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Abstract

The cerebellar vermis (lobules VI-VII) has been implicated in both postmortem and neuroimaging studies of autism
spectrum disorders (ASD). This region maintains the consistent accuracy of saccadic eye movements and plays an especially
important role in correcting systematic errors in saccade amplitudes such as those induced by adaptation paradigms.
Saccade adaptation paradigms have not yet been used to study ASD. Fifty-six individuals with ASD and 53 age-matched
healthy controls performed an intrasaccadic target displacement task known to elicit saccadic adaptation reflected in an
amplitude reduction. The rate of amplitude reduction and the variability of saccade amplitude across 180 adaptation trials
were examined. Individuals with ASD adapted slower than healthy controls, and demonstrated more variability of their
saccade amplitudes across trials prior to, during and after adaptation. Thirty percent of individuals with ASD did not
significantly adapt, whereas only 6% of healthy controls failed to adapt. Adaptation rate and amplitude variability
impairments were related to performance on a traditional neuropsychological test of manual motor control. The profile of
impaired adaptation and reduced consistency of saccade accuracy indicates reduced neural plasticity within learning
circuits of the oculomotor vermis that impedes the fine-tuning of motor behavior in ASD. These data provide functional
evidence of abnormality in the cerebellar vermis that converges with previous reports of cellular and gross anatomic
dysmorphology of this brain region in ASD.
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Introduction

Autism spectrum disorders (ASD) are lifelong neurodevelop-

mental syndromes that affect social, cognitive, and sensorimotor

development [1]. While once considered rare, ASD now are

known to affect ,1 in 88 children, and 1 in 54 males [2]. The

etiology(ies) of ASD remains poorly understood. Studies of their

neural bases indicate diverse and variably affected brain systems.

The cerebellum is one of few brain structures consistently

implicated in ASD and in known single-gene disorders associated

with ASD [e.g., Fragile X syndrome, Joubert syndrome; [3,4]].

Reduced Purkinje cell density has been repeatedly documented

[5–9], and cells in the deep nuclei to which Purkinje cells project

are abnormal in size and number [10]. Several studies have

indicated that the volume of the cerebellar vermis is smaller in

ASD [11–16], while cerebellar hemisphere volumes appear to be

enlarged [13,15,17–20] (although see [21,22] for negative

findings).

The cerebellum plays a fundamental role in controlling the

precision of movements [23]. Motor abnormalities have been

noted in ASD since these disorders were originally described

[24,25]. More recent quantitative studies have documented

impaired control of limb movements, including gait alterations,

dysmetric manual movements and dyspraxia [26–28]. The severity

of these abnormalities are predictive of functional outcomes [29]

and may be the earliest identifiable features of the disorder [30–

33]. There is some evidence that the profile of motor control and

praxis deficits associated with ASD may be unique to the disorder,

but more detailed characterization of motor impairments in ASD

is needed [34,35].

Eye movement studies have shown atypical gaze fixation,

increased trial-to-trial amplitude variability of saccadic eye
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movements, and reduced accuracy of smooth pursuit eye

movements in individuals with ASD and their unaffected first-

degree relatives [36–40]. While initial reports suggested that

saccade accuracy is intact in ASD [41], several studies using

higher-resolution eye movement monitors have found modest

hypometria (i.e., undershooting of targets) [39,42] that may

recover at least partially over the course of development [36].

Functional MRI studies have identified atypical activation in

cerebellum, motor cortex, and basal ganglia during tasks of eye

and hand movements [43–46].

The cerebellum’s role in controlling movement accuracy may

be more directly assessed by systematically inducing movement

error so that the motor system is forced to adapt [47–49].

Adaptation of arm movements involves cerebellum, primary

motor cortex and parietal area 5 [50]. Despite the cerebellum’s

known role in adapting limb movements, adaptation of limb

movements has been shown to be intact in patients with cerebellar

ataxia [51]. This suggests that neocortical reorganization may

compensate for altered cerebellar adaptation mechanisms. Adap-

tation of limb movements appears to be unaffected in ASD

[52,53].

