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Abstract

A round-robin tournament is a contest where each and every player plays with all the other

players. In this study, we propose a round-robin based tournament selection operator for the

genetic algorithms (GAs). At first, we divide the whole population into two equal and disjoint

groups, then each individual of a group competes with all the individuals of other group. Sta-

tistical experimental results reveal that the devised selection operator has a relatively better

selection pressure along with a minimal loss of population diversity. For the consisting of

assigned probability distribution with sampling algorithms, we employ the Pearson’s chi-

square and the empirical distribution function as goodness of fit tests for the analysis of sta-

tistical properties analysis. At the cost of a nominal increase of the complexity as compared

to conventional selection approaches, it has improved the sampling accuracy. Finally, for

the global performance, we considered the traveling salesman problem to measure the effi-

ciency of the newly developed selection scheme with respect to other competing selection

operators and observed an improved performance.

1 Introduction

Genetic algorithms (GAs) are stochastic approaches for optimization, based on natural mecha-

nisms of genetics. These algorithms refer to the natural selection process where the most fitted

individuals for reproduction. Generally, five stages are considered in GA: initial population,

fitness function, selection, crossover and mutation operators. If parents have good fitness,

their offspring will be better than them and have a better chance to survive. The process con-

tinues and eventually a generation is found with the most qualified individuals.

The development of GAs originates from the influential work of Holland [1]. Many scholars

have acknowledged GA as it is considered a key member of optimization related research. The

global environment, robustness actions and reliability are the main reasons for its popularity.

For example, Song et al. [2] employed GAs to achieve optimal satellite selection for global posi-

tioning system (GPS) use. Ha et al. [3] proposed hybrid-GA for traveling salesman problem
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with drone to deliver parcels to customers. Recently, Wang et al. [4] explored GAs in optimiz-

ing a credit portfolio while minimizing the default risk under the constraint of a target

expected premium. Other than these, many applications of GAs can be perceived in the multi-

disciplinary research literature, such as, lung cancer prognosis [5], for the fuzzy shortest path

problem in a fuzzy network [6], for Designing envelope configurations of building with the

low construction cost and low energy consumption [7], the detection of software vulnerabili-

ties [8], for data mining tasks [9], for nutritional Anemia disease classification [10] and large-

scale and dynamic social networks [11]. Someone can consult to Katoch et al. [12] for a

detailed overview on GAs with several applications.

In all domains of life, GAs are found to be effective but still there is the issue of premature

convergence in pursuit for optimal solutions, see, for example, Hussain and Muhammad [13].

The complications of premature convergence are entrenched in the philosophical orientation

of GAs as shortened by Julstrom [14]. Maintaining good diversity in the population is required

to GA success. Otherwise, this leads to stuck off on local optima, which is an undesirable situa-

tion in GA, called premature convergence. The optimization literature acknowledging the

diversity of population is a vital factor in search of a global optimal solution. This is evident by

the discussion on the relevance of premature convergence and population diversity, see, for

example, Hussain andMuhammad [13, 15]. So it is clear from these studies that the perfor-

mance of GA is mostly affected by the choice of selection operator. The selection operator is

the most crucial research area in the body of contributions associated with GAs.

Due to the importance of the selection phase in GAs, the current research contributes to

the literature by introducing a novel selection operator, namely the round-robin based

tournament selection (RRTS). The main focus of this research is on facilitating the conver-

gence process by maintaining a desirable level of population diversity. This objective is accom-

plished by achieving a tradeoff between exploration and exploitation. The fitness rank of

participants in concordance with the normality of generations is used to aid the selection pro-

cess and the encouraging results of this delicate selection scheme are documented in this

article.

The remainder part of this paper is organized as follows. In Section 2, the selection operator

as a two-stage procedure, with a detailed review, has been discussed. In Section 3, we propose

a new selection operator with its theoretical and mathematical foundations. Further, several

stochastic properties of the newly proposed operator are reviewed in Section 4. Inspired by the

stochastic features, Section 5 delineates the applicability of the proposed methodology in solv-

ing one of the practical problems, i.e. the traveling salesman problem (TSP). Lastly, Section 6

summarizes the study along with a brief discussion of future perspective research.

