

Received 12 March 2016 Accepted 8 April 2016

Edited by P. C. Healy, Griffith University, Australia

Keywords: crystal structure; coumarin; pent-4ynoate substituent; acetate substituent.

CCDC references: 1473151; 1473150

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 🔂 ACCESS

CrossMark

7,8-diyl diacetate and 4-methyl-2-oxo-2*H*chromene-7,8-diyl bis(pent-4-ynoate)

Akintunde Akinyemi,^a Courtney Thomas,^a Willis Marsh,^a Ray J. Butcher,^a Jerry P. Jasinski^b and Lystranne A. Maynard-Smith^a*

^aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA. *Correspondence e-mail: lystranne.maynard@howard.edu

In the structures of the two title coumarin derivatives, $C_{14}H_{12}O_6$, (1), and $C_{20}H_{16}O_{6}$, (2), one with acetate and the other with pent-4-ynoate substituents, both the coumarin rings are almost planar. In (1), both acetate substituents are significantly rotated out of the coumarin plane to minimize steric repulsions. One acetate substituent is disordered over two equivalent conformations, with occupancies of 0.755 (17) and 0.245 (17). In (2), there are two pent-4-ynoate substituents, the C group of one being disordered over two positions with occupancies of 0.55 (2) and 0.45 (2). One of the pent-4-ynoate substituents is in an extended conformation, while the other is in a bent conformation. In this derivative, the planar part of both pent-4-ynoate substituents deviate from the coumarin plane. The packing of (1) is dominated by $\pi - \pi$ stacking involving the coumarin rings and weak $C-H\cdots O$ contacts link the parallel stacks in the [101] direction. In contrast, in (2) the packing is dominated by $R_2^2(24)$ hydrogen bonds, involving the acidic sp H atom and the oxo O atom, which link the molecules into centrosymmetric dimers. The bent conformation of one of the pent-4ynoate substituents prevents the coumarin rings from engaging in $\pi - \pi$ stacking.

1. Chemical context

Coumarins and their derivatives have wide applications in a number of diverse areas. They are used in the pharmaceutical industry as precursor reagents in the synthesis of a number of synthetic anticoagulant pharmaceuticals (Bairagi *et al.*, 2012), the most notable being warfarin (Holbrook *et al.*, 2005). Modified coumarins are a type of vitamin K antagonist (Marongiu & Barcellona, 2015).

In another important application, coumarin dyes are extensively used as gain media in blue–green tunable organic dye lasers (Schäfer, 1990; Duarte & Hillman, 1990; Duarte, 2003). Coumarin tetramethyl laser dyes offer wide tunability and high laser gain (Chen *et al.*, 1988; Duarte *et al.*, 2006), and they are also used as the active medium in coherent OLED emitters (Duarte *et al.*, 2005).

4-Methyl coumarin derivatives have previously been used as acetyl-group donors for post-translational modification of proteins *via* an acetyl–CoA independent mechanism (Raj, Singh *et al.*, 2005; Raj, Kumari *et al.*, 2006). Calreticulinmediated acetylation of glutathione-S-transferase (GST) using substrate 7,8-diacetyoxy-4-methyl coumarin, DAMC (1) (systematic name: 4-methyl-2-oxo-2*H*-chromene-7,8-diyl diacetate) has been shown to inhibit GST activity in a spectroscopic assay (Raj, Singh *et al.*, 2005). The crystal structure of the related compound 7,8-dihydroxy-4-methylcoumarin (Kurosaki *et al.*, 2003) has been reported. Pentynoyl probes have been used as chemical reporters to monitor protein acetylation (Bateman *et al.*, 2013; Yang *et al.*, 2010). For background to bio-orthogonal reactions using alkyne–azide cycloaddition, see Sletten & Bertozzi (2011) and Yang & Hang (2011).

We have synthesized a new coumarin derivative, 7,8dipentynoyloxy-4-methyl coumarin, DPeMC (2) [systematic name: 4-methyl-2-oxo-2*H* chromene-7,8-diyl bis(pent-4ynoate)] as a chemical reporter of calreticulin's acyltransferase capabilities (Singh *et al.*, 2011). As part of this work, the crystal structures of both coumarin derivatives are presented in this article.

2. Structural commentary

This paper reports the structures of two derivatives of coumarin (systematic name; 2*H*-chromen-2-one), $C_{14}H_{12}O_6$ (1) and $C_{20}H_{16}O_6$ (2), which are to be used as chemical reporters of calreticulin's acyltransferase capabilities. These

Figure 1

Diagram of the structure and numbering scheme for (1), showing the major occupancy component only. Atomic displacement parameters are drawn at the 30% probability level.

Figure 2

Diagram of the structure and numbering scheme for (2), showing the major occupancy component only. Atomic displacement parameters are drawn at the 30% probability level.

two compounds will be first discussed individually and then compared.

In the structure of (1) (Fig. 1), the coumarin ring is almost planar (r.m.s. deviation of fitted atoms = 0.0063 Å) with O2 in the plane [deviation of 0.0048 (9) Å]. Both acetate substituents are significantly rotated out of this plane to minimize steric repulsions [dihedral angle of 66.19 (7)° to the coumarin ring for O3, O4, and C11, and 79.4 (3)° for O5, C13 O6A]. One acetate substituent is disordered over two equivalent conformations with occupancies of 0.755 (17) and 0.245 (17). The metrical parameters of both the coumarin ring and acetate substituents are in the normal ranges.

In (2) (Fig. 2), the C=C group of one of the pent-4-ynoate substituents is disordered over two positions with occupancies of 0.55 (2) and 0.45 (2). The coumarin ring is almost planar (r.m.s. deviation of fitted atoms = 0.0305 Å) with O2 significantly out of this plane [0.144 (2) Å] but O3 in the plane [0.063 (2) Å]. One of the pent-4-ynoate substituents is in an extended conformation (O5 to C21) while the other is in a bent conformation about C13. This can be seen from a consideration of the O3-C12-C13-C14 torsion angle of $-46.3(2)^{\circ}$ compared to the equivalent torsion angle O5-C17-C18-C19 of 176.16 (12)°. The planar parts of both pent-4-ynoate substituents deviate from the coumarin plane but by different amounts [40.90 (15)° for O3, O4 and C12 compared to 74.07 (10)° for O5, O6 and C17]. The metrical parameters of both the coumarin ring and pent-4-ynoate substituents are in the normal ranges including the C=C triple bonds [C15A = C16A = 1.186(9), C15B = C16B =1.169 (11) and C20=C21 = 1.177 (3) Å].

