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Abstract

Background

Osteoporosis has increased and developed into a serious public health concern worldwide.

Despite the high prevalence, osteoporosis is silent before major fragility fracture and the

osteoporosis screening rate is low. Abdomen-pelvic CT (APCT) is one of the most widely

conducted medical tests. Artificial intelligence and radiomics analysis have recently been

spotlighted. This is the first study to evaluate the prediction performance of femoral osteopo-

rosis using machine-learning analysis with radiomics features and APCT.

Materials and methods

500 patients (M: F = 70:430; mean age, 66.5 ± 11.8yrs; range, 50–96 years) underwent both

dual-energy X-ray absorptiometry and APCT within 1 month. The volume of interest of the

left proximal femur was extracted and 41 radiomics features were calculated using 3D vol-

ume of interest analysis. Top 10 importance radiomic features were selected by the intra-

class correlation coefficient and random forest feature selection. Study cohort was randomly

divided into 70% of the samples as the training cohort and the remaining 30% of the sample

as the validation cohort. Prediction performance of machine-learning analysis was calcu-

lated using diagnostic test and comparison of area under the curve (AUC) of receiver oper-

ating characteristic curve analysis was performed between training and validation cohorts.

Results

The osteoporosis prevalence of this study cohort was 20.8%. The prediction performance

of the machine-learning analysis to diagnose osteoporosis in the training and validation

cohorts were as follows; accuracy, 92.9% vs. 92.7%; sensitivity, 86.6% vs. 80.0%; specific-

ity, 94.5% vs. 95.8%; positive predictive value, 78.4% vs. 82.8%; and negative predictive

value, 96.7% vs. 95.0%. The AUC to predict osteoporosis in the training and validation
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cohorts were 95.9% [95% confidence interval (CI), 93.7%-98.1%] and 96.0% [95% CI,

93.2%-98.8%], respectively, without significant differences (P = 0.962).

Conclusion

Prediction performance of femoral osteoporosis using machine-learning analysis with radio-

mics features and APCT showed high validity with more than 93% accuracy, specificity, and

negative predictive value.

Introduction

As the elderly population has rapidly grown, osteoporosis has increased and developed into a

serious public health concern [1]. Approximately 30% of all postmenopausal women have

osteoporosis in the developed countries, and up to 50% of these patients will sustain one or

more osteoporotic fracture in their life time [2]. Although the prevalence of osteoporosis is

very high, it has specific diagnosis tool such as dual-energy X-ray absorptiometry (DXA), effec-

tive treatment options, and preventive methods [1]. Therefore, osteoporosis is a disease in

which screening can have a great effect on patient outcomes [3]. However, screening for osteo-

porosis using DXA has been underperformed because osteoporosis is asymptomatic until

major incidental fragile fractures occur, such as vertebral body or hip fractures [2]. Patients

often do not recognize the seriousness of this disease and, therefore, do not participate in the

screening program voluntarily [4]. There is a growing consensus regarding the need for alter-

native screening methods to overcome the limitations and underuse of DXA as a screening

method for osteoporosis. Abdomen-pelvic computed tomography (APCT) is commonly per-

formed on adults to evaluate various diseases, during routine health check-ups or follow-up

diagnosed diseases. Even if a small number of these scans were used to opportunistically screen

for osteoporosis, the impact could be substantial. Several studies have shown optimistic results

using APCT for opportunistic screening for osteoporosis [5–7].

