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Abstract

Simulating signal transduction in cellular signaling networks provides predictions of network dynamics by quantifying the
changes in concentration and activity-level of the individual proteins. Since numerical values of kinetic parameters might be
difficult to obtain, it is imperative to develop non-parametric approaches that combine the connectivity of a network with
the response of individual proteins to signals which travel through the network. The activity levels of signaling proteins
computed through existing non-parametric modeling tools do not show significant correlations with the observed values in
experimental results. In this work we developed a non-parametric computational framework to describe the profile of the
evolving process and the time course of the proportion of active form of molecules in the signal transduction networks. The
model is also capable of incorporating perturbations. The model was validated on four signaling networks showing that it
can effectively uncover the activity levels and trends of response during signal transduction process.
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Introduction

Cells sense, monitor and process signals originating from the

environment. Monitoring external conditions requires the signal

transduction to the site of action and thereby triggers various

biological responses. Cells have developed signal transduction

pathways, which facilitate signal transmission from the receptors to

the target molecules by cascades of modifications to cellular

molecules such as phosphorylation [1]. Evolving proteomic

approaches to network biology have focused on measuring the

changes in abundances of signaling proteins in active forms (e.g.

phosphorylated form) under different experimental conditions [2].

Examples of such protein-based datasets becoming more frequent

in the literature [3,4,5,6,7]. At the present, this type of studies on

protein functional status focuses on frequent sampling of a limited

number of key molecules [4,8]. This necessitates developing

mathematical methods to prioritize selection of the molecules such

that measuring their activity to be informative and capable of

predicting the outcome of new experiments [9,10].

Evidently, it is important to apply adequate updating rules to

choose biologically correct model [11]. During the signal

transduction process, always time delays are associated with the

transport of signaling molecules to reach the site of action [12]. For

example, the transport of signaling molecules over intracellular

distances of more than a few micrometers normally requires

facilitated transport mechanisms such as movement of phosphor-

ylated kinases on the scaffolds [13,14,15]. The other issue is the

stochasticity in signaling processes at the molecular level. The

origin of stochasticity can be due to chaotic births and deaths of

individual molecules as well as the extracellular noise due to

environmental fluctuations [16]. Such delays and stochastic noises

are source of inherent fluctuations in transferred signal [17].

Generally, asynchronous and continuous models, in which all

edges demonstrate different efficiencies for making signal transi-

tion, are closer to biological phenomena [18].

A number of studies have shown close relation between

structure of biological networks and their functional phenotypes

[19,20]. Therefore, scholars struggled to develop nonparametric

methods that are based on only network topology [9,10,21,22].

However, no model has been reported to compute both the

proportion of active form and the trend of activation of given

molecule in signal transduction networks [9,10]. The present study

proposes an efficient nonparametric method for accurate identi-

fication of activity trends and the proportion of active form for

each member of the signaling networks. We validated our

approach for logical modeling on four signaling networks. We

show that activity level and activation trend of signaling proteins

observed through the proposed model have significant correlations

with experimental results.

Materials and Methods

Signaling networks are represented as directed graphs where

nodes denote signaling components and edges represent the

direction of information flow. Edges are labeled with positive (+1)

or negative (21) signs, which define activation or inhibition,

respectively. The input (source) nodes represent the ligands or

their receptors, the intermediate nodes consist of various kinases

and second messengers, and the output (sink) nodes represent

transcription factors, channels, cytoskeleton, motility components,

or cellular responses [23]. Through the interactions in the
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network, signals propagate from the receptor (source node) to the

downstream and target molecules (sink nodes).

The proposed dynamic model follows the changes in the activity

levels of signaling proteins (between 0 and 1) in time steps and the

way that signals propagate through molecular interactions [24].

Thus, in some sense, the predictions returned by our simulator can

be interpreted like the normalized results of bead-based micro-

ELISA assay [4,25]. In the following sections, we describe different

parts of our method to simulate signaling networks.