3. Supramolecular features

The packing of (1) is dominated by π - π stacking involving the coumarin rings [centroid-centroid distance of 3.6640 (5) Å, slippage of 1.422 Å, symmetry code 1 - x, 1 - y, 1 - z]. This can be observed in Fig. 3. In addition, there are weak C-

research communications

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$) for (1).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C6 - H6A \cdots O2^{4}$	0.95	2.65	3.3465 (17)	130
$C13-H13A\cdots O6A^{ii}$	0.98	2.48	3.451 (5)	173
$C15A - H15B \cdots O2^{iii}$	0.98	2.52	3.401 (8)	150

Symmetry codes: (i) x - 1, y + 1, z; (ii) x, y + 1, z; (iii) -x + 1, -y, -z + 2.

H···O contacts (Table 1) involving C13 and O6A(x, 1 + y, z) as well as C6 and O2(x - 1, 1 + y, z), C15A and O2 (1 - x, -y, 2 - z) which link the parallel stacks in the [101] direction.

In contrast to (1), for (2) the packing (Fig. 4) is dominated by $R_2^2(24)$ hydrogen bonds (Table 2) involving the acidic *sp* H atom and O2 which link the molecules into centrosymmetric dimers. The bent conformation of one of the pent-4-ynoate substituents prevents the coumarin rings from engaging in π - π stacking in contrast to (1).

4. Database survey

Our group has reported a number of related structures (Jasinski & Paight, 1994, 1995; Jasinski & Woudenberg, 1994, 1995; Jasinski & Li, 2002; Jasinski *et al.*, 1998, 2003; Butcher *et al.*, 2007).

5. Synthesis and crystallization

7,8-Diacetoxy-4-methylcoumarin (1). 4-Methyl-2-oxo-2*H*-chromene-7,8-diyl diacetate (DAMC) was synthesized using a previously reported procedure (Jalal *et al.*, 2012).

7,8-Dipentynoyloxy-4-methylcoumarin (2). 0.5 mmol 7,8dihydroxy-4-methyl coumarin, DHMC [systematic name: 7,8dihydroxy-4-methyl-2*H*-chromen-2-one], 2.5 equivalents pentynoic anhydride (Malkoch *et al.*, 2005) and catalytic 4-dimethylaminopyridine (DMAP) was stirred for 24 h at

Figure 3

Packing diagram for (1), viewed along the *c* axis, showing the parallel coumarin rings. $C-H\cdots O$ secondary interactions are drawn with dashed lines.

Table 2				
Hydrogen-bond g	geometry	(Å,	°) for	(2) .

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C13 $-H13B\cdots O4^{i}$	0.99	2.43	3.244 (2)	139
$C18-H18A\cdots O6^{i}$	0.99	2.51	3.482 (2)	167

Symmetry code: (i) x - 1, y, z.

room temperature in anhydrous THF (2 mL). Ice-cold water (25 mL) was added to the reaction flask, and the filtered crude product was washed with hexanes followed by recrystallization from ethanol to obtain small brown crystals of 4-methyl-2-oxo-2H chromene-7,8-diyl bis(pent-4-ynoate).

Spectroscopic analysis: ¹H NMR (400 MHz, CDCl₃): δ 7.51– 7.49 (1H, *d*), δ 7.20–7.17 (1H, *d*), δ 6.29 (1H, *s*), δ 3.01–3.08 (2H, *m*, HC=C), δ 2.89–2.84 (2H, *t*, C=C–CH₂), δ 2.61–2.70 (4H, *m*, OOC–CH₂), δ 2.44 (3H, *s*, CH₃), δ 2.09–2.11 (2H, C=C– CH₂).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. For (1), the H atoms were positioned geometrically and refined as riding: C-H = 0.95-0.98 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and = $1.2U_{eq}(C)$ for other H atoms. One acetate substituent is disordered over two equivalent conformations with occupancies of 0.755 (17) and 0.245 (17).

In the refinement for (2), the H atoms were positioned geometrically and refined as riding: C-H = 0.95-0.99 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $= 1.2U_{eq}(C)$ for

Packing diagram for (2), viewed along the *a* axis. $R_2^2(24)$ hydrogen bonds involving the acidic *sp* H and O2 atoms link the molecules into centrosymmetric dimers. C-H···O secondary interactions are drawn with dashed lines.

Table 3Experimental details.

	(1)	(2)
Crystal data		
Chemical formula	$C_{14}H_{12}O_6$	$C_{20}H_{16}O_{6}$
M_r	276.24	352.33
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/n$
Temperature (K)	173	200
a, b, c (Å)	7.3722 (10), 8.7235 (7), 11.7032 (15)	5.2785 (3), 16.3785 (8), 20.0502 (11)
α, β, γ (°)	69.263 (10), 87.519 (11), 69.113 (10)	90, 95.992 (2), 90
$V(\dot{A}^3)$	654.66 (14)	1723.95 (16)
Z	2	4
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.11	0.10
Crystal size (mm)	$0.33 \times 0.26 \times 0.11$	$0.55 \times 0.14 \times 0.11$
Data collection		
Diffractometer	Agilent Xcalibur Eos Gemini	Bruker Quest
Absorption correction	Multi-scan (CrysAlis PRO; Agilent, 2014)	Multi-scan (SADABS; Sheldrick, 1996)
T_{\min}, T_{\max}	0.883, 1.000	0.658, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7360, 4296, 3087	24358, 5276, 3859
R:	0.036	0.035
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.759	0.716
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.055, 0.156, 1.04	0.057, 0.142, 1.07
No. of reflections	4296	5276
No. of parameters	192	255
No. of restraints	13	13
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.36, -0.24	0.37, -0.21

Computer programs: CrysAlis PRO (Agilent, 2014), APEX2 (Bruker, 2005), SAINT (Bruker, 2002), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and SHELXTL (Sheldrick, 2008).

other H atoms. The C=C group of one of the pent-4-ynoate substituents is disordered over two positions with occupancies of 0.55 (2) and 0.45 (2).

