaluate the properties of samples and understand the changes caused by me-
chanical processing, a raw material analysis of fiber components was performed on the
specimens. Then, the hydrophobic and mechanical properties of cellulose film samples
were analyzed.

2.3.1. Characterization of Morphological Features

AFM (SI-DFP2, Hitachi, Tokyo, Japan) and SEM (SU8220, Hitachi, Tokyo, Japan) are
often combined with cellulose image analysis. In the SEM test, samples were observed at a
voltage of 10 kV after spraying gold under vacuum for 90 s. The magnification was 500×
and 2000×, respectively. AFM could evaluate their surfaces and morphological changes
at the test pressure of 299 kHz, an accelerating voltage of 8.1 V, and a cantilever elastic
coefficient (C) of 32 N/m.

2.3.2. XRD Analysis

The nano/microfibril films were cut into small pieces of 1.5 cm × 1.5 cm and used
XRD (Miniflex600, Rigaku, Tokyo, Japan) under CuKα ray radiation (λ = 0.15418 nm) for
inspection. The scanning range was 2θ = 5◦–35◦, and the speed was 5◦/min. The tube
pressure level and the tube flow rate were 40 kV and 30 mA, respectively. Segal’s empirical
formula (CrI) was used to calculate the crystallization index of the samples [33].

CrI (%) = (I002 − Iam)/I002 (1)

where, CrI is the crystal index, I002 is the diffraction intensity level obtained when 2θ= 22.6◦,
that is, the diffraction intensity of the crystal region. Iam is the diffraction intensity level
obtained when 2θ= 16.0◦, that is, the diffraction intensity of the amorphous region.

2.3.3. Particles Size Analysis

The particle size and its distribution of the nano/microfibril suspension were mea-
sured by Malvern Zetasizer nano (ZS90X, Malvern Panalytical, London, UK). A 0.5 wt %
nano/microfibril suspension was tested after magnetic stirring for 12 h.

The raw cellulose properties including length-weighted distribution (Ln), weight-
weighted distribution (Lw), and fines were measured with a fiber length analyzer (FLA,
Kajaani FS-300, Metso Automation, Helsinki, Finland).
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2.3.4. IC Analysis

The content of hemicellulose sugar in sugarcane bagasse pulp was determined by
ion chromatography (ICS-5000+SP, Thermo Science, Sunnyvale, CA, USA). The chro-
matographic column was a PA20, 3 × 150 mm, and the protection column was a PA10,
4 × 50 mm. A mix of 80% Milli-Q water and 20% NaOH was used for the mobile phase.
The flow rate was 0.3 mL/min. Specific steps conformed to the National Renewable Energy
Laboratory standard method TP-510-42618.

2.3.5. UV–Vis Analysis

UV–Vis (SPECORD-PLUS-50, Analytik Jena, Berlin, Germany) was used to measure
the transmittance of the samples. The film sample was carefully cut into a rectangle of
40 mm × 9 mm and placed in a quartz cuvette 25 cm from the entrance of the integrating
sphere. A quartz cuvette was placed as a blank reference. The wavelength range of
the sample was 190–1100 nm, and the transmittance of the visible band (400–800 nm)
was analyzed.

2.3.6. Water Resistance Analysis

The water contact angle of the sample was measured using a Drop Shape Analyzer
(DSA100, KRUSS, Berlin, Germany) to evaluate the surface hydrophobicity of the film
samples. The film samples were fixed on the glass slide with double-sided tape. An
automatic pipette was used to carefully apply a drop (4 µL) of distilled water onto the film
surface. Parallel tests were performed six times and the results were averaged.

The WVTR (W3/031, Labthink, Jinan, China) measurements were performed accord-
ing to the standard ASTM Standard E96/E96M-05 for cup method water vapor permeabil-
ity [34] testing at 25 ◦C with 90% RH. Weights were monitored every 30 min until constant.

2.3.7. Mechanical Properties

The mechanical properties consisting of folding endurance, elasticity modulus, and
elongation at break of the films were measured with a universal testing system (3367, IN-
STRON, Sunnyvale, CA, USA). The test was conducted at a crosshead speed of 2 mm/min
at 23 ◦C and 55% relative humidity. The sample length was 50 mm and the width was
10 mm.