2 Selection procedure

The selection process in GA can be split into two stages. In the first stage, a selection probabil-

ity is assigned to each and every individual based on fitness values. These probabilities are

denoted as: P = (p1, . . ., pK), where pi 2 [0, 1] and
PK

i¼1
pi ¼ 1 with K is the population size. To

investigation about selection probabilities, someone can consult to Hussain and Muhammad

[13] and Jul-strom [14]. The second stage is the sampling process, which selects the most fitted

parents (based on Darwin’s “survival-of-the-fittest” criterion) from the current population for

mating process. A thoroughly discussion about sampling algorithms has been provided in Sec-

tion 4. This study, additionally, has a significant effect on the GA’s selection methods. In this

perspective, a new operator for the selection is projected that is expected to reinforce the typi-

cal character of the population and offers an improved tradeoff between exploitation and

exploration.
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2.1 Assignment of probability

The first and the most popular selection procedure known as fitness proportional selection

(FPS), was proposed by Holland [1]. In this selection procedure, the selection probability of ith

individual, say pi, is directly proportional to its fitness. The theme of this method depends

upon the understanding that fitter individual ought to have a high probability of selection,

whereas each individual to become the member of the parent population using the following

formula:

pi ¼
fi

PK
j¼1

fj
; i 2 f1; 2; :::;Kg; ð1Þ

where, fi denotes the fitness status of ith individual.

The operational directives of FPS are similar to the probability proportional to size (PPS)

sampling using with replacement approach. Throughout the entire selection process, there will

be no alternation needed in size and possibilities. This method is easy to enforce and offers

probabilities to all individuals according to their fitness values, but the scaling problem is its

main drawback, see, for instance, Grefenstette [16].

The linear rank selection (LRS) was introduced by Baker [17], is catered as the remedy of

premature convergence attributed with FPS. This method provides a relatively better opportu-

nity to pick out weaker individuals and therefore offered a smoother selection function. In the

LRS procedure, the ith individual is assigned a selection probability using the following for-

mula:

pi ¼
1

K
W
�
þ ðW

þ
� W

�
Þ
i � 1

K � 1

� �

; i 2 f1; 2; :::;Kg; ð2Þ

where, i is the rank of the individual based on fitness status and ϑ− and ϑ+ are the parameters

for the selection probabilities of worst and best individuals based on their ranks, respectively.

The two constraints which are associated with this scheme as: ϑ+ + ϑ− = 2 and ϑ−� 0. As a

result, even if individuals differ notably in fitness status, the ranks remain work in uniform pat-

tern, unable to reflect the difference with desirable intensity and so naturally compromise rele-

vant data. Along with numerous applications of LRS, as an example, see, Sharma and Mehta

[18], but on the other hand, it has a drawback of slower convergence of the algorithm. This is

because of its internal methodology based on ranks instead of fitness values directly for selec-

tion, see, Aibinu et al. [19] and Hussain and Muhammad [13]. This issue becomes more seri-

ous in the case of a larger population where ranks are thought about as a realization from the

uniform distribution. To resolve the difficulty of LRS, Michalewicz [20] designed an alternative

rank based selection operator, called exponential rank selection (ERS). To tell apart from LRS,

Michalewicz [20] prompt that the selection probabilities increase exponentially from worst

individual to best one. The selection venue of individual medaled with ith rank, is mathemati-

cally written as:

pi ¼
nK� ið1 � nÞ

1 � nK
; i 2 f1; 2; :::;Kg; ð3Þ

where, 0< ν< 1, ν is a fixed ratio defined as weights of individuals based on their fitness ranks

and maximum gain values of ν closer to unity (i.e. ν! 1) is recommended by Michalewicz

[20]. ERS as a popular selection method is evidenced by various applications, see, for example,

Schell and Wegenkittl [21] and Lee et al. [22].

Another selection procedure, which is based on a real phenomenon of the tournament,

known as binary tournament selection (BTS), was introduced by Back [23]. Using BTS, two
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competitors are randomly chosen, then a winner will be selected for mating process. In this

case, the chance of choosing a good parent is very high, but if both of the selected parents are

of low quality, the low quality parents will be selected. Spotting the significance of population

diversity, Back [23] insisted lower tournament size because pair wise comparisons remain the

most common theme in tournament selection schemes. The selection probability of ith ordered

individual is given as:

pi ¼
1

Kr
ððiÞr � ði � 1Þ

r
Þ; i 2 f1; 2; :::;Kg; ð4Þ

where, r represents the array of tournament size.