Edge weighting
Matching connection is a measure used to establish similarity

between two nodes (proteins) [26,27]. If nodes i and j have a

number of common neighbors, they may be related to each other,

even though they are not directly connected [28,29,30]. Here in

order to quantify the efficiency of signal transduction between the

two nodes adjacent to the given edge, we used similarity index and

took into account the existence of matching connections. The

extension is called Normalized Similarity Index (NSI). Let us

consider a directed network with adjacency matrix A, and n nodes

that are denoted from 1 to n. Let there also be a n6n similarity

matrix S = (NSIij ) satisfying 0,NSIij#1, NSIii = 0, and NSIij =

NSIji for all i, j M {1, …,n}. The NSI of edge between nodes i and j

is computed considering the number of matching connections of i

and j to any other node m (Ai,mAj,m,Ai,mAm,j ,Am,iAj,m,Am,iAm,j),

and the number of connections (edges) between the node i and j

(Cij). More precisely,

NSIij~

P
m=i,j

(Ai,mAj,m,Ai,mAm,j,Am,iAj,m,Am,iAm,j)zCi,j

kizkj{
P

m=i,j
(Ai,mAj,m,Ai,mAm,j,Am,iAj,m,Am,iAm,j)zCi,j

h ið1Þ

where ki is degree of node i. Figure 1 shows a graphics for

computing NSI. Each edge is associated with a weight (NSIij )

ranging from 0 to 1 that represents the efficiency of signals passing

along the edge. Edge weighting by NSI suggests that inside the

highly connected parts of network, the efficiency of signal

propagation along the edges is mainly, due to the facility posed

by high NSI values. Data from previous studies supported the idea

that cellular signals are transmitted dominantly through pathways

of highly connected proteins [31].

The similarity index is often used to cluster different compo-

nents of biological networks that are functionally similar [32,33].

The definition draws upon the notion that two molecules (nodes)

could be considered similar if they perceive the rest of the nodes

within the network in a similar way [26,27,34]. Previous similarity

indices are based on the number of common neighbors shared by

two non-adjacent nodes i and j [28,32,33,34]. However, NSI

quantifies the similarity between two connected nodes. The

VOSveiwer program was used for visulization of weighted

networks by similarity measure [35].

Simulation of signal transduction and weighting the
nodes

The simulation starts from signal ligand and iteratively traverses

the whole network by a breadth-first-search (BFS). As we are only

interested in the connected sub-network that begins with the first

node, the nodes that are not reachable from the first node are

simply ignored. The state of a node j, (Xj ), is defined as a

proportion of molecules in active form (e.g. phosphorelated) and

gets a value between 0 and 1. At each time interval t, the X(t) is

changed or updated based on its value in the previous time step,

X t{1ð Þ, the statuses of the set of activator (SA
i?j), and those of

repressor nodes feeding into it (SR
(i?j)) according to the following

formula:

Xj tð Þ~ Xj t{1ð Þ| 0:7ƒRƒ1ð Þ
� �

z

½1{P
ieSA (1{SA

ij |NSIA
ij )�|

P ieSR (1zSR
ij |NSIR

ij )|½1{Xj t{1ð Þ�

ð2Þ

where, each directed edge (i, j) models the transduction of signals

from node i to node j of activation (NSIA
ij ~NSIij ) or repressor

(NSIR
ij ~{NSIij ) type. In order to explain clearly the equation 2,

let X = (XA, XI) = ({#Active form}, {#Inactive form}) be the

states of a given molecule at time t. If P(XA, t) is the probability

function for the state ({#Active form}) = XA at time t, in order to

simplifying the expression we can use P(XA, t) = X(t). Therefore,

X(t) is the probability or proportion of the active form of given

molecule at time t.

Although we know a great deal about global protein stability

profiling, little is known about global stability of signaling proteins

in the active form (e.g. phosphorylated) [36,37]. In the proposed

model, the relative stability (R) of proteins in active form is chosen

randomly and changed after each time step (Xj t{1ð Þ|R) [20].