3. Results
3.1. SEM Analysis of Fibers after Different Stages of Treatments

The SEM analysis of the fiber suspension obtained after different grinding stages are
shown in Figure 2a–e. The obtained images exhibit substantial differences in surface and
morphological changes. In C-0 without grinding treatment, the fiber bundle structure
was compact, and the fibers were relatively compact, such as in Figure 2a. The images
obviously show that the sugarcane-bagasse-bleached pulp fibers were nearly smashed into
nano/microfibrils after the high-consistency refiner, although a few microfibrils bundles
with correspondingly larger fibers still exist. After the mechanical processes, the tightly
bound fibers divided into smaller fiber bundles, as shown in Figure 2b–e. In the higher right
corner of Figure 2b–e are 2 µm images, which show that a large number of nano/microfibers
were partly stripped from the surface due to the effects of grinding. The fiber diameters
decreased with each treatment grinding times, and high-speed grinding gradually declined
the fiber length and layers’ thickness. After grinding more than 25 times, we observed that
cellulose fibers were almost completely decomposed into nano/microfibrils aggregates
around the fiber (Figure 2d). It formed many fine cellulose aggregates in Figure 2c,d,
possibly due to the soluble hemicellulose being exposed during the grinding process
and because hemicellulose was loosely bound to the fiber surface. Echoing the results of
Tenhunen [35], xylose, one of the principal components of hemicellulose from sugarcane
bagasse, had an affinity for cellulose and readsorbs to the cellulose surface during the
grinding process. The presence of xylan with a negative charge facilitates the liberation of
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fibrils from the pulp by generating repulsion between fibrils. Accordingly, in the case of
higher levels of hemicellulose in sugarcane bagasse, the preparation of nano/microfibers
by the high-consistency refiner became more efficient.

Polymers 2022, 14, x FOR PEER REVIEW 5 of 14 
 

 

sugarcane bagasse, had an affinity for cellulose and readsorbs to the cellulose surface dur-
ing the grinding process. The presence of xylan with a negative charge facilitates the lib-
eration of fibrils from the pulp by generating repulsion between fibrils. Accordingly, in 
the case of higher levels of hemicellulose in sugarcane bagasse, the preparation of 
nano/microfibers by the high-consistency refiner became more efficient. 

 
Figure 2. SEM micrographs of (a) the raw material C-0, (b) 10 times ground C-10, (c) 20 times ground 
C-20, (d) 25 times ground C-25, and (e) 30 times ground C-30. C-0 represents raw pulp fibers and C-
10, C-20, C-25, and C-30 represent fibers that have been grounded 10, 20, 25, and 30 times by a high-
consistency refiner, respectively. 

3.2. Particle Size and Components Analysis 
The particle size and particle size distribution of the nano/microfibrils and untreated 

fibers (C-0) suspension were measured by a zetasizer nano analyzer (Figure 3) and FLA 
(Table 1). Under the action of mechanical force, bagasse fiber was easy to crack along the 
axial direction and formed fibrillary cellulose. Fibrillated ultrafine fiber was an anon-uni-
form system composed of fibers of different sizes and shapes. Without homogenization, 
the fines fiber (0–0.2 mm) content was approximately 46.16% and when grinding 10 more 
times, the C-30 fines fiber content was approximately 53.52% (Table 1). L(n) and L(w) of 
untreated fibers were 0.34 mm and 1.20 mm, respectively; after 10 grindings, L(n) was 0.29 
mm and L(w) was 0.86 mm. These data indicate that grinding had an important effect on 
the L(w) of fibers, especially in the longitudinal direction. 

Table 1. Fiber size of different treatment stages. 

 C-0 C-10 C-20 C-25 C-30 
L(n), mm 0.34 ± 0.08 0.29 ± 0.02 0.28 ± 0.07 0.27 ± 0.02 0.27 ± 0.03 
L(w), mm 1.20 ± 0.07 0.86 ± 0.04 0.80 ± 0.03 0.80 ± 0.05 0.78 ± 0.08 
Fines, % 42.08 ± 1.46 46.16 ± 1.21 47.94 ± 0.98 50.96 ± 1.82 53.52 ± 1.63 

Fibrillated ultrafine fiber is a complex system, which contains a large number of sub-
micron and nanofibers in the range of ultrafine fibers. The zetasizer nano analyzer was 
used to analyze the particle size range of nano/microfibrils in the fibril suspension system 
(Figure 3). Different sizes and size distributions of fibrillated ultrafine fiber had an im-
portant influence on the film-forming properties. After grinding 10 times, the particle size 
distribution was in the range of 539–1591 nm. The particle size distribution of C-20 and C-
25 fibers had three distinct peaks, one at 100–500 nm, another at 500–1900 nm, and the last 
one at 3500–6500 nm (Figure 3). This indicates that the cellulose suspension was a multi-
size mixed system. After grinding 30 times, the particle size distribution was mainly con-