Julstrom [14] employed a probability-based threshold level to select the winner of the tour-

nament called probabilistic 2-tournament selection (PTS). In this scheme, the competition

winner will be survive with a probability 0.5 < q< 1, where the loser will get another chance

of competing, with probability 1 − q. For the PTS method, the ith ordered individual is assigned

the selection probability by the following rule:

pi ¼
2ði � 1Þ

KðK � 1Þ
qþ

2ðK � iÞ
KðK � 1Þ

ð1 � qÞ; i 2 f1; 2; :::;Kg: ð5Þ

This selection procedure has great applicability, see, for instance, Schell and Wegenkittl [21]

and Lee et al. [22].

In recent past, Hussain and Muhammad [13] suggested a new split-based rank selection

(SRS) to tradeoff between exploitation and exploration. In their scheme, all individuals are

ranked according to their fitness values and assigned probabilities by using the following for-

mula:

pi ¼

l
� 8i

KðK þ 2Þ

� �

; i �
K
2

l
þ 8i

Kð3K þ 2Þ

� �

; i >
K
2
;

8
>>>><

>>>>:

ð6Þ

where, λ+ + λ− = 1 with λ−� 0 must be satisfied. The selection pressure can be restrained by

varying λ+, the tuning parameter, in the selection phase.

The most significant feature of the selection operator is the selection pressure because it is

adjacent with a suitable balance between exploration and exploitation. Eiben et al. [24]

described a scenario, where a relatively lower selection pressure is required at the initial stage

for diversity in the whole sampled population and enhance at the last stage to assist the conver-

gence of algorithm. To tradeoff between the two extremes, an adjustable selection pressure

should be required, see, for example, Pham and Castellani [25].

This article proposes a new selection approach, which removes the weakness related to fit-

ness based (i.e. FPS), rank based (i.e. LRS and ERS) and tournament based (i.e. BTS and PTS)

approaches. It is predicted on the basis of a tournament scheme, whereas we split all the indi-

viduals into two equal and mutually exclusive groups and assign them probabilities for selec-

tion according to their ranks. The details that how an individual is competing with other

group’s members to be survived as parent for mating process are provided in the adjacent

section.
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3 The proposed selection operator

3.1 Motivation

There are many selection mechanisms that have been proposed in the literature. As LRS

emphasized maintaining higher levels of population diversity at the cost of selection pressure

and results in slowest convergence of GAs. On the other hand, the FPS method has high selec-

tion pressure with sacrificing the diversity and as a result remains the prime candidate of suf-

fering from premature convergence. In this section, a new operator capable of achieving more

balance between exploration and exploitation is proposed, which provides sufficient selection

pressure throughout the selection process.

3.2 Round-robin based tournament selection

An alternative selection scheme (round-robin based tournament selection (RRTS)) is pro-

posed to maintain a precise balance between exploration and exploitation. In this approach, an

adequate selection pressure with elimination of the fitness scaling problem is provided. Con-

sider the following steps for the proposed selection procedure:

1. In the RRTS method, all individuals are ranked according to their fitness measures and

acquire a distinct rank even though they have equivalent fitness values.

2. The individuals are divided into two equal and disjoint groups, e.g. A and its complement

Ac. The population can be inserted in these groups in multiple ways, such as: randomly,

first half is in one group and rest is in other (best-worst), the odd individuals are in one

group and even in the other (even-odd), up to 25% and 51% to 75% in one group and rest

in other etc.

3. Now, one individual, i.e. i, is chosen at random from a group with a surviving process prob-

ability θ, also comparing the combined effect of all the other group members with probabil-

ity (1 − θ). Thus, the selection probability to select an individual as a parent is determined

by the subsequent rule:

pi ¼
2ði � 1Þ

KðK � 1Þ
yþ

4ð1 � yÞ

K2ðK � 1Þ

X

j2Ac

ðK � jÞ; ð7Þ

where if i belongs to one group then j belongs to other group and K is the population size.

Table 1 presents some rules to assign probabilities to all the individuals for K = 10 and θ =

0.5. There are two tuning parameters to maintain a tradeoff between diversity and selection

pressure in our proposed method, i.e. the value of θ and group segmentation.