Radiomics is the most advanced application within the radiology research field. It extracts

various features from medical images and has the potential to find disease characteristics that

fail to be appreciated by the naked eye using specially designed data-characterization algo-

rithms for image analysis [8]. These radiomics features are the distinctive imaging features

between disease forms might be useful for predicting prognosis and therapeutic response for

various conditions, thus providing valuable information for personalized therapy [9, 10]. As

osteoporosis progresses, bone mineral density (BMD) is decreased and bony microstructure

change occur, simultaneously [11]. BMD-decrease is highly correlated with mean computed

tomography Hounsfield unit (CTHU) change, as well as HU histogram analysis (HUHA) of

the proximal femur volume representing fatty marrow content (HUHAFat, percentage ratio of

HU range� 0HU) or thick cortical bone content (HUHABone, percentage ratio of HU range

�126HU) [5, 12]. This radiomics analysis may be useful for the evaluation of microstructure

changes of trabecular bone [13–15]. Additionally, machine-learning analysis is changing the

paradigm of medical practice, which is best suited for mass screening [16]. However, to the

best of our knowledge, there has been no research evaluating femoral osteoporosis using

radiomics features and machine learning analysis. Therefore, the purpose of this study was to

evaluate the predicting performance of machine learning analysis for diagnosing femoral oste-

oporosis using radiomics features and APCT.
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Materials and methods

This retrospective study was approved by institutional review board and ethics committee at

Hallym University Sacred Heart hospital and the need for informed consent was waived.

Patients

Between July 2018 and June 2019, 569 patients aged 50 years or older who had undergone

APCT and DXA within an interval of a 1-month period (mean, 3.8 ± 6.1 days; range, 0–30

days) were retrospectively included. Among these patients, 69 were excluded due to bone

metastases (n = 8), metastasis other than bone (n = 10), history of receiving chemotherapy

within the last 3 months (n = 26), primary bone disease (e.g., fibrous dysplasia; n = 4), develop-

mental or traumatic deformation of the femur (n = 6), or any total hip arthroplasty or internal

nailing (n = 15). Finally, 500 patients (mean age, 66.5 ± 11.8 yrs; range, 50–96 years) were

included. This cohort consisted of 70 men (mean age, 72.6 ± 8.0 yrs; range, 54–89 years) and

430 women (mean age, 65.4 ± 12.1 yrs; range, 50–96 years). There were no duplicate patients

enrolled. The reasons for CT imaging were as follows: cancer metastasis surveillance (n = 327),

minor trauma (e.g., slip-down injury or simple fall-down injury; n = 37), or routine health

check-up or medical inspection (n = 136). Among the included patients, 70% were randomly

selected to be the training cohort (M:F = 48:302; age, 66.8±12.2 yrs), and the remaining 30%

were selected to be the validation cohort (M:F = 22:128; age, 65.7±11.1 yrs) (Fig 1).

Dual-energy X-ray absorptiometry

DXA of the proximal femur for BMD assessment was performed using a single BMD scanner

(GE Healthcare Lunar Prodigy Densitometers, Madison, WI, USA). The lowest T-score of the

femoral neck was used as the reference standard. Osteoporosis of the femur was defined as a

T-score� −2.5, and non-osteoporosis was defined as a T-score > −2.5 (1).

Computed tomography imaging

All CT examinations were performed using two multidetector-row CT scanners (SOMATOM

Definition Edge, SOMATOM Definition Flash; Siemens Healthcare, Forchheim, Germany) in

the standard single-energy CT mode. Automatic tube voltage selection (Care kVp) and auto-

matic tube current modulation (CARE Dose 4D) protocols were applied. To exclude the effect

of the contrast agent on the CTHU measurement, all measurements were performed on only

pre-contrast CT scans [17]. The scanning parameters were as follows: detector collimations,

128 × 0.6 mm; pitch, 0.6; gantry rotation time, 0.5 s; tube current, 200 or 289 mAs; tube volt-

age, 100 or 120 kVp; and iterative reconstruction (sinogram-affirmed iterative reconstruction,

S1, I40f). The voxel size of all raw data was 0.67mm x 0.67mm x 1mm.