Acknowledgements

The authors wish to acknowledge the assistance of Dr Matthias Zeller in the collection of diffraction data and NSF Grant DMR 1337296 for funds to purchase the X-ray diffractometer. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the Gemini–E X-ray diffractometer. RJB is grateful for the NSF award 1205608, Partnership for Reduced Dimensional Materials, for partial funding of this research as well as the Howard University Nanoscience Facility access to liquid nitrogen. LAM wishes to acknowledge that this material is based upon work supported by the National Science Foundation under Howard University ADVANCE Institutional Transformation (HU ADVANCE-IT) Grant No. 1208880.

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Bairagi, S. H., Salaskar, P. P., Loke, S. D., Surve, N. N., Tandel, D. V. & Dusara, M. D. (2012). *Int. J. Pharm. Res.* **4**, 16–19.
- Bateman, L. A., Zaro, B. W., Miller, S. M. & Pratt, M. R. (2013). J. Am. Chem. Soc. 135, 14568–14573.
- Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

- Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Samshad (2007). Acta Cryst. E63, 03412-03413.
- Chen, C. H., Fox, J. L., Duarte, F. J. & Ehrlich, J. J. (1988). *Appl. Opt.* **27**, 443–445.
- Duarte, F. J. (2003). In *Tunable Laser Optics*. New York: Elsevier-Academic. Appendix of Laser Dyes.
- Duarte, F. J. & Hillman, L. W. (1990). Editors. *Dye Laser Principles*. New York: Academic Press.
- Duarte, F. J., Liao, L. S. & Vaeth, K. M. (2005). Opt. Lett. 30, 3072–3074.
- Duarte, F. J., Liao, L. S., Vaeth, K. M. & Miller, A. M. (2006). J. Opt. A: Pure Appl. Opt. 8, 172–174.
- Holbrook, A. M., Pereira, J. A., Labiris, R., McDonald, H., Douketis, J. D., Crowther, M. & Wells, P. S. (2005). Arch. Intern. Med. 165, 1095–1106.
- Jalal, S., Chand, K., Kathuria, A., Singh, P., Priya, N., Gupta, B., Raj, H. G. & Sharma, S. K. (2012). *Bioorg. Chem.* 40, 131–136.
- Jasinski, J. P., Jasinski, J. M. & Li, Y. (1998). Acta Cryst. C54, 410-412.
- Jasinski, J. P., Jasinski, J. M., Li, Y. & Crosby, D. J. (2003). Acta Cryst. E59, 0153–0154.
- Jasinski, J. P. & Li, Y. (2002). Acta Cryst. E58, o1312-o1314.
- Jasinski, J. P. & Paight, E. S. (1994). Acta Cryst. C50, 1928-1930.
- Jasinski, J. P. & Paight, E. S. (1995). Acta Cryst. C51, 531-533.
- Jasinski, J. P. & Woudenberg, R. C. (1994). Acta Cryst. C50, 1952– 1953.
- Jasinski, J. P. & Woudenberg, R. C. (1995). Acta Cryst. C51, 107-109.
- Kurosaki, H., Sharma, R. K., Otsuka, M. & Goto, M. (2003). Anal. Sci. 19, 647–648.
- Malkoch, M., Schleicher, K., Drockenmuller, E., Hawker, C. J., Russell, T. P., Wu, P. & Fokin, V. V. (2005). *Macromolecules*, **38**, 3663–3678.

- Marongiu, F. & Barcellona, D. (2015). Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease, edited by R. R. Watson & V. R. Preedy, pp. 395–398. New York: Academic Press.
- Raj, H. G., Kumari, R., Seema, K., Gupta, G., Kumar, R., Saluja, D., Muralidhar, K. M., Kumar, A., Dwarkanath, B. S., Rastogi, R. C., Prasad, A. K., Patkar, S. A., Watterson, A. C. & Parmar, V. S. (2006). Pure Appl. Chem. 78, 985–992.
- Raj, H. G., Singh, B. K., Kohli, E., Dwarkanath, B. S., Jain, S. C., Rastogi, R. C., Kumar, A., Adhikari, J. S., Watterson, A. C., Olsen, C. E. & Parmar, V. S. (2005). Pure Appl. Chem. 77, 245–250.
- Schäfer, F. P. (1990). Editor. *Dye Lasers*, 3rd ed. Berlin: Springer-Verlag.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Singh, P., Ponnan, P., Priya, N., Tyagi, T. K., Gaspari, M., Krishnan, S., Cuda, G., Joshi, P., Gambhir, J. K., Sharma, S. K., Prasad, A. K., Saso, L., Rastogi, R. C., Parmar, V. S. & Raj, H. G. (2011). Protein Pept. Lett. 18, 507–517.
- Sletten, E. M. & Bertozzi, C. R. (2011). Acc. Chem. Res. 44, 666-676.
- Yang, Y., Ascano, J. M. & Hang, H. C. (2010). J. Am. Chem. Soc. 132, 3640–3641.
- Yang, Y. Y. & Hang, H. C. (2011). ChemBioChem, 12, 314-322.

supporting information

Acta Cryst. (2016). E72, 704-708 [doi:10.1107/S2056989016005892]

Crystal structures of 4-methyl-2-oxo-2*H*-chromene-7,8-diyl diacetate and 4methyl-2-oxo-2*H*-chromene-7,8-diyl bis(pent-4-ynoate)

Akintunde Akinyemi, Courtney Thomas, Willis Marsh, Ray J. Butcher, Jerry P. Jasinski and Lystranne A. Maynard-Smith

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2014) for (1); *APEX2* (Bruker, 2005) for (2). Cell refinement: *CrysAlis PRO* (Agilent, 2014) for (1); *APEX2* (Bruker, 2005) for (2). Data reduction: *CrysAlis PRO* (Agilent, 2014) for (1); *SAINT* (Bruker, 2002) for (2). For both compounds, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

(1) 4-Methyl-2-oxo-2H-chromene-7,8-diyl diacetate

Crystal data

 $C_{14}H_{12}O_6$ $M_r = 276.24$ Triclinic, *P*1 *a* = 7.3722 (10) Å *b* = 8.7235 (7) Å *c* = 11.7032 (15) Å *a* = 69.263 (10)° *β* = 87.519 (11)° *y* = 69.113 (10)° *V* = 654.66 (14) Å³ *Z* = 2 *F*(000) = 288 *D*_x = 1.401 Mg m⁻³