Figure 2. SEM micrographs of (a) the raw material C-0, (b) 10 times ground C-10, (c) 20 times ground
C-20, (d) 25 times ground C-25, and (e) 30 times ground C-30. C-0 represents raw pulp fibers and
C-10, C-20, C-25, and C-30 represent fibers that have been grounded 10, 20, 25, and 30 times by a
high-consistency refiner, respectively.

3.2. Particle Size and Components Analysis

The particle size and particle size distribution of the nano/microfibrils and untreated
fibers (C-0) suspension were measured by a zetasizer nano analyzer (Figure 3) and FLA
(Table 1). Under the action of mechanical force, bagasse fiber was easy to crack along
the axial direction and formed fibrillary cellulose. Fibrillated ultrafine fiber was an anon-
uniform system composed of fibers of different sizes and shapes. Without homogenization,
the fines fiber (0–0.2 mm) content was approximately 46.16% and when grinding 10 more
times, the C-30 fines fiber content was approximately 53.52% (Table 1). L(n) and L(w)
of untreated fibers were 0.34 mm and 1.20 mm, respectively; after 10 grindings, L(n)
was 0.29 mm and L(w) was 0.86 mm. These data indicate that grinding had an important
effect on the L(w) of fibers, especially in the longitudinal direction.

Fibrillated ultrafine fiber is a complex system, which contains a large number of
submicron and nanofibers in the range of ultrafine fibers. The zetasizer nano analyzer
was used to analyze the particle size range of nano/microfibrils in the fibril suspension
system (Figure 3). Different sizes and size distributions of fibrillated ultrafine fiber had an
important influence on the film-forming properties. After grinding 10 times, the particle
size distribution was in the range of 539–1591 nm. The particle size distribution of C-20
and C-25 fibers had three distinct peaks, one at 100–500 nm, another at 500–1900 nm,
and the last one at 3500–6500 nm (Figure 3). This indicates that the cellulose suspension
was a multisize mixed system. After grinding 30 times, the particle size distribution
was mainly concentrated in the range of 130–400 nm, and the fiber suspension system
was relatively uniform. Therefore, compared with unground bagasse cellulose, the size
distribution of ground bagasse cellulose was more extensive and richer. The average length
of unmilled cellulose was about 650–2170 µm. After milling, the cellulose system had a lot
of nanocellulose (1–10 µm) and microcellulose (10–200 µm), and some millimeter-grade
cellulose (200–7000 µm). There were many sizes of cellulose, such as nanometer (13–36%),
micron (17–32%), and millimeter (46–54%), in the cellulose suspensions. The fiber size
distribution of the fibrillated ultrafine fiber was more abundant after 25 times of grinding.
The fibrillated ultrafine fiber suspension system of C-30 was relatively uniform. It was
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feasible and highly efficient to prepare a hybrid system of fibrillated nano/microfibrils
with the high-consistency refiner.
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Table 1. Fiber size of different treatment stages.

C-0 C-10 C-20 C-25 C-30

L(n), mm 0.34 ± 0.08 0.29 ± 0.02 0.28 ± 0.07 0.27 ± 0.02 0.27 ± 0.03
L(w), mm 1.20 ± 0.07 0.86 ± 0.04 0.80 ± 0.03 0.80 ± 0.05 0.78 ± 0.08
Fines, % 42.08 ± 1.46 46.16 ± 1.21 47.94 ± 0.98 50.96 ± 1.82 53.52 ± 1.63

The analysis of the sugar composition content of fibers was obtained by ion chro-
matography. Since the hemicellulose in the bagasse bleaching pulp was mainly xylose,
there was also a small amount of arabinose and galactose. As shown in Table 2, all samples
contained three carbohydrates: glucose, xylose, and arabinose. Compared with C-0 and
C-E, the glucose and arabinose contents were reduced after grinding; instead, the xylose
content was increased. The hemicellulose contents had a significant effect on the film for-
mation, wettability, and mechanical properties of the film, through the interaction between
hemicellulose and cellulose [36]. The hemicellulose content of C-0 and C-E was 21.21%, and
20.97%, respectively, which indicated that cellulase treatment did not affect the dissolution
of hemicellulose. The content of xylose and arabinose in the cellulose suspension after
grinding decreased slightly, which proved that the hemicellulose between the secondary
wall fiber bundles was separated in the nano/microfibrils suspension after grinding, and
a part of the hemicellulose polysaccharide was soluble in water, so the measured xylose
and arabinose content decreased. The results prove that exposing sugarcane bagasse to
suitable grinding times when grinding with high-consistency refiner plays a key role that
can increase the hemicellulose content in microfibers.
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Table 2. Sugar composition of fibers after different treatment stages.