We adopted equation 2 according to the method proposed by Van

Kampen for selecting the subset of molecules in the active form in

preceding iteration to be passed to next iteration [38]. First, we

developed a deterministic equations of the experimental system,

and then added a noise term (0ƒRƒ1), and adjusted a specified

random function to reproduce a correct mean as taken from the

experimental results (0:7ƒRƒ1). The noise term is independent

and uncorrelated with the time span of the system. We used

[1{X t{1ð Þ] in formula to ensure that the activation of a node

has bounded in the interval [0–1], regardless of the number of

iterations.

In the model, time is quantized into regular intervals (time-steps)

as the longest duration required for state of all components to be

updated [39]. We extended this basic model to account for

variability in the duration of signal transmission by performing

Figure 1. Weighting of the edge by Normalize Similarity Index
(NSI). Vi and Vj are connected with one directed edge (Cij = 1). Node
Vi and Vj are also connected with four common node
(Vm21,Vm22,Vm23,Vm24), and in total with eight distinct neighbors
(Vm21,Vm22,Vm23,Vm24,Va, Vb, Vc, Vd). The NSI will then be NSIij = 5/
9 = 0.55.
doi:10.1371/journal.pone.0039643.g001
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signal transduction to some nodes in an asynchronous update

fashion, called semi-synchronous update [20,21,40]. If a directed

network is imaged in hierarchical layout, in semi-synchronous

update, each node in layer d at time-step t receive signals from its

regulators in layer d and layer d-1 in t, and its regulators in

downstream of layer d in t+1. Therefore, the state of a node in

each time step depends on the signals transmitted to the nodes at

time-step t or t-1. The rules for semi-synchronous algorithm can be

written as:

Xj(t)~fj Xj(t{1),Xi1,j(m),Xi2,j(m), . . . , Xik ,j(m)
� �

,

m[ t{1,tf g
ð3Þ

where Xj(t) is the state of node j at time-step t, fj is the function

associated with state of node j at time-step t-1 (Xj(t{1)) and its

regulators (Xik ,j ) in previous time step (t{1) or current round of

updates t.

Equation 2 is derived from a specific form of non-linear

dynamic representation of the regulatory networks of transcrip-

tion. It is assumed that all transcription factors independently bind

at the available distinct sites of promoter region without

interacting with each other [41]. In updating the nodes, we also

assumed that the order of incoming signals does not affect the

outcome, i.e., fj Xj(t{1),Xi1,j ,Xi2,j

� �
~fj Xj(t{1),Xi2,j ,Xi1,j

� �� �
in

Equation (3).

In the first step of simulation, user can specify the activity of first

node (proportion of active form) as a source of signal. The activity

of first node (wf ) changes systematically according to the following

relation:

wf , t~ t|
wf

T|10

� �
ð4Þ

where, T is a user-specified number of iterations, wf is a user-

specified activity of first node, and wf , tn is the weight of first node

in iteration t. The term 10 in the denominator confines the

proportion of receptors in active form (binds its ligand), that is less

than 1, because almost 10% of the total receptors pool are usually

in high-affinity form [42,43]. The activities of other nodes are

initially equal to 0.

As the main focus of this study was designing a purely non-

parametric simulation method, we used network topology to

predict the half-lives of proteins. Wang et al. (2009) systematically

examined the entire human signaling network and mapped the

enrichment of proteins with different half-lives in the groups of

nodes that were categorized based on their degree in network and

cellular location [44]. According to their results, 77.5% of the

nodes with degree equal to or bigger than 6, 73.6% of nuclear

proteins, and 48.9% of ligands had long half-lives. Therefore, for

the nodes with a degree equal to or bigger than 6, and out-degree

(sink nodes) or in-degree (source nodes) equal to 0, we defined two

kinds of proportion of activity: 1- if node has short half-life and 2-

if it has long half-life [44,45].