Data collection

Agilent Xcalibur Eos Gemini diffractometer Radiation source: Enhance (Mo) X-ray Source Detector resolution: 16.0416 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2014) $T_{\min} = 0.883, T_{\max} = 1.000$ Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 1905 reflections $\theta = 4.4-32.8^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 173 KThe symmetry employed for this shelxl refinement is uniquely defined by the following loop, which should always be used as a source of symmetry information in preference to the above space-group names. They are only intended as comments., colorless $0.33 \times 0.26 \times 0.11 \text{ mm}$

7360 measured reflections 4296 independent reflections 3087 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 32.7^{\circ}, \theta_{min} = 3.2^{\circ}$ $h = -11 \rightarrow 8$ $k = -13 \rightarrow 12$ $l = -16 \rightarrow 17$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.156$	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0738P)^2 + 0.0282P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
4296 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
192 parameters	$\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$
13 restraints	$\Delta \rho_{\min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. Absorption correction: CrysAlisPro (Agilent Technologies, 2014) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

					0 (11)
	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
O1	0.48459 (13)	0.24436 (11)	0.69118 (8)	0.0225 (2)	
O2	0.67011 (16)	0.00141 (12)	0.66239 (10)	0.0336 (3)	
O3	0.09094 (15)	0.73883 (12)	0.78120 (9)	0.0264 (2)	
O4	0.20400 (17)	0.95648 (13)	0.68569 (10)	0.0332 (3)	
O5	0.38600 (14)	0.41942 (12)	0.84842 (8)	0.0238 (2)	
C2	0.54690 (19)	0.14688 (16)	0.61566 (13)	0.0234 (3)	
C3	0.4606 (2)	0.22921 (16)	0.49018 (12)	0.0235 (3)	
H3A	0.5012	0.1646	0.4372	0.028*	
C4	0.32496 (19)	0.39359 (16)	0.44454 (12)	0.0203 (2)	
C11	0.2429 (2)	0.47678 (18)	0.31289 (12)	0.0267 (3)	
H11A	0.2925	0.3903	0.2729	0.040*	
H11B	0.2823	0.5775	0.2711	0.040*	
H11C	0.1003	0.5170	0.3085	0.040*	
C10	0.26109 (18)	0.49190 (15)	0.52589 (11)	0.0183 (2)	
C5	0.11893 (18)	0.66244 (15)	0.49057 (12)	0.0209 (3)	
H5A	0.0596	0.7197	0.4086	0.025*	
C6	0.06342 (19)	0.74874 (15)	0.57236 (12)	0.0225 (3)	
H6A	-0.0339	0.8636	0.5473	0.027*	
C7	0.15204 (19)	0.66502 (15)	0.69197 (12)	0.0207 (2)	
C8	0.29286 (18)	0.49730 (15)	0.72996 (11)	0.0193 (2)	
C9	0.34563 (17)	0.41057 (14)	0.64741 (12)	0.0183 (2)	
C12	0.1158 (2)	0.89364 (16)	0.76502 (13)	0.0244 (3)	
C13	0.0176 (3)	0.9662 (2)	0.85859 (16)	0.0368 (4)	
H13A	0.0693	1.0528	0.8641	0.055*	
H13B	0.0421	0.8704	0.9386	0.055*	
H13C	-0.1231	1.0232	0.8347	0.055*	
C14	0.3169 (3)	0.3042 (2)	0.93265 (14)	0.0376 (4)	
O6A	0.1945 (8)	0.2587 (9)	0.9046 (3)	0.0509 (11)	0.755 (17)

supporting information

C15A	0.4350 (12)	0.2219 (9)	1.0560 (7)	0.0572 (13)	0.755 (17)
H15A	0.5502	0.1208	1.0568	0.086*	0.755 (17)
H15B	0.3550	0.1827	1.1207	0.086*	0.755 (17)
H15C	0.4764	0.3090	1.0706	0.086*	0.755 (17)
O6B	0.150 (2)	0.3148 (19)	0.9106 (11)	0.0509 (11)	0.245 (17)
C15B	0.406 (4)	0.265 (3)	1.051 (2)	0.0572 (13)	0.245 (17)
H15D	0.3343	0.3584	1.0818	0.086*	0.245 (17)
H15E	0.5415	0.2586	1.0435	0.086*	0.245 (17)
H15F	0.4039	0.1523	1.1073	0.086*	0.245 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0247 (5)	0.0181 (4)	0.0211 (5)	-0.0030 (3)	-0.0014 (4)	-0.0075 (3)
O2	0.0349 (6)	0.0229 (5)	0.0345 (6)	-0.0005 (4)	0.0013 (5)	-0.0107 (4)
O3	0.0366 (5)	0.0242 (4)	0.0236 (5)	-0.0127 (4)	0.0108 (4)	-0.0137 (4)
O4	0.0434 (6)	0.0334 (5)	0.0314 (6)	-0.0202 (5)	0.0118 (5)	-0.0162 (4)
05	0.0286 (5)	0.0265 (4)	0.0171 (4)	-0.0115 (4)	-0.0004 (4)	-0.0069 (3)
C2	0.0247 (6)	0.0201 (5)	0.0263 (7)	-0.0074 (5)	0.0053 (5)	-0.0105 (5)
C3	0.0276 (6)	0.0242 (6)	0.0239 (7)	-0.0109 (5)	0.0064 (5)	-0.0135 (5)
C4	0.0227 (6)	0.0237 (5)	0.0196 (6)	-0.0125 (5)	0.0048 (5)	-0.0099 (5)
C11	0.0313 (7)	0.0320 (7)	0.0204 (7)	-0.0131 (6)	0.0023 (5)	-0.0118 (5)
C10	0.0194 (6)	0.0198 (5)	0.0178 (6)	-0.0091 (4)	0.0025 (4)	-0.0072 (4)
C5	0.0218 (6)	0.0207 (5)	0.0189 (6)	-0.0080(4)	0.0007 (5)	-0.0052 (4)
C6	0.0232 (6)	0.0183 (5)	0.0236 (7)	-0.0056 (4)	0.0031 (5)	-0.0070 (5)
C7	0.0242 (6)	0.0207 (5)	0.0211 (6)	-0.0100 (5)	0.0070 (5)	-0.0109 (5)
C8	0.0217 (6)	0.0206 (5)	0.0163 (6)	-0.0092 (4)	0.0009 (4)	-0.0058 (4)
C9	0.0184 (5)	0.0157 (5)	0.0207 (6)	-0.0060 (4)	0.0016 (4)	-0.0066 (4)
C12	0.0278 (6)	0.0237 (6)	0.0240 (7)	-0.0082 (5)	0.0013 (5)	-0.0122 (5)
C13	0.0480 (9)	0.0391 (8)	0.0367 (9)	-0.0195 (7)	0.0147 (7)	-0.0266 (7)
C14	0.0538 (10)	0.0411 (8)	0.0212 (7)	-0.0277 (7)	0.0018 (7)	-0.0045 (6)
O6A	0.076 (2)	0.061 (2)	0.0308 (8)	-0.053 (2)	0.0009 (11)	-0.0047 (13)
C15A	0.088 (3)	0.055 (3)	0.0236 (12)	-0.038 (3)	-0.0136 (16)	0.006 (2)
O6B	0.076 (2)	0.061 (2)	0.0308 (8)	-0.053 (2)	0.0009 (11)	-0.0047 (13)
C15B	0.088 (3)	0.055 (3)	0.0236 (12)	-0.038 (3)	-0.0136 (16)	0.006 (2)