Sample
Neutral Sugars and Acidic Oligomers (%)

Glucose Xylose Arabinose

C-0 74.95 ± 4.43 21.21 ± 0.90 1.16 ± 0.0006
C-E 75.48 ± 5.48 20.97 ± 0.56 1.14 ± 0.0006
C-10 72.64 ± 5.32 19.52 ± 1.52 1.05 ± 0.0006
C-20 72.07 ± 8.89 17.46 ± 1.45 1.01 ± 0.0011
C-25 73.02 ± 7.65 17.16 ± 0.96 0.86 ± 0.0018
C-30 73.39 ± 4.09 18.66 ± 0.98 0.96 ± 0.0004

3.3. Crystallinity of Fibers after Different Treatment Stages

Figure 4 shows crystallinity of nano/microfibrils obtained after various treatments.
Two evident diffraction peaks were obtained at 16.0◦and 22.5◦, corresponding to the (110)
and (002) crystal planes of a prototypical cellulose I structure [37]. The highest crystallinity
of the cellulose (C-0) was 53.4%. After cellulase treatment of the raw materials (C-E), the
crystallinity was 55.2%. There was no significant change in crystallinity after cellulase
treatment, indicating that cellulase pretreatment had little effect on the crystallinity of
cellulose. Crystallinity indices of C-10, C-20, C-25, and C-30 were 45.0%, 47.3%, 48.2%,
and 48.3%, respectively, increasing a little with each grinding time. This may be related
to the different content of hemicellulose in cellulose suspension. Hemicellulose was an
amorphous polymer. Therefore, the XRD analysis uncovered that fibers had a striking
decrease in crystallinity index after the high-consistency refiner pretreatment. The XRD
analysis indicated that the crystallization peak of fibers did not change through the mechan-
ical process stages. Part of the hemicellulose was exposed to the fiber suspension during
the high-concentration refining process, thereby reducing the crystallinity. However, the
number of grindings had little effect on crystallinity.
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properties of nano/microfibrils were researched using a UV–vis method in Figure 5a. At 
a 400–800 nm wavelength, the light transmittance of C-0 without mechanical treatment 
was about 0.97% at room temperature. Compared with C-0, all nano/microfibrils films 
exhibited high levels of transparency and it significantly increased the transmittance to a 
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3.4. Optical Transparency of Nano/Microfibrils Films

Transparency was an important advantage in the use of packaging materials. In
Figure 5, the optical properties of the nano/microfibrils films were surveyed and compared
with photos from a camera. Moreover, the impact of grinding times on the transmittance
properties of nano/microfibrils were researched using a UV–Vis method in Figure 5a. At
a 400–800 nm wavelength, the light transmittance of C-0 without mechanical treatment
was about 0.97% at room temperature. Compared with C-0, all nano/microfibrils films
exhibited high levels of transparency and it significantly increased the transmittance to a
maximum of 18.58% (C-25) after mechanical grinding by increasing the nano/microfibrils
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content. This proved that the fine fibers play a decisive role in the transparency of the film.
The higher the fine fiber content, the higher the transparency. However, the transparency
of the C-30 film was reduced a little, by 2.36%, as the hemicellulose could enhance the
reflected light, and decrease the transmittance of the film [38].
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Figure 5. (a) Photo and optical transparency of films after different treatment stages, and (b) SEM
micrographs and digital photographs of the raw material of C-0 film and (c) C-30 film after
mechanical treatment.

SEM images of the film cross-section showed that the surface of the untreated fiber
film was nonuniform with a large number of fiber fragments and a big porosity between
fibers (Figure 5b). However, a more uniform surface morphology, smaller fibers and
nano/microfibrils bundles, and a more compact structure of the cross-section were observed
on the films after grinding (Figure 5c). This phenomenon indicated that as the grinding
time increased, more nano/microfibrils were obtained, and denser and better structure
films were formed. The tight overlap between the fibers eliminated the scattering and
reflection of light inside the film, so that the transmittance of the film was significantly
increased. Therefore, the densification and refinement of the nano/microfibrils structure
directly led to the higher transmittance and strength of films [39].