4 The sampling algorithms

The first stage in the selection phase is to assign probabilities to all competing individuals,

whereas in the second stage, a sampling algorithm is requisite to fill the mating pool for

parents, whereas this process reflects the selection probabilities, such that the expected

and observed number of individuals are equal. In this study, two popular sampling

methods, roulette wheel sampling (RWS) and stochastic universal samplings (SUS) are used

for testing.

4.1 Roulette wheel sampling

The roulette wheel sampling (RWS) was introduced by Holland [1] and it is still one of the

most popular sampling methods for GA. In the RWS procedure, each possible solution is
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appointed as a slice with respect to a portion, which is assigned by a desired selection probabil-

ity method. By using a single marker at the border of the roulette wheel and the roulette

wheel is spun K times to successively select individuals. This sampling method is very simple

and easier to implement with a high probability for the better choice of chromosomes. Clearly,

the vector (o1, o2, . . ., oK) follows a multinomial distribution with parameters K and P, where

P = (p1, . . ., pK). The mean and variance of this distribution are given below:

E½ðo1; o2; :::; oKÞ� ¼ ðe1; e2; :::; eKÞ;

V½oi� ¼ Kpið1 � piÞ:

4.2 Stochastic universal sampling

The mechanism of stochastic universal samplings (SUS) was introduced by Baker [17] and is

quite similar to RWS. The only difference between RWS and SUS is the number of markers:

one marker in RWS and K (population size) number of markers in SUS. In this method, K
markers spaced evenly are used at the border of the roulette wheel. The slices of wheel are con-

sistent as in RWS. In the SUS method, the roulette wheel is spun one time only and select all

individuals, which are pointed by the K markers and enclosed in the mating pool as parents.

Therefore, all the parents are chosen in just one cycle of the wheel and this method promotes

the better individuals for selecting at least once.

The computational complexity of SUS (i.e. O(N)) is comparatively lower than the complex-

ity of RWS (i.e. O(N2)), to identify the selected candidates as parents, only one pass over the

population is needed. However, their expectations close with each other but the variabilities of

the most fitted individuals are significantly least than RWS.

A detailed comparison between two sampling methods, i.e. RWS and SUS can be founded

in the central moments of the distributions of the vectors (o1, o2, . . ., oK). The absolute differ-

ence between an individual’s observed and its expected values is defined as bias, i.e. |oi − ei|. In

sampling, each individual might be provided a certain number of copies that are placed into

the mating pool. The possible range of the number of copies is called “spread”. The SUS pro-

vides the insurance of minimum spread and almost zero bias.

Table 1. Selection probabilities using various criteria in proposed method.

Randomly Even-odd Best-worst

Rank(i) Group pi Group pi Group pi
1 A 0.0489 A 0.0444 A 0.0222

2 Ac 0.0622 Ac 0.0667 A 0.0333

3 Ac 0.0733 A 0.0667 A 0.0444

4 A 0.0822 Ac 0.0889 A 0.0556

5 Ac 0.0956 A 0.0889 A 0.0667

6 A 0.1044 Ac 0.1111 Ac 0.1333

7 A 0.1156 A 0.1111 Ac 0.1444

8 Ac 0.1289 Ac 0.1333 Ac 0.1556

9 A 0.1378 A 0.1333 Ac 0.1667

10 Ac 0.1511 Ac 0.1556 Ac 0.1778

https://doi.org/10.1371/journal.pone.0274456.t001
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4.3 The chi-square test as a goodness-of-fit measure

For empirical analysis, the chi-square test is a measure to ascertain the accuracy of sampling

algorithms, i.e. RWS and SUS, and will compare with the probability distribution of the selec-

tion operators. As a tool for measuring the expected accuracy, the χ2 test was first introduced

by Schell and Wegenkittl [21].

