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ABSTRACT
Photoautotrophic cyanobacteria have been developed to convert CO2 to valuable chemicals and
fuels as solar-to-chemical (S2C) and solar-to-fuel (S2F) platforms. Here, I describe the rewiring of the
metabolic pathways in cyanobacteria to better understand the endogenous carbon flux and to
enhance the yield of heterologous products. The plasticity of the cyanobacterial metabolism has
been proposed to be advantageous for the development of S2C and S2F processes. The rewiring of
the sugar catabolism and of the phosphoketolase pathway in the central cyanobacterial
metabolism allowed for an enhancement in the level of target products by redirecting the carbon
fluxes. Thus, metabolic pathway rewiring can promote the development of more efficient
cyanobacterial cell factories for the generation of feasible S2C and S2F platforms.
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Introduction

Global concerns targeting the reduction of greenhouse
gas emissions and sustaining the supply of energy and
chemicals have brought attention to the development
of sustainable platforms to convert carbon dioxide to
chemicals and fuels, in the form of solar-to-chemical
(S2C) and solar-to-fuel (S2F) technologies.1 The S2C
and S2F platforms have been developed to produce
the desired value-added chemicals and fuels from 3
elements (CO2, H2O, and solar energy). Together with
the development of integrated bio-electrochemical
systems2,3 based on engineered lithoautotrophic bacte-
ria for sustainable S2C and S2F production, photoau-
totrophic cyanobacteria have also been genetically
engineered as S2C and S2F platforms to directly pro-
duce value-added chemicals from CO2. Recent reviews
on the development of S2C and S2F platforms using
engineered cyanobacteria have focused on general per-
spectives for cyanobacterial fuels (Cyanofuels),4 on the
engineering of metabolic pathways in cyanobacteria,5-
7 on the coupling of enzymes to the photosynthetic
reducing power,8 and discussed future perspectives
from a systems biology point of view.9 Thus, I have
provided a more detailed analysis of the rewiring of
metabolic pathways to increase the carbon flux of CO2

toward target end products.

Metabolic pathway rewiring to improve
carbon assimilation

To achieve the production of final products at a feasible
scale, product yield and productivity must be considered
under both light and dark conditions. The implementa-
tion of the sugar utilization pathway in cyanobacteria
has successfully increased the product yield under either
continuous or diurnal conditions.10,11 The heterologous
expression of the galactose (GalP) or xylose (XylE) trans-
porters, of xylose isomerase (XylA), and xylulokinase
(XylB) from E. coli has resulted in the enhanced produc-
tion of 2,3-butanediol (2,3-BDO), beside CO2 fixation,
in cyanobacteria supplemented with glucose or xylose.
Subsequently, metabolite profiling analysis was per-
formed to assess the ratio of carbon assimilation from
sugar and CO2 through the feeding of labeled [U-13C]
glucose. Recently, the co-utilization of glucose and CO2

has been optimized to improve 2,3-BDO production
and yield, by guiding the glucose flux into the central
metabolism.12 Overexpression of key genes such as zwf
(encoding for a glucose-6-phosphate dehydrogenase)
and gnd (encoding for a 6-phosphogluconate dehydroge-
nase) in the oxidative pentose phosphate pathway, prk
(encoding for a phosphoribulokinase), and rbcLXS
(encoding for a ribulose-1,5-bisphosphate carboxylase/
oxygenase (RuBisCo) subunit) led to the rewiring of
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glucose catabolism and the fixation of CO2, and
increased the growth rate, glucose consumption, and
2,3-BDO production (1.1 g/L/d) in cyanobacteria.
Photomixotrophic production using engineered cya-
nobacteria via the rewiring of metabolic pathways
could be advantageous for high cell-density cultiva-
tion to increase the production yield, despite some
concerns regarding the cost and the contamination
of the sugar feedstock. In addition, D-lactic acid
(2.17 g/L)13 and ethylene (821 § 52 mL/L/h)14 have
been photo-mixotrophically produced in engineered
cyanobacteria using either acetate or xylose as addi-
tional carbon sources, respectively.