Simulation of perturbation experiments
Typically, the functional importance of a molecule in signal

transduction network is determined by cell response after its

inhibition by specific chemical inhibitors or interference with the

siRNA [4]. In many existing methods, molecular inhibition is

simulated by deleting the corresponding nodes and edges incident

on it [46,47]. However, the disruption of any molecule in cell

signaling network may lead to a cascade breakdown of other

downstream molecules. We briefly considered some examples

from the perturbation results of the phosphoproteins in the

inflammatory and growth signaling network in human hepato-

blastoma cells [4]. Figure 2 depicts the inflammatory and growth

signaling network in human hepatocyte cells. The experimental

results are plotted in Figure 3, which is organized into panels,

corresponding to the various ligands [4,48]. If we simulate

molecular inhibition of MEK and IKK by deleting the

corresponding nodes and the edges incident on them, the signal

flow to the ERK and IkB is broken (Figure 2). However, according

to the experimental results, treatment of MEK and IKK with their

corresponding inhibitors and the measurements of the activity of

their downstream proteins (ERK and IkB) have shown that a little

signal flow can pass through the inhibited node, and the signals

sent by upstream nodes can have inductive effect on its target

molecules (Figure 3A and 3B) [4].

To take into account the gain of function or inhibitory effects on

the molecule(s), we used a complementary node for target node

[39,49,50]. To simulate the influence of the inhibitory effect on the

signaling component, target node receives constant inhibitory

messages from the complementary node during simulation;

however, signal flow can pass through the inhibited node in some

iteration. When the measured molecule is inhibited (e.g. MEK), its

measurement cannot be used in experimental studies (Figure 3C)

[4]. Therefore, in our method the proportion of active form of

inhibited node is denoted with the input value specified by the user

(often 0).

Overview of the tool
The Nonparametric Simulator of Signaling Networks (NSIN)

program was written in C++, and is freely available at http://lbb.

ut.ac.ir/Download/LBBsoft/NSIN. The inputs to NSIN are text

files specifying a directed graph in which each node represents a

specific molecule (Input A), and each directed edge models the

transduction of signals of activation (+1) or blockage (21) type

(Input B). The simulator provides both single and set of running

modes. In single mode, users can specify the activity of the input

node (between 0 and 1), while the activities of the other nodes

change as a function of initial stimulus. A set-mode run, consists of

multiple inputs (up to 10), each with the same or different activity.

The simulation stops after a number of iterations specified by the

user. As output, the program provides a set of continues values for

proportion of molecules in active form, and the weight of edges in

the network according to the NSI formula. For some nodes, two

kinds of proportion of activity including short Xsð Þ and long half-

lives XLð Þ, are defined. In addition, the in-degree and out-degree of

each node is specified and can be used as an indicator to select the

proper half-lives for molecules.

Validating the model
Experiments for model validation can be divided into three

major types. The first type involves stimulation of system with a

step change in the input and measuring the changes in activities of

various downstream species as a function of time [9]. Second type

of experiment for model validation involves changes in the input

by adding a high concentration of ligand and then measuring

activity changes of various downstream species in several intervals

[51]. Third type is used to provide insight of molecular activity

trends in response to the external stimulus and perturbation [10].

We validated our model on four signaling networks including the

EGFR/IGF-1R/IR (type I experiment for model validation),

inflammatory and growth signaling networks in human hepatocyte

cells (type II), and MAPK1,2 and AKT signaling network

downstream from EGFR in MDA231 breast cancer cell line (type

Nonparametric Simulation of Signaling Networks
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III). We also used human signaling network (containing 1634

nodes and 5089 edges), and mouse hippocampal CA1 neuron

network (containing 545 nodes and 1259 edges) for visualization of

organization in signal transduction networks weighted by similar-

ity measure [31,52].