Radiomics analysis

The radiomics analysis was performed using two commercial software programs (Aquarius

iNtuition v4.4.121, TeraRecon, Foster City, CA, USA; Medip1, Medical Imaging Solution for

Segmentation and Texture Analysis, Korea). Each target volume of interest (VOI) of the left

femur was extracted using the region growing editing tool. The area below the lesser trochan-

ter of the femur was excluded to maintain a constant VOI across all measurement (Fig 2). For

each VOI, 41 radiomic features were extracted and divided into four groups: (1) first-order

grey-level histogram features to describe the distribution of grey-values within the volume; (2)

geometric features to describe the shape and size of the volume of interest; (3) grey-level co-

occurrence level matrices are statistical features used to explore the spatial relationship
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between two pixels with certain distance and direction, including contrast relation, entropy,

angular second moment, etc.; and (4) wavelet transformation is a transformation that separates

data into different frequency components, and then examines each component with resolution

matched to its scale. A detailed description of these radiomics features are independent of

imaging modality and can be found in the literature [18–20].

Feature extraction and random forest model

Our study design followed the Transparent Reporting of a multivariable prediction model for

Individual Prognosis or Diagnosis (TRIPOD) guidelines [21]. To overcome the repeatability

weakness of radiomics, only those with an intraclass correlation coefficient (ICC) value higher

than 0.9 were considered stable and selected for subsequent analysis. We used the random

Fig 1. Flowchart of patient enrollment and random selection for machine-learning analysis.

https://doi.org/10.1371/journal.pone.0247330.g001
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Fig 2. Measurement of the 3D volume of proximal femur. (A) Texture analysis. Forty-one features are extracted from the volume

of interest (red). (B) Mean CTHU and HU histogram analysis (HUHA) are simultaneously calculated from the other commercial 3D

image processing software. Negative HU range (yellow box, HUHAFat,�0HU) is considered as fatty marrow content and equal or

more than 126 HU range (red box, HUHABone) is considered as dense bone content, respectively. (A) Texture analysis. (B) Mean-

CTHU and HU histogram analysis (HUHA).

https://doi.org/10.1371/journal.pone.0247330.g002
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forest (RF) algorithm of various machine-learning analysis methods. Although the RF algo-

rithm itself enables the efficient selection of the highly correlated variables and reduces the

number of variables, further feature selection was performed by the Mean Decrease in Gini

index, and the top 10 important features were selected (Fig 3) [22]. The RF algorithm is an

ensemble of unpruned classification or regression trees created by using bootstrap samples of

the training data and random feature selection in tree induction. Predictions are made by

aggregating the predictions of the ensemble. We randomly selected 70% (n = 350) of the sam-

ples as the training cohort and the remaining 30% (n = 150) as the validation cohort using a

‘caret’ R package [23]. An RF is a meta-estimator that fits a number of decision-tree classifiers

on various sub-samples of the dataset. After each tree, the decision for classification result was

determined, and the result was averaged to improve the predictive accuracy and control over-

fitting. In the RF algorithm, each tree in the ensemble is built from a sample drawn with a

replacement from the training cohort. In addition, when splitting a node during the construc-

tion of the tree, the split that is picked is the best split among a random subset of the features.

For the best hyperparameter tuning, 5-fold cross validation using random search was per-

formed and the result was summarized in S1 Table. The hyperparameter of our RF algorithm

were as follows: mtry = 3, minimum nodal size = 11, and splitrule = extratrees. The best model

was selected and validated in the test cohort. Further explanation of RF model and features

was summarized in S1 Appendix.

Statistical analysis

All statistical analyses were performed with the open-source statistical computing environ-

ment R (version 3.6.1; R Foundation for Statistical Computing) and the Medcalc Statistical

Software version 19.1.3 (MedCalc Software bv, Ostend, Belgium). The reproducibility of the

radiomics features was evaluated by ICC using a two-way random model with absolute mea-

surements. To assess ICC, two radiologists (one with 12 years of experience interpreting body

images and the other with 6 years of experience interpreting musculoskeletal images) mea-

sured the radiomics features in images from 40 randomly selected cases. Using the diagnostic

test confusion matrix, the prediction accuracy of the training and validation cohorts were cal-

culated. The area under curve (AUC) of the receiver operating characteristic curve and 95%

confidence interval (CI) of the training and validation cohorts were calculated. The AUCs of

training and validation models were compared using the method developed by DeLong et al.