Geometric parameters (Å, °)

01-C9	1.3691 (14)	С5—Н5А	0.9500
O1—C2	1.3906 (15)	C6—C7	1.3910 (19)
O2—C2	1.2100 (16)	C6—H6A	0.9500
O3—C12	1.3731 (15)	С7—С8	1.3829 (17)
O3—C7	1.3916 (15)	C8—C9	1.3901 (17)
O4—C12	1.1945 (17)	C12—C13	1.4898 (19)
O5—C14	1.3641 (17)	C13—H13A	0.9800
O5—C8	1.3921 (15)	C13—H13B	0.9800
С2—С3	1.4440 (19)	C13—H13C	0.9800
C3—C4	1.3502 (18)	C14—O6A	1.205 (4)

supporting information

С3—НЗА	0.9500	C14—O6B	1.234 (14)
C4—C10	1.4544 (17)	C14—C15B	1.43 (2)
C4—C11	1,4973 (19)	C14—C15A	1.512 (7)
C11—H11A	0.9800	C15A—H15A	0.9800
	0.9800	C15A H15P	0.9800
	0.9800		0.9800
	0.9800	CISA—HISC	0.9800
C10—C9	1.4005 (18)	CI5B—HI5D	0.9800
C10—C5	1.4045 (16)	C15B—H15E	0.9800
C5—C6	1.3810 (17)	C15B—H15F	0.9800
CA CA	100.75 (10)	C 2 C 2 C2	100 50 (11)
C9—01—C2	120.75 (10)	09-08-05	120.50 (11)
C12—O3—C7	117.51 (10)	O1—C9—C8	116.45 (11)
C14—O5—C8	116.43 (11)	O1—C9—C10	122.58 (11)
O2—C2—O1	116.03 (12)	C8—C9—C10	120.96 (11)
O2—C2—C3	126.76 (13)	O4—C12—O3	122.90 (12)
O1—C2—C3	117.20 (11)	O4—C12—C13	126.98 (13)
C4—C3—C2	123.15 (12)	O3—C12—C13	110.12 (12)
C4—C3—H3A	118.4	C12—C13—H13A	109.5
C2—C3—H3A	118.4	C12—C13—H13B	109.5
C_{3} C_{4} C_{10}	118 48 (12)	$H_{13} = C_{13} = H_{13} B$	109.5
$C_3 = C_4 = C_{10}$	110.40(12) 121.68(12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{10} = C_{4} = C_{11}$	121.06(12)		109.5
	119.85 (11)	HI3A—CI3—HI3C	109.5
C4—C11—H11A	109.5	HI3B—CI3—HI3C	109.5
C4—C11—H11B	109.5	O6A—C14—O5	122.2 (2)
H11A—C11—H11B	109.5	O6B-C14-O5	117.7 (6)
C4—C11—H11C	109.5	O6B-C14-C15B	125.8 (15)
H11A—C11—H11C	109.5	O5-C14-C15B	107.3 (11)
H11B—C11—H11C	109.5	O6A-C14-C15A	125.4 (4)
C9—C10—C5	118.01 (11)	O5-C14-C15A	111.6 (3)
C9—C10—C4	117.84 (11)	C14—C15A—H15A	109.5
C5-C10-C4	124 15 (12)	C14—C15A—H15B	109.5
C6-C5-C10	121.47(12)	H15A - C15A - H15B	109.5
C6 C5 H5A	110.3	C_{14} C_{15A} H_{15C}	109.5
C_{10} C_{5} U_{5A}	119.5		109.5
C10—C3—H3A	119.5		109.5
	119.04 (11)	HISB-CISA-HISC	109.5
С5—С6—Н6А	120.5	CI4—CI5B—HI5D	109.5
С7—С6—Н6А	120.5	C14—C15B—H15E	109.5
C8—C7—C6	121.09 (11)	H15D—C15B—H15E	109.5
C8—C7—O3	117.00 (11)	C14—C15B—H15F	109.5
C6—C7—O3	121.65 (11)	H15D—C15B—H15F	109.5
C7—C8—C9	119.41 (11)	H15E—C15B—H15F	109.5
C7—C8—O5	120.05 (11)		
a		a. a. a	
C9—O1—C2—O2	180.00 (11)	03—C7—C8—O5	-8.72 (17)
C9—O1—C2—C3	0.67 (17)	C14—O5—C8—C7	98.60 (15)
O2—C2—C3—C4	-179.19 (13)	C14—O5—C8—C9	-83.97 (15)
O1—C2—C3—C4	0.07 (19)	C2—O1—C9—C8	179.93 (11)
C2-C3-C4-C10	-0.66 (19)	C2	-0.79 (17)