Signaling network of EGFR/IGF-1R/IR
Zielinski et al. (2009) assembled canonical pathways, down-

stream the three major receptors, including insulin receptor (IR),

IGF-1R, and EGFR in SKOV3 cell line [9]. The network has 82

nodes and 128 edges, of which EGF, IGF, and insulin can be

considered as the input nodes (Table S1).

Signaling networks of human hepatocyte cells
We obtained the connectivity for two signaling networks of

human hepatocyte cells from published literatures (Table S2 and

S3) [53,54]. Network of inflammatory and growth signaling is

depicted in Figure 2.

MAPK1,2 and AKT signaling network downstream from
EGFR in breast cancer cell line

We obtained the connectivity MAPK1,2 and AKT signaling

network downstream from EGFR in MDA231 breast cancer cell

line from a published literature [10]. There is a gain of function

mutation in Ras for the MDA231 cell line [10].

Figure 2. Inflammatory and growth signaling network in human hepatocyte cells. Activator (R) and inhibitor ( ) reactions are indicated as
edges. Nodes represented in the extracellular space are ligands.
doi:10.1371/journal.pone.0039643.g002

Figure 3. Signaling dataset of three proteins from human hepatocyte cells. Rows represent the measures of three assayed intracellular
molecules, and columns represent 4 different ligands. For each combination of ligand and target molecule, one of 4 kinase inhibitors was applied, as
indicated in the schematic diagram below the data. The numbers on the right of the figure indicate the maximum values of the corresponding row.
The Figure was created using Data-Rail program [4,48].
doi:10.1371/journal.pone.0039643.g003
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Results

In this study, we developed a computational framework to

model the concentration of the active form of given proteins and

obtained the quantities of proteins involved in cell-specific

signaling networks. In the proposed modeling method the weight

of a node was the product of its activity at time t-1, the amounts of

signals received by upstream nodes and the weight of activating or

blocking edges. We calculated the edge weights through the NSI

formula (see Methods), as the efficiency of transmission signal

between the nodes. As the signal transduction network was given

appropriate weights using the similarity measure, cluster patterns

became visible (Figure 4A and 4B). The cluster patterns

corresponded to different parts of eukaryotic cells including cell

membrane, cytoplasm and nucleus. These profiles suggest that

inside the clusters, the efficiency of signal propagation along the

edges is more than their outside that is primarily due to the facility

posed by high NSI values.

Case studies for model validation
We chose four signaling networks as the EGFR/IGF-1R/IR,

inflammatory and growth signals in human hepatocyte cells, and

MAPK1,2 and AKT signaling network downstream from EGFR

as the benchmarks for validating our method [9,10,53].

Signaling network of EGFR/IGF-1R/IR
The ability of the model to predict the proportion of active

molecules in response to different levels of stimulation was the first

question that we considered. Since the output of the model is

continuous, it is possible to evaluate the activation of target

molecules in response to different concentrations of ligands.

We used the network constructed by combining EGF, IGF and

insulin signaling pathways and related experimental results

including the responses of selected molecules to the specific stimuli

[9]. Four proteins with network crosstalk, ERK, AKT, p70s6K,

and JNK, were selected. In order to compare the experimental

results with those obtained through computations, four sets of

simulations were performed by 25% step-wise increase in the

receptor activation [9]. This set of simulations made possible to

have translation of the molecular response into activation level.

The experimental and simulation results are reported as propor-

tion of each examined molecule in active form. According to the

results, our model was in line with experimentally observed values

with a Pearson correlation of 0.742 (P,10215) (Figure 5)

(Table S1).

We observed that computer simulation was able to recapitulate

all the trends observed in the experimental studies. As expected,

co-stimulation of the signaling with insulin and EGF led to the

activation of JNK and MAPK1,2. Also, the activation of insulin

and IGF-1 was translated to the activation of p70s6K during

stimulation (Table S1) [9].