Let we consider, xj ¼
P

i2Cj
ei is an overall expectation, whereas Oj ¼

P
i2Cj

oi be the

observed (actual) copies of individuals in mating pool after the sampling procedure. The two

disjoint classes are: {C1, C2, . . ., Cc}, Cj� {1, 2, . . ., K} and [c
j¼1

Cj ¼ f1; 2; :::;Kg. For expected

behavior, the ξj be of the enjoin K/c members with 1� j� c, to regulate that each class main-

tains the same number of individuals (on average). To desired stochastic accuracy, at least 10

individuals should be in each class. The chi-square test is defined as:

w :¼
Xc

j¼i

ðxj � OjÞ
2

xj
: ð8Þ

In the RWS algorithm, the ξj� 10 as it minimizes the differences between expected and

observed frequencies. On the other hand, for SUS, we expect that χ� 0. In Table 2, the proba-

bility distributions of all competing selection operators with the corresponding overall

expected individuals (i.e. close to 300/10) are presented. χS, R is the measure of chi-square for

operator S that assigns the probabilities to individuals and for sampling algorithm R.

The basic purpose of this test is to describe the sample mean and sample variance. The ini-

tial sampled population is to be considered as randomly. The probability distribution S is used

Table 2. The overall expected counts, ξj, with respect to their classes, Cj(j = 1, 2, . . ., 10).

j LRS ERS BTS

Cj ξj Cj ξj Cj ξj
1 1–33 30.05 1–108 30.33 1–95 30.08

2 34–65 29.84 109–158 29.91 96–134 29.77

3 66–96 29.56 159–192 30.84 135–164 29.80

4 97–127 30.20 193–217 30.43 165–190 30.68

5 128–157 29.84 218–237 30.50 191–213 30.90

6 158–187 30.44 238–253 29.22 214–233 29.73

7 188–216 30.00 254–267 29.72 234–252 30.72

8 217–244 29.50 268–279 29.02 253–269 29.52

9 245–272 30.02 280–290 29.86 270–285 29.55

10 273–300 30.54 291–300 30.16 286–300 29.25

j PTS SRS RRTS

Cj ξj Cj ξj Cj ξj
1 1–52 30.43 1–87 30.42 1–79 29.99

2 53–93 30.37 88–123 30.18 80–130 30.45

3 94–128 30.38 124–151 30.33 131–162 29.57

4 129–159 30.33 152–180 29.89 163–185 30.58

5 160–287 30.15 181–205 29.96 186–206 29.46

6 188–213 30.35 206–227 29.57 207–226 29.43

7 214–237 30.02 228–247 29.49 227–246 30.77

8 238–259 29.21 248–266 30.32 247–265 30.47

9 260–280 29.39 267–284 30.79 266–283 29.98

10 281–300 29.36 285–300 29.06 284–300 29.31

https://doi.org/10.1371/journal.pone.0274456.t002
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to assign selection probabilities to all the individuals and then one of two sampling schemes,

i.e. R is utilized to obtain instances of oi, Oj and χS, R, respectively. By the succession of

ðw
S;R
k Þ1�k�s, the sample mean and variance can be computed as:

m̂ðS;RÞ ¼
1

s

Xs

k¼1

w
S;R
k ; ð9Þ

ŝ2ðS;RÞ ¼
1

s � 1

Xs

k¼1

ðw
S;R
k � êðS;RÞÞ2: ð10Þ

For 99% confidence interval, it is compared with theoretical w2
c� 1

distribution. The sample

mean and variance of chi-square should be close to c − 1 = 9, 2(c − 1) = 18, respectively, and

their estimates of m̂ and ŝ2 are provided in Table 3. The SUS results are also reported in this

table, which are shown its sampling accuracy as well. The average accuracy of the sampling

method with all competing selection schemes is observed from these empirical results.

4.4 Empirical distribution function analysis

In this section, the empirical distribution function (EDF) is compared with theoretical chi-

square distribution w2
c� 1

of roulette wheel sampling and it is given as:

EDFS;R
ðtÞ :¼

1

s
f1 � k � s : w

S;R
k � tg; t 2 ½0;1Þ: ð13Þ

In Fig 1, the behaviors of EDF (dashed line), for various selection operators for a population

size K = 300 with a similar number of tests are reported. The selection operators are being

compared with the theoretical w2
c� 1

distribution (dark thick line) using a 99% confidence band

under the hypothesis of RWS (dashed thin double line). Here, the range on the x-axis values is

t 2 [0, 18], where we expect the value of w
S;R
k , i.e. E½wS;Rk � ¼ c � 1 ¼ 9. The RWS provides the

empirical distribution function that is insignificant from the theoretical w2
c� 1

distribution by ê
and ŝ2 statistics. For sampling accuracy compared, the EDF of the proposed selection operator

confirms a high sampling accuracy which is also proved in the statistics of Table 3.