3.5. Hydrophobic Properties and Principle of Nano/Microfibrils Film

The surface hydrophobicity of raw materials and nano/microfibrils films were eval-
uated through the measurements of the surface contact angles, and the hydrophobic
mechanism of the cellulose membrane was analyzed (in Figure 6). The CA of the C-10 film
was 98.7◦, indicating that the nano/microfibrils film was hydrophobic (CA > 90◦). With
the increase of grinding times, the hydrophobicity first increased and then decreased (in
Figure 6a). The CA of the nano/microfibrils film was the highest at 113◦ after grind-
ing 25 times (Figure 6a). This may be due to the cross-linking of hemicellulose and
nano/microfibrils during the film-forming process. Hemicellulose adsorbed on the pores
of nano/microfibrils as fillers, and the surplus hemicellulose on the surface of the cellulose
to form a large number of micro/nanostructures. Thus, it had high hydrophobicity. The
surface wettability of the material depended on the surface chemistry and the surface
micro/nanostructure [40]. These two parameters determined the level of adhesion between
the droplet and the surface. The nano/microfibrils film was hydrophobic after grinding
(in Figure 6b). The primary reason was that part of the hemicellulose existed in the form
of single molecules or colloidal aggregates in the cellulose suspension after the grinding
treatment. Then, hemicellulose diffused and adsorbed to the cellulose surface to form
nanoparticles during the film-forming process at 40 ◦C. The film surface owned a certain
roughness and was hydrophobic.
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bicity, (c) SEM micrographs of the C-25 film, (d) AFM surface topography (2 × 2 µm2), and (e) 3D
image of the C-25 film.

In Figure 6c, many dense white micro/nanostructures on the surface of the film
exist, which may be because the exposed hemicellulose was adsorbed on the surface of
nanocellulose driven by entropy [41]. As previously [42] reported, the xylan is likely to
assemble into nanoparticulate aggregates in solution first and it was deposited like this onto
the cellulose fibrils, forming a large number of white micro/nanoprotrusions consistent
with the C-25 film surface 3D image analysis in Figure 6d,e. The surface roughness (Sa)
was 4.493 nm.

However, the CA measurements of C-30 film was reduced to 95◦, which could be
due to the increase of fine fiber, which broke the balance between hemicellulose and
fine cellulose in the fiber suspension system. After hemicellulose adsorbed on the pores
of nano/microfibrils, the surplus hemicellulose on the surface of cellulose decreased.
Because the micro/nanostructure formed on the surface of the film decreased, the contact
angle of C-30 slightly decreased. This phenomenon indicated that the particle size of
the fiber reduced after grinding, and that the nano/microfibrils became the principal
component of the fiber suspension. This showed that the size of fibrils determined the
macrostructure properties of the film and the hemicellulose content in the suspension
determined the microstructure properties of the film. The micro/nanostructure formed
by the exposure of the hemicellulose played the leading role in affecting the cellulose film
hydrophobicity properties.

3.6. Barrier Performance of Nano/Microfibrils Film

The water vapor barrier performance of the substrate side (contacting the polystyrene tem-
plate) as a moisture barrier was studied by the water vapor transmission rate (Figure 7a). The
water vapor transmission rate of the untreated cellulose film was about 2426.59 g/(m2·24 h). It
significantly improved the barrier properties of the film after grinding treatment. The fine
fiber content of the C-25 film was 50.96%, its permeability pass rate was 1038.16 g/(m2·24 h),
and the barrier performance was about twice as high as before. The water vapor transmit-
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tance was not a linear function of the fine fiber content, although, with the increase of the
fine fiber content, the water vapor transmittance decreased (Figure 7b). This highlighted
that the content of fine fibers increased the barrier property of the film. The water vapor
transmission rate of the C-25 film was as high as 1038.16 g/(m2·24 h) under these conditions.
According to previous studies, biodegradable films have been studied to use nanocellulose as a
coating. Compared with the moisture resistance of nanocellulose film, the WVTR of CNF-coated
paper was about 300 g/(m2·24 h), and the moisture resistance was improved by 55%. The
water vapor permeability of CNF was about 960–980 g/(m2·24 h) [43]. It was the same as that
of traditional CNF film. However, the preparation process of nano/microfibrils film in
this study was simple. After grinding treatment, the barrier properties of the film were
significantly improved. This phenomenon was primarily due to the fact that the fine fibers
became the main component of the fiber slurry after the grinding treatment. During the
film-forming process, microfibers and nanofibers were inserted between the large fiber
bundles, the pores between the large fibers were filled with fine fibrils, which separated a
part of the hemicellulose into the nano/microfiber suspension during the grinding process.
There was adsorption between hemicellulose and cellulose fibers, and hemicellulose was
used as the adhesive to fill the pores between the fine fibers again in the film-forming
process, so the barrier property of the film was improved remarkably. However, when the
content of fine fibers was 53.52%, the water vapor transmission rate of the film increased.
This was because the increase of fine fibers was much greater than the increase in hemi-
cellulose, and a large number of pores between the fine fibers could not be filled by the
increased hemicellulose, resulting in a slight decrease in the barrier properties of the film.
Therefore, fine fiber and hemicellulose were the key factors to improve the water vapor
barrier performance of nano/microfiber films.
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3.7. Mechanical Properties of Films