As mentioned before, our simulation method does not need

experimental data such as the reaction rates or association

constants. The performance of our method depends on how the

underlying network is completed. For example, the discrepancy

between the predictions of proportion of AKT molecules in active

form with the experimental results, in almost all cases, can reveal

that our information about the regulation of AKT in SKOV3 cell

line was incomplete (Figure 5) (Table S1).

Signaling networks of inflammatory and growth signals
in hepatocyte cells

We further evaluated the ability of the model in predicting the

outcome of experiments by using two datasets consisting of the

activity levels of signaling proteins of primary and transformed

hepatocytes (Huh7) under various perturbations [4,7].

Inflammatory and growth signaling network in human hepato-

cyte cells included the pathways downstream the seven receptors,

including IL6R, IGFR, TNFR, IL1R, TLR4, EGFR, and IFNcR

(Figure 2). We simulated the activity levels of 14 signaling proteins

(AKT, CREB, ERK, GSK3, HistH3, HSP27, IkB, IRS1s, JNK,

MEK, p38, p70s6K, p90 & STAT3) under activation of IL1a,

TGFa, IL6, TNFa and perturbations by two inhibitors (MEKi &

PI3Ki) for all 168 possible pair-wise combinations at 100

iterations. Our tool showed that, predictions of activity levels of

phosphoproteins under various perturbations agreed with those

obtained experimentally with a Pearson correlation of 0.831

(P,10244) (Table S2). We simulated the activation state of CREB,

ERK, HistH3, HSP27, p90, IkB, JNK, MEK, p38, and p70s6

proteins in human hepatocyte cells under activation of IL1b,

TGFa, HER, INS, TNFa and perturbations by cMETi, MEKi

and PI3Ki for all 200 possible pair-wise combinations at 100

iterations. Simulation of activity levels of 10 signaling proteins

under various perturbations agreed with experimental data

(Pearson correlation of 0.817; P,10246) (Table S3).

MAPK1,2 and AKT signaling network downstream from
EGFR

We tested the accuracy and performance of our method to

simulate the effects of targeted manipulation in MAPK1,2 and

AKT signaling network in MDA231 breast cancer cell line [10]. In

the MDA231 cell line, there is a gain of function mutation in Ras.

This is modeled using fixed activity assignments on Ras during the

simulation [10].

We compared the simulation and experimental results through

computing the proportion of active form of mTOR, GSK3b,

p70s6K, AKT, and MAPK1,2 molecules under activation of EGF

and inhibition of TSC2 [10]. Simulation of normal and perturbed

signal transduction was performed in 100 iterations. The

Wilcoxon test was used to study changes in the signal propagation

between the simulation results before and after perturbation. The

results produced through the simulation agreed with those

obtained through the experiments (Table 1). We did not expect

that the TSC2 perturbation can have a significant effect on the

activity of GSK3b and AKT, which was what the statistical test

indicated (Table 1) [10]. The mTOR, p70S6K, and MAPK1,2

showed a significant response to the perturbation, and the changes

in mean activity were beyond the significance level of 0.01.

Predictions made by the model
Activation of a T cell by exposure to specific agonist may lead to

cytotoxic attacks on target cells, cytokine production or cell

proliferation [55]. The process of T cell activation can be

separated into a hierarchy of thresholds. In general, a hierarchy

of thresholds is observed for T cell responses with the relative

threshold order: Scytotoxicity ,, Scytokine production , Scell proliferation

(where S stands for potency of stimulus) [56]. These thresholds

depend on the stimulus conditions with the most significant

changes occurring in the presence of co-stimulation of receptors

[57,58]. The final level of this signaling process is the integration of

signals to regulation of the gene transcription [59]. This process

has been studied for its possible role in the diseases such as of

autoimmune disorders, atopic dermatitis and fibrotic diseases

[60,61]. In order to have an example of how our modeling

approach might be used for novel predictions, we used threshold

concept in T cell activation problem.