C2—C3—C4—C11	178.16 (12)	C7—C8—C9—O1	-179.44 (10)
C3—C4—C10—C9	0.54 (17)	O5—C8—C9—O1	3.11 (17)
C11—C4—C10—C9	-178.31 (11)	C7—C8—C9—C10	1.28 (18)
C3—C4—C10—C5	-178.89 (11)	O5—C8—C9—C10	-176.18 (10)
C11—C4—C10—C5	2.27 (19)	C5—C10—C9—O1	179.64 (10)
C9—C10—C5—C6	0.16 (18)	C4—C10—C9—O1	0.18 (18)
C4—C10—C5—C6	179.58 (11)	C5—C10—C9—C8	-1.12 (18)
C10-C5-C6-C7	0.63 (18)	C4—C10—C9—C8	179.42 (11)
C5—C6—C7—C8	-0.48 (19)	C7—O3—C12—O4	-7.8 (2)
C5—C6—C7—O3	-174.49 (11)	C7—O3—C12—C13	171.97 (12)
C12—O3—C7—C8	120.51 (13)	C8—O5—C14—O6A	6.8 (5)
С12—О3—С7—С6	-65.25 (16)	C8—O5—C14—O6B	-20.6 (8)
C6—C7—C8—C9	-0.46 (18)	C8—O5—C14—C15B	-169.5 (13)
O3—C7—C8—C9	173.82 (11)	C8—O5—C14—C15A	177.4 (4)
C6—C7—C8—O5	177.00 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H···A
C6—H6A····O2 ⁱ	0.95	2.65	3.3465 (17)	130
C13—H13A····O6A ⁱⁱ	0.98	2.48	3.451 (5)	173
C15 <i>A</i> —H15 <i>B</i> ···O2 ⁱⁱⁱ	0.98	2.52	3.401 (8)	150

Symmetry codes: (i) *x*-1, *y*+1, *z*; (ii) *x*, *y*+1, *z*; (iii) –*x*+1, –*y*, –*z*+2.

(2) 4-Methyl-2-oxo-2H-chromene-7,8-diyl bis(pent-4-ynoate)

Crystal data

 $C_{20}H_{16}O_{6}$ $M_{r} = 352.33$ Monoclinic, $P2_{1}/n$ a = 5.2785 (3) Å b = 16.3785 (8) Å c = 20.0502 (11) Å $\beta = 95.992$ (2)° V = 1723.95 (16) Å³ Z = 4

Data collection

Bruker Quest diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.658$, $T_{\max} = 0.746$ 24358 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.142$ F(000) = 736 $D_x = 1.357 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9562 reflections $\theta = 2.5-30.4^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 200 KRod, colourless $0.55 \times 0.14 \times 0.11 \text{ mm}$

5276 independent reflections 3859 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 30.6^\circ, \ \theta_{min} = 2.5^\circ$ $h = -7 \rightarrow 6$ $k = -23 \rightarrow 23$ $l = -28 \rightarrow 28$

S = 1.075276 reflections 255 parameters 13 restraints

Hydrogen site location: mixed	$(\Delta/\sigma)_{\rm max} < 0.001$
H-atom parameters constrained	$\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0483P)^2 + 1.0298P]$	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.4888 (2)	0.14589 (6)	0.70580 (6)	0.0315 (3)	
O2	0.7381 (3)	0.03765 (8)	0.70909 (7)	0.0482 (4)	
O3	-0.0447 (2)	0.37392 (7)	0.67567 (6)	0.0326 (3)	
O4	0.1091 (2)	0.50086 (8)	0.66067 (7)	0.0416 (3)	
O5	0.0579 (2)	0.21864 (7)	0.64977 (5)	0.0278 (2)	
O6	0.3186 (2)	0.22167 (8)	0.56756 (6)	0.0384 (3)	
C2	0.7046 (3)	0.10414 (10)	0.73219 (8)	0.0329 (3)	
C3	0.8638 (3)	0.14369 (10)	0.78577 (8)	0.0327 (3)	
H3A	1.0078	0.1150	0.8063	0.039*	
C4	0.8176 (3)	0.21931 (10)	0.80793 (7)	0.0289 (3)	
C5	0.5425 (3)	0.34519 (9)	0.79035 (8)	0.0309 (3)	
H5A	0.6481	0.3735	0.8240	0.037*	
C6	0.3343 (3)	0.38464 (10)	0.75779 (8)	0.0317 (3)	
H6A	0.2971	0.4395	0.7686	0.038*	
C7	0.1793 (3)	0.34264 (9)	0.70865 (7)	0.0272 (3)	
C8	0.2314 (3)	0.26251 (9)	0.69265 (7)	0.0249 (3)	
С9	0.4453 (3)	0.22431 (9)	0.72504 (7)	0.0253 (3)	
C10	0.6024 (3)	0.26439 (9)	0.77514 (7)	0.0263 (3)	
C11	0.9821 (4)	0.25697 (12)	0.86536 (9)	0.0394 (4)	
H11D	1.1244	0.2203	0.8794	0.056 (6)*	
H11E	0.8808	0.2659	0.9030	0.066 (7)*	
H11F	1.0484	0.3094	0.8512	0.068 (7)*	
C12	-0.0603 (3)	0.45274 (10)	0.65301 (8)	0.0300 (3)	
C13	-0.3222 (3)	0.46849 (11)	0.61876 (10)	0.0394 (4)	
H13A	-0.3207	0.5209	0.5942	0.047*	
H13B	-0.4420	0.4744	0.6533	0.047*	
C14	-0.4205 (4)	0.40154 (13)	0.56970 (11)	0.0449 (5)	
H14A	-0.591 (5)	0.4172 (15)	0.5499 (13)	0.067 (7)*	
H14B	-0.433 (4)	0.3504 (13)	0.5928 (11)	0.042 (5)*	
C15A	-0.280(2)	0.3949 (8)	0.5166 (7)	0.0399 (16)	0.55 (2)
C16A	-0.147 (3)	0.3912 (8)	0.4725 (6)	0.059 (2)	0.55 (2)
H16A	-0.0410	0.3882	0.4371	0.071*	0.55 (2)
C15B	-0.228 (3)	0.3822 (10)	0.5170 (8)	0.0399 (16)	0.45 (2)
C16B	-0.084 (3)	0.3704 (10)	0.4775 (8)	0.059 (2)	0.45 (2)
H16B	0.0337	0.3609	0.4455	0.071*	0.45 (2)