The thickness, folding endurance, and elastic modulus of the nano/microfibril films
are recorded in Figure 8. C-10 displayed a higher thickness, lower folding endurance, and
lower elastic modulus, which were 31.1 µm, 1.59, and 2671.18 MPa, respectively. Compared
to the films after different treatment stages, C-30 displayed a lower thickness, higher folding
endurance, and higher elastic modulus, at 25.9 µm, 1.50, and 4140.60 MPa, respectively,
which indicated that the film was more compact and flexible. In the lower right corner of
Figure 8 is a paper airplane made of C-30 film, which showed high pliability. This was
because the content of nanocellulose in the cellulose system was 36.34% after grinding
30 times, which was about triple the content of nanocellulose in the 10-time grinding system.
The elastic modulus of the films increased by about 62% when the content of nanocellulose
was 13–36%. The tensile strength tripled. Moreover, because the cellulose particle size
distribution was relatively rich, nanocellulose and microcellulose [(0–9)] could provide a



Polymers 2022, 14, 1297 11 of 14

certain degree of strength and stiffness for the film. The folding resistance decreased from
1.7 to 1.5 and decreased with the decrease of large-size cellulose. This showed that a larger
size of cellulose could make the film have a certain degree of flexibility. Therefore, the thin
film prepared by this method had not only a certain strength and rigidity but also certain
folding properties.
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Then, according to Figure 8, the C-20, C-25, and C-30 films had a stress platform
at about 0.5–1.5% strain, with yielding remaining unchanged with the increase of strain
during the stretching process, which was a nonuniform stretching stage. The elastic moduli
were 3866.62 MPa, 3760.51 MPa, and 4140.60 MPa, respectively. This was because the
film contained fibers of different sizes. During the stretching process, the crystal structure
inside the film changed (Figure 9). Under the action of an external force, the crystal lattice
molecules of micron-sized fibers and nano-sized fibers began to adjust and orient in the
direction of the external force, destroying large-sized cellulose [44,45]. The reduced tensile
strength of the lattice failure offset the increased tensile strength after the orientation of the
nano/microfibers molecules, forming a curved platform area [46]. The findings indicated
that the increase of a certain number of fine fibers could not only increase the hardness of
the film, but also could give the film flexibility and plasticity. After passing through the
plateau area, the C-25 and C-30 films appeared in a strain hardening stage, the stress rising
sharply. This was because the molecules oriented under the stronger stress were highly
oriented, and the materials formed a new higher-order crystal structure [46]. The tensile
strength of C-25 and C-30 could be as high as 31.21 MPa and 32.70 MPa.
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4. Conclusions

In this study, a novel process was proposed to obtain a hydrophobic sugarcane bagasse
film with high pliability. The C-25 film had the best comprehensive performance, with better
hydrophobic properties (CA = 113◦) and a better elastic module of 4140.60 MPa. Fibrils
with different hemicellulose and nano/microfibrils content were prepared by adjusting
the number of times of the grinding. In addition, unique hydrophobic properties of films
were obtained, due to the hemicellulose adsorption in the temperature-driven film-forming
process. A better hydrophobic effect and high pliability were attained, and the adsorption
effect of hemicellulose was effectively demonstrated. This research greatly improves the
practical value of nonuniform cellulose in the field of packaging materials, which lays a
foundation for the preparation of functional biomaterials without modification.
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