We considered activation model motivated by the dependence

of cell responses on the potency of the signal and simulated the

Nonparametric Simulation of Signaling Networks
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Figure 4. Cluster density view of the weighted cellular signaling networks by applying similarity measure. (A) human cancer cell
signaling, and (B) mouse hippocampus CA1 neural networks were weighted by similarity measure. Nodes were labeled according to their position in
the cell, including cell membrane, adducin, cell adhesion, centrosome, cytoskeleton, endothelial, endoplasmic reticulum, cytosolic, extracellular
space, golgi apparatus, lysosome, mitochondria, nucleus, ribosome and vesicles. VOSveiwer program was used for visualizing connectivity-based
clustering patterns [35]. This tool provides visualization of similarities, where objects with high similarity are located close to each other and those
with low similarity are located far from each other.
doi:10.1371/journal.pone.0039643.g004
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effects of different treatments on NF-kB activation (Figure 2) [62].

Table 2 shows the results of simulating proportion of NF-kB

molecules in active form were analyzed under combined and only

treatment effects of five ligands including: IL1a, IL6, TNFa,

IGF1, and TGFa. For each treatment condition, we simulated 100

time-steps. With respect to simulation results, NF-kB molecules

appear to respond stronger under IL1a & IL6, IL1a & TNFa,

IL1a & IGF1, and IL1a & TGFa treatments (Table 2). Hence, co-

stimulation with IL1a may sufficiently stimulate the T cell to reach

the proliferation threshold in response to treatment, as well as

suggest effective target to perturb the progression of T cells to

proliferation phase.

Discussion

Modeling function of cellular networks in a dynamic fashion

provides an optimal basis for elaborate study of cellular signal

transduction [63]. However, lack of detailed concentration and

kinetic data may make it difficult to use some modeling methods

[64]. Thus, nonparametric modeling provides an alternative

modeling approach to test hypothetical signaling networks

[20,65]. In this work we developed a non-parametric computa-

tional framework to describe the proportion of active form and the

trend of activation of given molecules in signaling network. In the

previous nonparametric methods, simulation has been performed

in such a way that all the components changed their states

simultaneously in a unit of time based on the assumption that

every reaction in the network takes exactly single unit of time in

the signaling process [9,10]. Derek et al. (2008) presented a non-

parametric and a Petri net-based model of cellular signaling

networks [10]. This method provides insights into the trends of

molecular activity-levels in response to an external stimulus, based

Figure 5. Comparison between the experimental results with those obtained through simulation. The activity level of four signaling
molecules (MAPK1,2, JNK, AKT, and p70s6K) proteins in EGF/IGF/Insulin cell signaling network were simulated under activation of three ligand (EGF,
insulin, and IGF-1) at 100 iterations. If the value of difference between the experimental and simulation data is bigger than zero, the corresponding
box is colored in red; if best agreement, the box is black; but if the value of the difference between simulation and experimental data be smaller than
zero, the box is green.
doi:10.1371/journal.pone.0039643.g005

Table 1. The comparison between the simulation and
experimental results of five signaling molecules under
activation of EGF and inhibition of TSC2.

Molecule

Simulation
Results

Change in Activity
After TSC2 Inhibition Wilcoxon-test

Normal
TSC2
inhibited Experiment Simulation Z P-value

mTOR 0.0038 0.022 q q 28.68 ,10218

MAPK1,2 0.017 0.014 Q or - Q 24.21 ,1025

p70s6K 0.029 0.035 q q 28.68 ,10218

AKT 0.072 0.071 Q or - - 21.26 0.206

GSK3b 0.025 0.026 - - 23.14 0.016

The P-values were calculated by Wilcoxon test and used to test the changes in
simulation results after perturbation. The upward arrow (q) indicates that the
perturbation caused a rise in the proportion of molecules in active form; the
straight line (-) indicates no change, and the downward arrow (Q) indicates
decrease in the proportion of molecules in active form.
doi:10.1371/journal.pone.0039643.t001

Table 2. Proportion of NF-kB molecules in active form under
combined and only treatment effects of five ligands.