C17	0.1254 (3)	0.19905 (9)	0.58756 (7)	0.0258 (3)
C18	-0.0746 (3)	0.14582 (10)	0.55133 (8)	0.0300 (3)
H18A	-0.2420	0.1734	0.5498	0.036*
H18B	-0.0856	0.0939	0.5762	0.036*
C19	-0.0149 (3)	0.12754 (10)	0.48024 (8)	0.0341 (4)
H19A	-0.0120	0.1794	0.4549	0.041*
H19B	0.1567	0.1028	0.4819	0.041*
C20	-0.2013 (4)	0.07199 (10)	0.44457 (8)	0.0360 (4)
C21	-0.3513 (4)	0.02838 (12)	0.41527 (10)	0.0468 (5)
H21	-0.4724	-0.0068	0.3916	0.077 (8)*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	U^{13}	<i>U</i> ²³
01	0.0352 (6)	0.0212 (5)	0.0355 (6)	-0.0018 (4)	-0.0082 (5)	-0.0036 (4)
O2	0.0545 (8)	0.0302 (6)	0.0553 (8)	0.0084 (6)	-0.0157 (6)	-0.0085 (6)
03	0.0307 (6)	0.0262 (6)	0.0396 (6)	-0.0003 (4)	-0.0019 (5)	-0.0005 (5)
04	0.0330 (6)	0.0369 (7)	0.0538 (8)	-0.0062 (5)	-0.0014 (5)	0.0089 (6)
05	0.0264 (5)	0.0289 (5)	0.0273 (5)	-0.0056 (4)	-0.0008 (4)	-0.0043 (4)
O6	0.0324 (6)	0.0449 (7)	0.0383 (6)	-0.0130 (5)	0.0061 (5)	-0.0084 (5)
C2	0.0373 (9)	0.0238 (7)	0.0358 (8)	-0.0007 (6)	-0.0042 (7)	0.0024 (6)
C3	0.0333 (8)	0.0288 (8)	0.0341 (8)	-0.0035 (6)	-0.0057 (6)	0.0062 (6)
C4	0.0309 (8)	0.0293 (7)	0.0253 (7)	-0.0089 (6)	-0.0025 (6)	0.0049 (6)
C5	0.0413 (9)	0.0268 (7)	0.0233 (7)	-0.0087 (6)	-0.0024 (6)	-0.0037 (6)
C6	0.0427 (9)	0.0246 (7)	0.0272 (7)	-0.0031 (6)	0.0009 (6)	-0.0033 (6)
C7	0.0307 (7)	0.0258 (7)	0.0250 (7)	-0.0014 (6)	0.0024 (6)	0.0006 (5)
C8	0.0276 (7)	0.0239 (7)	0.0227 (6)	-0.0071 (6)	0.0001 (5)	-0.0018 (5)
C9	0.0312 (7)	0.0192 (6)	0.0249 (7)	-0.0052 (6)	0.0001 (5)	0.0002 (5)
C10	0.0315 (7)	0.0239 (7)	0.0224 (7)	-0.0072 (6)	-0.0018 (5)	0.0015 (5)
C11	0.0410 (9)	0.0414 (10)	0.0324 (8)	-0.0080 (8)	-0.0120 (7)	0.0010 (7)
C12	0.0300 (8)	0.0283 (8)	0.0323 (8)	0.0030 (6)	0.0063 (6)	-0.0008 (6)
C13	0.0309 (8)	0.0318 (9)	0.0544 (11)	0.0021 (7)	-0.0004 (7)	-0.0005 (7)
C14	0.0344 (9)	0.0408 (10)	0.0570 (12)	-0.0078 (8)	-0.0078 (8)	-0.0006 (9)
C15A	0.043 (4)	0.034 (4)	0.0394 (10)	-0.006 (3)	-0.008 (2)	-0.0004 (19)
C16A	0.071 (5)	0.057 (5)	0.051 (2)	-0.017 (3)	0.008 (3)	-0.008 (3)
C15B	0.043 (4)	0.034 (4)	0.0394 (10)	-0.006 (3)	-0.008 (2)	-0.0004 (19)
C16B	0.071 (5)	0.057 (5)	0.051 (2)	-0.017 (3)	0.008 (3)	-0.008 (3)
C17	0.0260 (7)	0.0229 (7)	0.0274 (7)	0.0005 (5)	-0.0014 (5)	-0.0015 (5)
C18	0.0280 (7)	0.0308 (8)	0.0305 (8)	-0.0053 (6)	-0.0002 (6)	-0.0060 (6)
C19	0.0399 (9)	0.0331 (8)	0.0282 (8)	-0.0055 (7)	-0.0009 (6)	-0.0013 (6)
C20	0.0480 (10)	0.0307 (8)	0.0275 (8)	0.0009 (7)	-0.0041 (7)	0.0001 (6)
C21	0.0602 (12)	0.0379 (10)	0.0390 (10)	-0.0072 (9)	-0.0103 (9)	-0.0037 (8)

Geometric parameters (Å, °)

01—C9	1.3675 (18)	C11—H11E	0.9800
O1—C2	1.3851 (19)	C11—H11F	0.9800
O2—C2	1.204 (2)	C12—C13	1.501 (2)