A P-value < 0.05 was considered a significant difference.

Results

The demographic information of the study cohort is summarized in Table 1. Overall, 104

patients were diagnosed with osteoporosis, and the osteoporosis prevalence of this cohort was

20.8%.

The AUC and correlation coefficient to predict femoral osteoporosis and the ICC of all

radiomics features are summarized in Table 2. According to the RF feature selection algorithm

made by the mean decrease in Gini index and distribution of minimal depth, waveletLLL,

HUHABone, mean-CTHU, HUHAFat, waveletHLL, kurtosis, waveletLLH, waveletLHL, texture

energy, moment, and skewness were selected as the top important radiomics features (Fig 3).

The prediction accuracy of the machine-learning analysis using the RF model to diagnose

osteoporosis in training and validation cohorts are summarized in Table 3. Both cohorts

showed more than 80% of sensitivity, 94% of specificity, 94% of negative predictive value

(NPV), and 93% of accuracy. Training model showed 95.9% of AUC (95% CI, 93.7%-98.1%)

and validation model showed 96.0% of AUC (95% CI, 93.2%-98.8%). There was no significant

PLOS ONE Prediction of femoral osteoporosis using machine-learning analysis and APCT

PLOS ONE | https://doi.org/10.1371/journal.pone.0247330 March 4, 2021 6 / 14

https://doi.org/10.1371/journal.pone.0247330


Fig 3. Top 10 important features with mean decrease in Gini index (A) and distribution of minimal depth (B). A higher mean

decrease in Gini index indicates higher features importance. The distribution of minimal depth is marked by a vertical bar with a value

label on the trees of random forest. (A) Mean decrease in Gini index. (B) Distribution of minimal depth.

https://doi.org/10.1371/journal.pone.0247330.g003
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difference of AUCs predicting femoral osteoporosis between training and validation models

(P = 0.962) (Fig 4).

Discussion

The primary goal of this study was to evaluate the prediction accuracy of osteoporosis using

machine-learning analysis with radiomics features and APCT. In this study, the prediction

accuracy of osteoporosis was 95.9% and 96.0% in the training and validation cohorts, respec-

tively. The predicting performance for diagnosis of osteoporosis was 95.8% in specificity, 95%

in NPV, 80% in sensitivity, and 92.7% in diagnostic accuracy at validation cohort. In particu-

lar, our results showed high specificity and NPV more than 95%, which is considered as mean-

ingful results to select healthy peoples. Therefore, screening using this method may contribute

to reduce or prevent the unnecessary duplication check and cost of DXA.

In order to increase the osteoporosis screening rate, several policies have been tried such as

patient selection using questionnaires, education of primary clinic physicians, coverage by

medical insurance, and so on [24–29]. However, more than 25 million abdominal-pelvic CT

scans have been performed on adults each year in the United States. If osteoporosis screening

with APCT is possible, the effect would be enormous. Based on this concept, several studies

have shown optimistic results. Most studies have reported the usefulness of osteoporosis diag-

nosis by mean CTHU measurement [5–7, 30]. In some studies, images were analyzed using

HU histogram analysis and texture analysis [5, 31, 32]. Recently, a few studies on the useful-

ness of osteoporosis screening using artificial intelligence have been published [6, 33] [new ref

DII]. The advantage of precision medicine using artificial intelligence is that auto-segmenta-

tion and mass-screening using big data is possible (10, 11). In this study, femur segmentation

was performed by researchers using a semi-automatic extraction using 3D image analysis soft-

ware. However, the auto-segmentation algorithm of the femur has been recently developed

and applied to image analysis for research purpose. If actual clinical application is made, osteo-

porosis screening can be easier and more effective and may improve patient convenience.