5 Global performance

5.1 The traveling salesman problem

The most Illustrious benchmark, noteworthy and historic hard combinatorial optimization

problem is the traveling salesman problem (TSP). In this problem, someone wants to find out

the shortest Hamiltonian tour to starts his/her tour from a city and go to all other cities once

and come back to the initial city. The first one, who documented this problem was Euler in

1759, see, for example, Larranaga et al. [26]. It is the most fundamental problem and has many

applications in engineering, discrete mathematics, operations research, graph theory and com-

puter science, etc.

Table 3. Simulated means and variances of the Chi-squared test statistics.

LRS ERS BTS PTS SRS RRTS

RWS SUS RWS SUS RWS SUS RWS SUS RWS SUS RWS SUS

m̂ 8.68 0.0634 8.92 0.0542 8.71 0.0637 9.39 0.0647 9.35 0.0561 8.98 0.0492

ŝ2 18.31 0.0003 17.94 0.0008 15.93 0.0002 20.48 0.0001 19.99 0.0003 17.92 0.0001

https://doi.org/10.1371/journal.pone.0274456.t003
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Let n cities with a distance (cost) matrix, C = [cij]n×n is searched for a permutation λ: {0, . . .,

n − 1}! {0, . . ., n − 1}, where cij is the distance between city i and city j and it minimizes the

traveled distance f(λ, C) as follows:

f ðl;CÞ ¼
Xn� 1

i¼0

dðclðiÞ; clðiþ1ÞÞ þ dðclðnÞ; clð1ÞÞ; ð12Þ

where λ(i) is the location of city i in each tour, d(ci, cj) is the distance from a city i to another

city j, whereas (xi, xj) be a specified position of each city in a tour in the plane, and the Euclid-

ean distances of the distance matrix C between the city i and city j is extracted in the following

way:

cij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xjÞ
2
þ ðyi � yjÞ

2
q

: ð13Þ

TSP is easy to understand but very difficult to solve, e.g. with ‘100’ cities, there are 10155 possi-

bilities to find the tour. This is the main reason to declare it as a non-deterministic polynomial

Fig 1. Comparison of roulete wheel sampling, based on probabilities.

https://doi.org/10.1371/journal.pone.0274456.g001
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(NP-hard) problem, see, for example, Hussain and Muhammad [13] and Hussain et al. [27].

Hence, this type of problem is not possible to solve using traditional optimization algorithms,

e.g. gradient-based methods. To attain the optimal or close to optimal solution within an ade-

quate amount of time, the heuristic algorithms are better choices to manage the NP-hard prob-

lems, see, Hussain and Muhammad [13], Huang et al. [28], Ruiz et al. [29]. The GA has also

been applied for the solution of this problem in different ways, see, for example, Larranaga

et al. [26], Hussain et al. [27], Hariyadi et al. [30], Alzyadat et al. [31], Dong and Cai [32].

Some test problems are taken from the library of traveling salesman problem (TSPLIB) for the

global performance of the newly devised selection operator with respect to existing ones and

reported in Table 4.

5.2 The state-of-the-art settings

For the simulation study, we used Windows PC with Intel i3 processor with 8 GB RAM,

MATLAB R2017a software. Moreover, the two stopping criteria, i.e. not improvement found

in 300 successive generations and the maximum number of generations (i.e. 5000) are used.

The order crossover (OX) along with a well-known exchange mutation (EM) operator are

used in this study. Table 5 is provided for further information about desired parameters.

5.3 Simulation results and discussion

In the above sections, the relative characteristics of the proposed operator with its competing

selection methods with respect to sampling accuracy and population diversity have been deter-

mined. In this section, we test the performance of RRTS with other schemes by applying it to

TSP. The results of six competing selection schemes with the most popular genetic operators,

i.e. order crossover (OX) and exchange mutation (EM) are provided in Table 6, where all the

tests are repeated thirty times. On the basis of average, standard deviation (S.D) and relative

efficiency (R.E), these computational results are compared. Since TSP is a minimization

Table 4. The benchmark problems.