O3—C12	1.3682 (19)	C13—C14	1.527 (3)
O3—C7	1.3911 (19)	C13—H13A	0.9900
O4—C12	1.189 (2)	C13—H13B	0.9900
O5—C17	1.3705 (18)	C14—C15A	1.364 (13)
O5—C8	1.3889 (17)	C14—C15B	1.574 (15)
O6—C17	1.1931 (19)	C14—H14A	0.98 (3)
C2—C3	1.446 (2)	C14—H14B	0.96 (2)
C3—C4	1.347 (2)	C15A—C16A	1.186 (9)
С3—НЗА	0.9500	C16A—H16A	0.9500
C4—C10	1.453 (2)	C15B—C16B	1.169 (11)
C4—C11	1 501 (2)	C16B—H16B	0.9500
C5—C6	1.379 (2)	C17—C18	1.497 (2)
C5-C10	1.673(2) 1.402(2)	C18-C19	1.521 (2)
C5—H5A	0.9500	C18—H18A	0.9900
C6C7	1 394 (2)	C18—H18B	0.9900
C6—H6A	0.9500	C19-C20	1470(2)
C7-C8	1.385(2)	C19—H19A	0.9900
C_{8}	1.305(2) 1 301(2)	C19_H19B	0.9900
C_{9} C_{10}	1.397(2)	C_{20}	1.177(3)
	0.9800	C21—H21	0.9500
en-mid	0.9000	021-1121	0.7500
C9-01-C2	120 77 (12)	03 - C12 - C13	109 55 (14)
$C_{12} = 0_{3} = 0_{7}$	120.77(12) 121.60(12)	C_{12} C_{13} C_{14}	113.95 (15)
C12 = 0.5 = 0.7	117.86 (11)	C12 $C13$ $H13A$	108.8
02-02-01	116 59 (14)	C14— $C13$ — $H13A$	108.8
02 - 02 - 01	126 42 (16)	C12— $C13$ — $H13B$	108.8
$01 - C^2 - C^3$	116 97 (14)	C14 $C13$ $H13B$	108.8
$C_{4} - C_{3} - C_{2}$	110.97(14) 123.07(15)	$H_{13}A$ C_{13} $H_{13}B$	103.3
C4 $C3$ $H3A$	123.07 (13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112.6 (6)
$C_2 = C_3 = H_2 \Lambda$	118.5	C13 C14 C15P	112.0(0) 112.2(7)
$C_2 = C_3 = \Pi_3 A$	118.5	$C15 \land C14 \dashv U14 \land$	112.2(7) 104.0(16)
$C_{3} = C_{4} = C_{10}$	118.30(14) 121.30(15)	C13A - C14 - H14A	104.9(10) 107.0(15)
$C_{10} = C_{4} = C_{11}$	121.39(13) 120.05(14)	C15D = C14 = H14A	107.9(13) 114.2(16)
$C_{10} - C_{4} - C_{11}$	120.03(14)	C15B - C14 - H14A	114.3 (10)
C_{0}	121.75 (14)	C12 $C14$ $H14B$	112.2(14)
Clo_CS_HSA	119.1		110.5 (13)
C10-C5-H5A	119.1	C15B-C14-H14B	103.3(14)
$C_{2} = C_{0} = C_{1}$	118.88 (14)	H14A - C14 - H14B	108.4 (19)
C_{2}	120.6	C16A - C16A - C14	176.4 (14)
$C = C = H \delta A$	120.0		180.0
C8-C7-03	114./1(13)	C16B - C15B - C14	1//.9 (16)
C8 - C7 - C6	121.01 (14)	C15B—C16B—H16B	180.0
03-07-06	124.13 (14)	06-017-05	123.07 (13)
C/-C8-O5	119.98 (13)	06-017-018	127.00 (14)
C/C8C9	119.26 (13)	05-017-018	109.93 (13)
05-08-09	120.45 (13)	C17—C18—C19	111.39 (13)
01-09-08	116.28 (12)	C17—C18—H18A	109.4
01-C9-C10	122.63 (14)	C19—C18—H18A	109.4
C8—C9—C10	121.07 (13)	C17—C18—H18B	109.4

C9—C10—C5	117.99 (14)	C19—C18—H18B	109.4
C9—C10—C4	117.62 (14)	H18A—C18—H18B	108.0
C5-C10-C4	124.39 (13)	C20-C19-C18	112.58 (14)
C4—C11—H11D	109.5	C20—C19—H19A	109.1
C4—C11—H11E	109.5	C18—C19—H19A	109.1
H11D—C11—H11E	109.5	C20—C19—H19B	109.1
C4—C11—H11F	109.5	C18—C19—H19B	109.1
H11D—C11—H11F	109.5	H19A—C19—H19B	107.8
H11E—C11—H11F	109.5	C21—C20—C19	179.00 (19)
O4—C12—O3	124.34 (15)	C20—C21—H21	180.0
O4—C12—C13	126.10 (15)		
C9—O1—C2—O2	-174.76 (15)	O5—C8—C9—C10	-171.09 (13)
C9—O1—C2—C3	6.7 (2)	O1—C9—C10—C5	179.15 (14)
O2—C2—C3—C4	178.29 (18)	C8—C9—C10—C5	-2.0(2)
O1—C2—C3—C4	-3.3 (2)	O1—C9—C10—C4	-0.8(2)
C2-C3-C4-C10	-2.0 (2)	C8—C9—C10—C4	178.12 (13)
C2-C3-C4-C11	177.73 (16)	C6—C5—C10—C9	0.6 (2)
C10—C5—C6—C7	0.3 (2)	C6—C5—C10—C4	-179.52 (15)
С12—О3—С7—С8	-141.36 (14)	C3—C4—C10—C9	4.1 (2)
С12—О3—С7—С6	43.1 (2)	C11—C4—C10—C9	-175.69 (14)
C5—C6—C7—C8	0.3 (2)	C3—C4—C10—C5	-175.83 (15)
C5—C6—C7—O3	175.49 (14)	C11—C4—C10—C5	4.4 (2)
O3—C7—C8—O5	-3.7 (2)	C7—O3—C12—O4	-1.9 (2)
C6—C7—C8—O5	171.99 (14)	C7—O3—C12—C13	179.10 (14)
O3—C7—C8—C9	-177.27 (13)	O4—C12—C13—C14	134.73 (19)
C6—C7—C8—C9	-1.6 (2)	O3—C12—C13—C14	-46.3 (2)
C17—O5—C8—C7	111.09 (16)	C12—C13—C14—C15A	-64.6 (6)
C17—O5—C8—C9	-75.36 (17)	C12-C13-C14-C15B	-53.0(7)
C2—O1—C9—C8	176.26 (14)	C8—O5—C17—O6	-4.2 (2)
C2-01-C9-C10	-4.8 (2)	C8—O5—C17—C18	174.99 (12)
С7—С8—С9—О1	-178.55 (13)	O6—C17—C18—C19	-4.7 (2)
05	7.9 (2)	O5—C17—C18—C19	176.16 (13)
C7—C8—C9—C10	2.5 (2)	C17-C18-C19-C20	177.12 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
C13—H13 <i>B</i> ····O4 ⁱ	0.99	2.43	3.244 (2)	139
C18—H18A…O6 ⁱ	0.99	2.51	3.482 (2)	167

Symmetry code: (i) x-1, y, z.