Although there may be concerns about radiation exposure, the concept of opportunistic

screening using APCT is to obtain additional information related to osteoporosis from

already-performed CT scans for other medical reasons. As a result, patients can simultaneously

obtain secondary bone health information without additional radiation exposure, thereby

gaining additional benefits in terms of cost, time, and convenience.

We used top 10 radiomics features based on the RF feature selection. Among them, mean-

CTHU is the typical feature in conventional CT image analysis. This conventional feature was

selected as a meaningful feature with high feature importance scores. HUHAFat and HUHA-

Bone features are based on the HU number distribution and represented specific tissue contents

such as fatty marrow and dense bone content, respectively. Kurtosis and skewness measure the

Table 1. Comparison of demographics between the osteoporosis and non-osteoporosis groups.

Osteoporosis (n = 104) Non-osteoporosis (n = 396) P-value

Sex (M:F) 8:96 62:334 < 0.001

Age (years, mean ± SD) 78.6 ± 8.6 63.3 ± 10.5 < 0.000

T-score -3.11 ± 0.53 -0.80 ± 1.01 < 0.000

BMD (g/cm2) 0.57 ± 0.06 0.84 ± 0.12 < 0.000

BMI (kg/m2) 22.1 ± 3.7 24.4 ± 4.1 < 0.000

Interval between DXA to APCT (day) 6.5 ± 7.2 3.1 ± 5.5 < 0.000

APCT = abdominal-pelvic CT; BMD = bone material density; BMI, body mass index; DXA = dual-energy X-ray absorptiometry.

https://doi.org/10.1371/journal.pone.0247330.t001
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Table 2. Summary of AUC and correlation coefficient to predict femoral osteoporosis, and intraclass correlation coefficient of all radiomics features.

Radiomic Feature AUC (95% CI) Correlation coefficient ICC (95% CI)

First-order gray-level histogram (n = 9)

Entropy 0.884 (0.853–0.911) -0.573 0.993 (0.987–0.996)

HUHA_bone 0.950 (0.927–0.967) -0.327 0.999 (0.999–0.999)

HUHA_fat 0.938 (0.908–0.953) 0.699 0.997 (0.995–0.998)

Kurtosis 0.903 (0.873–0.927) 0.621 0.993 (0.988–0.996)

Mean_CTHU 0.951 (0.928–0.968) -0.628 0.989 (0.903–0.996)

Skewness 0.876 (0.844–0.903) 0.544 0.991 (0.984–0.994)

Texture_energy 0.877 (0.845–0.904) -0.470 0.987 (0.973–0.992)

Uniformity 0.866 (0.833–0.895) 0.549 0.994 (0.990–0.996)

Variance 0.852 (0.817–0.882) -0.505 0.981 (0.966–0.989)

Geomatric features (n = 6)

Discrete Compactness 0.562 (0.517–0.606) 0.075 0.979 (0.962–0.987)

Effective diameter 0.501 (0.456 to 0.545) -0.010 0.934 (0.882–0.960)

Roundness 0.723 (0.682–0.762) -0.325 0.953 (0.917–0.973)

Sphericity 0.570 (0.523–0.612) -0.140 0.977 (0.958–0.986)

Texture_compactness1 0.582 (0.538–0.626) -0.113 0.881 (0.795–0.931)�

Texture_compactness2 0.701 (0.659–0.741) -0.292 0.843 (0.738–0.908)�

Co-occurrence matrix (n = 18)

CROSS_GLCMASM 0.776 (0.737–0.812) 0.466 0.993 (0.986–0.995)

CROSS_GLCMcontrast 0.683 (0.661–0.743) -0.1226 0.969 (0.942–0.983)

CROSS_GLCMentropy 0.821 (0.766–0.837) -0.452 0.987 (0.974–0.993)