Problem name No. of cities Optimal tour length

BERLIN52 52 7542

PR144 144 58537

KROB150 150 26130

RAT195 195 2323

KROA200 200 29368

https://doi.org/10.1371/journal.pone.0274456.t004

Table 5. Parametric configuration for GA.

Parameter Setting

Representation Permutation

Population size 150

Crossover criteria OX

Crossover rate 80%

Mutation method EM

Mutation rate 5%

Maximum generation 5000

Number of trails 30

Replacement in GA Steady-state GA

https://doi.org/10.1371/journal.pone.0274456.t005
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problem, we observed an improved performance, based on 5000 simulations, by the proposed

operator from among all six competing selection operators. From these results, we can confirm

that RRTS outperforms the others.

The results listed in Table 6 demonstrate that the average tour length of the newly proposed

selection operator (RRTS) is comparatively smaller than all other considered selection opera-

tors, with fewer S.D under all TSP instances. Hence, the empirical results of the simulation

study prove that the average tour length under all considered TSP problems are not signifi-

cantly divergent to the theoretical optimal tour length. This clearly shows a better control over

selection pressure and population diversity. An excellent balance between exploration and

exploitation is achieved by the RRTS, through maintaining an optimal convergence time, as

compared to other operators.As a result, novel selection strategy outperformed other operators

in terms of robustness, stability, and efficacy in solving complicated optimization problems.

We also noted that, after altering and optimizing the parameters, the effectiveness of the

simulation process is dependent on a wide range of parameters and measurement results.

Based on this research, we suggest that the proposed operator may be used as a better alterna-

tive to get global optima or near to optimum results with minimal increase in complexity.

Table 6. Results of various selection methods with respect to OX (crossover) and EM (mutation) operators.

Selection Method Statistics Problem

BERLIN52 PR144 KROB150 RAT195 KROA200

FPS Average 7992 61856 28481 2497 31125

S.D 293 1777 1007 99 961

R.E 5.97 5.67 9.00 7.49 5.98

Ave. time (ms) 12.3 19.1 21.5 27.6 31.3

LRS Average 8071 61597 27803 2425 30503

S.D 369 1543 913 113 914

R.E 7.01 5.23 6.40 4.39 3.86

Ave. time (ms) 13.7 21.3 23.2 28.8 34.5

ERS Average 8458 63766 29581 2518 31813

S.D 441 1721 883 138 747

R.E 12.15 8.93 13.21 8.39 8.33

Ave. time (ms) 12.6 18.8 21.4 26.5 31.8

BTS Average 7976 60702 27562 2453 29920

S.D 341 1239 958 113 865

R.E 5.75 3.70 5.48 5.60 1.88

Ave. time (ms) 11.9 18.4 20.8 26.4 29.9

PTS Average 8021 60797 28201 2415 30873

S.D 451 1001 937 115 882

R.E 6.35 3.86 7.93 3.96 5.12

Ave. time (ms) 12.4 17.6 20.8 25.7 30.4

SRS Average 7998 60701 27603 2422 29959

S.D 309 1011 857 98 842

R.E 6.05 3.70 5.64 4.26 2.01

Ave. time (ms) 12.6 18.5 19.5 26.9 30.3

RRTS Average 7957 60627 27548 2400 29941

S.D 297 1014 883 105 828

R.E 5.50 3.57 5.43 3.31 1.95

Ave. time (ms) 12.9 18.7 19.9 26.5 30.8

https://doi.org/10.1371/journal.pone.0274456.t006
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Moreover, researchers may feel comfortable to apply it to any problems related to evolutionary

algorithms.

6 Conclusions

For every optimization algorithm, the main desire is to balance between two extremes, i.e.

exploration and exploitation. This article presents a new round-robin based tournament selec-

tion operator for GAs, which is suggested a fine balance between exploitation and exploration.

The individuals are sorted with respect to their fitness measures and then the whole population

is divided into two equal and non-overlapping groups, i.e. A and Ac. To determine the sam-

pling accuracy, we employ χ2 test to confirm a close match between the expected and observed

number of offspring (insignificant difference). A simulation study is performed to evaluate the

performance of the newly devised selection operator along with some conventional operators.

Based on this research, we suggest that the proposed operator might be used as a better alterna-

tive to get global optima or near to optimum results. Moreover, researchers might be apply it

for any problems related to evolutionary algorithms.
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