Metabolic pathway rewiring to supply a key
intermediate for improving production

Metabolic flux analysis15 and flux balance analysis16

have been performed in cyanobacteria to determine
the carbon fluxes from CO2 and sugars, and to assist
in the metabolic engineering of cyanobacteria. A rela-
tively small fraction of carbon fluxes from CO2 were
directed to fatty acids and the terpenoid biosynthesis
pathway.17 Although the regulation of carbon parti-
tioning in the cyanobacterial cell is not fully under-
stood, it can be flexibly altered under certain

conditions, such as nutrient deprivation and irradi-
ance stress. Thus, it is necessary to perform pathway
engineering in cyanobacteria to redirect carbon fluxes
to the final product, in addition to reconstructing the
metabolic pathway for the target product. Recent stud-
ies have addressed metabolic pathway rewiring to
increase product yields by enhancing intermediate
pools. For example, the engineered Synechococcus
elongatus PCC 7942, a model cyanobacterium, harbor-
ing heterologous genes for acetone biosynthesis, did
not produce any acetone from CO2 under light condi-
tions.18 Subsequently, modular pathway engineering
in S. elongatus PCC 7942 through the rewiring of the
phosphoketolase (PHK) pathway to the acetone bio-
synthesis pathway has allowed the production of pho-
tosynthetic acetone from CO2 (Fig. 1). The rewired
PHK pathway increased the level of the intermediate
pool of acetyl-CoA that was used for improving ace-
tone production. Consistently, the PHK pathway has
been successfully rewired to the central metabolism of
cyanobacteria to enhance the production levels of n-
butanol19 and fatty acid ethyl esters,20 respectively.
Another benefit of rewiring the PHK pathway is that
the engineered cyanobacteria used for S2C and S2F
platforms can be carbon efficient by bypassing pyru-
vate decarboxylation.21,22

Figure 1. Development of engineered cyanobacteria through metabolic rewiring to construct solar-to-chemical and solar-to-fuel plat-
forms. The rewiring of the heterologous phosphoketolase pathway to the pentose phosphate pathway in cyanobacteria has enhanced
the levels of the acetyl-coA pool, resulting in an increased production of acetone,18 n-butanol,19 and fatty acid ethyl esters (FAEEs)20

from CO2. The phosphoketolase pathway is shown in the green box and the heterologous chemicaL-producing pathways are shown in
red boxes. The carbon flux of CO2 is indicated by the blue arrow, and the carbon backbone that originated from CO2 is also shown in
blue. XpkA/Xfpk, phosphoketolase; AckA, acetate kinase; Pta, phosphotransacetylase; Pdc (Zm), Pyruvate decarboxylase of Zymomonas
mobilis; Adh (Zm), Aldehyde dehydrogenase of Z. mobilis.
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The plasticity of the cyanobacterial metabolism in
the rewiring of metabolic pathways

The cyanobacterial metabolism is complex and plastic.
This is supported by genetic and biochemical evidence
that demonstrates the presence of 2-oxoglutarate
decarboxylase and succinate semialdehyde dehydroge-
nase activities in the tricarboxylic acid cycle (TCA),23

the presence of the Entner-Doudoroff pathway,24 the
glyoxylate cycle,25 and the gamma-aminobutyric acid
shunt.26 Moreover, kinetic profiling of isotope-labeled
metabolites has uncovered that the functional PHK
pathway in Synechocystis sp. PCC 6803 is flexible, and
has the potential to increase the efficiency of carbon
metabolism and photosynthetic productivity.27 Inde-
pendently, the engineering of cyanobacteria for the
production of ethylene has revealed the plasticity of
carbon metabolism by redirecting 37% of the fixed
carbon flux into the TCA cycle, and by increasing the
photosynthetic productivity for ethylene (718 §
19 mL/L/h/OD730).

28

Metabolic plasticity is also associated with the meta-
bolic capabilities under various environmental growth
conditions (e.g., photoautotrophic, photomixotrophic,
or heterotrophic growth),29,30 and this has been dem-
onstrated through the rewiring of metabolic pathways
for the production of 2,3-BDO.12 Thus, the rewiring of
metabolic pathways for directing carbon fluxes toward
the desired products in cyanobacteria could facilitate
the development of feasible S2C and S2F platforms.

Conclusion

The status of solar-to-chemical and solar-to-fuel plat-
forms for the production of value-added chemicals
from CO2 has been addressed by focusing on the met-
abolic engineering of cyanobacteria. The rewiring of
the metabolic pathways in cyanobacteria has allowed
for the production of non-native chemicals, and facili-
tated carbon partitioning toward target chemicals
using the S2C and S2F platforms. In addition, protein
engineering31 and CRISPR-Cas9 genetic tools32 for
metabolic engineering will likely promote the develop-
ment of more efficient cyanobacterial cell factories.
Moreover, photo-bioprocess engineering will be used
for the generation of feasible S2C and S2F platforms.
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