CROSS_GLCMIDM 0.662 (0.619–0.703) 0.229 0.998 (0.995–0.998)

EW_GLCMASM 0.782 (0.744–0.818) 0.467 0.992 (0.985–0.995)

EW_GLCMcontrast 0.667 (0.645–0.728) -0.119 0.960 (0.926–0.977)

EW_GLCMentropy 0.775 (0.754–0.827) -0.438 0.987 (0.974–0.993)

EW_GLCMIDM 0.682 (0.639–0.723) 0.270 0.998 (0.995–0.998)

Homogeneity 0.787 (0.748 to 0.822) 0.409 0.996 (0.993–0.998)

Moment 0.757 (0.716–0.794) 0.446 0.980 (0.965–0.988)

NS_GLCMASM 0.760 (0.721–0.797) 0.446 0.992 (0.985–0.995)

NS_GLCMcontrast 0.692 (0.668–0.749) -0.122 0.978 (0.956–0.988)

NS_GLCMentropy 0.757 (0.734–0.809) -0.408 0.983 (0.966–0.991)

NS_GLCMIDM 0.640 (0.596–0.682) 0.182 0.998 (0.995–0.998)

SIX_GLCMASM 0.803 (0.765–0.837) 0.495 0.993 (0.987–0.996)

SIX_GLCMcontrast 0.769 (0.729–0.805) -0.244 0.966 (0.935–0.981)

SIX_GLCMentropy 0.835 (0.800–0.867) -0.500 0.988 (0.974–0.993)

SIX_GLCMIDM 0.686 (0.643–0.726) 0.294 0.998 (0.995–0.998)

Wavelet transformation (n = 8)

Wavelet_HHH 0.626 (0.582–0.668) -0.175 0.379 (0.109–0.596)�

Wavelet_HHL 0.795 (0.757–0.830) -0.397 0.642 (0.444–0.780)�

Wavelet_HLH 0.767 (0.728–0.803) -0.366 0.618 (0.410–0.765)�

Wavelet_HLL 0.927 (0.900–0.948) -0.583 0.966 (0.940–0.980)

Wavelet_LHH 0.731 (0.690–0.769) -0.334 0.607 (0.395–0.757)�

Wavelet_LHL 0.915 (0.887–0.938) -0.565 0.956 (0.923–0.975)

Wavelet_LLH 0.912 (0.884–0.935) -0.550 0.949 (0.910–0.970)

Wavelet_LLL 0.950 (0.928–0.968) -0.640 0.999 (0.998–0.999)

Values in parentheses mean 95% confidential interval.

� Values are excluded in random forest analysis.

https://doi.org/10.1371/journal.pone.0247330.t002
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peakedness and symmetry of the HU histogram. The effective diameter was defined as the

diameter of a sphere whose volume is equal to the segmented volume. The wavelet features are

image transform technique based on the space–frequency decomposition with low computa-

tional complexity [18, 19]. In addition to the mean-CTHU as a conventional feature, these

radiomic features were selected as important features evaluating osteoporosis and thought to

reflect the pathophysiology of osteoporosis not detectable by naked human eyes.

We analyzed the left femur from the head to lesser trochanter as a VOI because this area is

consistent with the DXA target range. As the proximal femur has a 3D complex structure, 3D

image analysis would be useful for evaluating osteoporosis, rather than 2D image analysis, and

would exclude the observer’s subjection to select the target image. Although the target VOI

range was arbitrary set with semi-auto-segmentation of the 3D analysis software, our results

proved this target VOI set was appropriate and reproducible. More precise target volume

Table 3. Diagnostic performance of the Machine-learning analysis.