Signal IL1a IL6 TNFa IGF1 TGFa

IL1a NF-kb 0.17

IL6 0.26 0.10

TNFa 0.25 0.18 0.18

IGF1 0.26 0.22 0.24 0.20

TGFa 0.25 0.20 0.24 0.23 0.18

The rows and columns of the table correspond to the treatment groups, and
cells to proportion of NF-kB molecules in active form.
doi:10.1371/journal.pone.0039643.t002
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on the network’s connectivity. Despite this success, the model

could not predict the proportion of molecules in active form [10].

Zielinski et al. (2009) developed a network-specific model for

dynamic simulation of signal transduction, and tested it on a

network constructed by combining EGF, IGF and insulin signaling

pathways [9]. The model agreed with many of the experimentally

observed trends; however, it was notable to recapitulate the

proportion of molecules in active form with significant correlation

to the observed values in the experimental study [9]. In our

proposed method, the defining dynamics occurred at the level of

interactions among molecules, and coarse properties were

computed by aggregating local quantities. This approach provides

access to the microscopic dynamics which is hindered by the

complexity of the system. The result was a fast method, which can

provide insights into the proportion of molecules in active form

and trends of molecular activity level in response to external

stimuli. In our simulation method, node values were produced by

combining two processes including edge weighting and simulation

of signal flow from the initial node(s). During simulation, we used

three updating strategies to reduce the artifacts due to the

assumption of uniformity in reactions arising from synchronous

updating methods. First, we employed a semi-synchronous

updating scheme [40]. In our method, some of the incoming

messages influence the updating state immediately, while others

took longer to affect. Second, the level of activity for each node

was transferring to next time-step with efficiency less than 1. This

allowed us to take into account the relative stability of proteins in

active form. Third, we used a specific function to weight the

network edges and calibrated their efficiency for signal transition

in the network. The outcome of the procedure used for edge

weighting was a fractioned network to several clusters. These

clusters were grouping molecules with the same place in the cell

(e.g. nucleus). By coupling edge weighting with the statistical

methodology of node weighting, we obtained a method capable of

characterizing dynamic properties of signaling networks while

using only network’s connectivity information. Validation on

several signaling networks showed that our method could

effectively simulate both inhibited and constitutive activation of

signal transduction components. Our simulation results were in

strong agreements with the experimental results. Therefore, the

present simulation method not only reproduces experimental data

but also can predict non-intuitive and previously unknown

responses. Also, the simulation results are capable of linking signal

transduction to any type of quantifiable cellular responses such as

cell growth, survival, apoptosis, necrosis, cytokine secretion, or

transcriptional activity.

Our principal conclusion is that the dynamical phenotype

possesses the ability of design according to the network topology.

This finding corresponds conceptually to proteins where a two-

and three-dimensional structure usually possesses design abilities

according to the sequence of amino acids [66]. Our investigation

showed that the dynamical phenotypes arise via the presence of

conserved network links and could reflect wide variations in the

level of activity at different positions. In summary, with the

networks involved in case studies, our approach has proved itself as

a promising tool to analyze signal transduction, effect of drugs and

network modifications.

Supporting Information

Table S1 Simulation results of activity levels of four
signaling proteins in signaling network of EGFR/IGF-
1R/IR under various perturbations with comparison
with experimental results. (A) The proportion of MAPK1,2,

JNK, AKT, and p70s6K molecules in active forms in response to

the activation of EGFR, IGF-1R, and IR. (B) Activation of

MAPK1,2, JNK, AKT, and p70s6K in response to co-stimulation

of EGFR/IR and IGF-1R/EGFR/IR.

(XLSX)

Table S2 The simulation results of activity levels of 14
signaling proteins in human hepatocyte cells under
various perturbations, in comparison with experimental
results.

(XLSX)

Table S3 The simulation results of activity levels of 10
signaling proteins in the Huh7 cell line under various
perturbations, in comparison with experimental results.

(XLSX)
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