Training cohort (n = 350) Validation cohort (n = 150)

Sensitivity (%) 86.6 (76.1–93.7) 80.0 (61.4–92.3)

Specificity (%) 94.5 (91.0–96.7) 95.8 (90.5–98.6)

Positive likelihood ratio 15.3 (9.4–24.9) 19.2 (8.0–46.1)

Negative likelihood ratio 0.1 (0.1–0.3) 0.2 (0.1–0.43)

Disease prevalence (%) 19.1 20.0

Positive predictive value (%) 78.4 (69.1–85.5) 82.8 (66.6–92.0)

Negative predictive value (%) 96.7 (94.2–98.1) 95 (90.4–97.5)

Accuracy (%) 92.9 (89.6–95.3) 92.7 (87.3–96.3)

ǂValues in parentheses mean 95% confidential interval.

https://doi.org/10.1371/journal.pone.0247330.t003

Fig 4. Comparison of area under curves of training and validation cohorts.

https://doi.org/10.1371/journal.pone.0247330.g004
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selection focusing the femoral neck or Ward’s triangle would likely improve the diagnostic

accuracy; however, the current VOI selection proved effective to predict osteoporosis because

this method was easy, simple, and highly reproducible.

In this study, among the forty-one radiomic features, only six radiomics features were

excluded because of low reproducibility. Most features showed a high reproducibility of more

than 0.9 of ICC. Advantage of the 3D image software is high reproducibility [34, 35]. As the

femur shows a high contrast with the surrounding tissue, automatic segmentation is relatively

easy. Therefore, it is expected that automatic osteoporosis prediction can be implanted on a

picture archiving and communication system or workstation of CT consoles through auto-

matic femur segmentation and machine-learning analysis during CT acquisition and post-

image processing. Furthermore, we researched the prediction of osteoporosis by applying

machine learning analysis using specific radiomics features and HUHA due to the limited

number of patients in this study. Recent AI research is moving to deep learning, which is the

evolution of machine learning and it helps in making better precision medicine than machine

learning. Deep learning is similar to machine learning, but it does not require artificial inter-

vention. However, it requires big data to train the model otherwise it won’t work as expected.

If osteoporosis screening can be implemented by deep learning using wide and easily accessi-

ble plain radiographs or large number of CT images in the future, great progress can be

expected in the prevention and treatment of osteoporosis.

Although this study achieved a high prediction accuracy, the major limitation was these

results were obtained from a single center and single race. Osteoporosis differs according to

gender and race [36]. However, our results were based on the DXA results within a 1-month

interval, the only standard reference of osteoporosis diagnosis. Based on our research results, it

is necessary to prove the validity through prospective multi-center and multi-ethnic studies.

Osteoporosis is divided into three groups according to the DXA T-score. Our study cohort

was divided into two groups: osteoporosis and non-osteoporosis groups, which consist of nor-

mal and osteopenia patients. This classification was based on the following two reasons. First,

in the Korean medical insurance system, insurance coverage is applied only to patients diag-

nosed with osteoporosis. Second, the purpose of this study was to evaluate the predicting per-

formance of opportunistic screening for osteoporosis using APCT. Thus, this study was

focused on osteoporosis prediction. In the future, it will be necessary to evaluate whether

radiomics analysis is possible to predict osteoporosis, osteopenia, and normal status accurately.

Our study included a large number of patients with surveillance of breast cancer metastasis.

However, in order to minimize the possibility of potential breast cancer metastasis in imaging

analysis, we selected the breast cancer patients under the specific evaluation that they were

those who did not find any metastases in three consecutive APCT at 6-month intervals. Give

that osteoporosis is a common disease in women, the expected effect will be great if the oppor-

tunistic screening of osteoporosis is performed simultaneously in female patients diagnosed

with breast cancer.

In conclusion, prediction performance of femoral osteoporosis using the machine-learn-

ing analysis with radiomics features and APCT proved high validity with more than 93%

of accuracy, specificity, and negative predictive value. Overall, opportunistic screening of

femoral osteoporosis with machine-learning analysis and APCT has shown high potential

feasibility.
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