Adaptation of saccadic eye movements appears to be primarily

dependent on the posterior cerebellum, including lobules VI and

VII of the vermis [54]. Selective lesions of the cerebellar vermis

lead to long-term disruptions in saccadic eye movement adapta-

tion and the inability to consistently regulate eye movement

amplitudes [55,56]. In non-human primates, hypometria of

visually guided saccades also is seen immediately after ablation

of the vermis, but appears largely to resolve after only a few weeks

[57–59]. Saccade adaptation is also altered in patients with

cerebellar infarcts, but only if the vermis is affected [56]. It remains

to be determined whether saccade adaptation is impaired in ASD.

Saccade adaptation has been well studied using laboratory

paradigms in which intrasaccadic shifts in target location are

generated immediately after saccade initiation, inducing a

relatively constant error in the landing position [60]. Subjects

gradually adjust their saccade amplitudes to reduce movement

error with practice, although detection of the target displacement

is often not consciously recognized because of the visual blanking

during saccades.

In the present study, we utilized a conventional intrasaccadic

target step paradigm to study saccade adaptation and the integrity

of the cerebellar vermis in individuals with ASD (Figure 1). We

reasoned that if individuals with ASD have a deficit involving the

cerebellar vermis, then they will adapt at a slower rate than

healthy controls, and they will show greater trial-to-trial variability

in the amplitude of their saccades. We also predicted that

cerebellar-dependent motor deficits evident in the oculomotor

system would be associated with motor control impairments in the

manual system. Therefore, we examined saccade adaptation rates

and amplitude variability in relation to performance on a

traditional neuropsychological test of manual motor control.

Materials and Methods

Subjects
Fifty-six individuals with ASD (50 M, 6 F) and 53 healthy

control individuals (46 M, 7 F) participated in this study (Table 1).

Due to the large number of trials required for subjects to adapt

and then recover, subjects were randomly assigned to have either

leftward or rightward adaptation tested (346 total trials, including

50 baseline trials of visually guided saccades, 200 trials during

adaptation testing, and 96 trials of post-adaptation recovery). Thus

four groups were examined (ASD leftward: n = 29; ASD

rightward: n= 27; control leftward: n= 23; control rightward:

n = 30). No demographic or performance differences between

leftward and rightward adapting groups were identified, so they

were combined for analyses. The ASD and control groups were

matched on age (range 8–54 years) and handedness. Subjects

completed the Wechsler Abbreviated Scale of Intelligence to assess

current intellectual abilities [61]. The subject groups had similar

Performance IQs, but the ASD group had significantly lower

Verbal and Full-Scale IQs than the control group. All IQ scores

were in the average range for both groups.

Individuals with ASD, including Autistic Disorder and Asperger

Disorder, were recruited through community advertisement at the

University of Pittsburgh. Diagnoses of ASD were established with

the Autism Diagnostic Inventory-Revised (ADI-R; [62]) and the

Autism Diagnostic Observation Schedule (ADOS; [63]) and

confirmed by expert clinical opinion. Participants with ASD were

excluded if they had a known genetic or metabolic disorder

associated with ASD (e.g., Fragile X syndrome, tuberous sclerosis).

Control participants were recruited from the community

through newspaper advertisements. Potential control participants

completed a screening questionnaire that included prenatal, birth

and developmental history, general medical history, treatment/

medication history, and personal and family history of psychiatric

Figure 1. Schematic representations of the saccade adaptation
test. A.) Participants were instructed to shift their gaze to peripheral
targets when they appeared. After subjects initiated their saccade, the
target stepped inward from the 612 deg location to 69 deg in the
same visual hemifield. B) Schematic representations of double-step
target displacement and traces of non-adapted and adapted saccades.
doi:10.1371/journal.pone.0063709.g001

Table 1. Demographic characteristics of individuals with
autism spectrum disorders (ASD) and healthy control subjects.

ASD Controls

(n =56) (n =53) t p

Age 19 (9) 18 (8) .16 .87

% Male1 89 87 .16 .69

Verbal IQ 101 (14) 108 (11) 3.28 ,.01

Performance IQ 105 (16) 108 (9) 1.87 .07

Full Scale IQ 103 (15) 110 (10) 2.97 ,.01

Manual Motor Time
to Completion (s)

97.99 (29.74) 74.43 (9.20) 4.65 ,.01

Manual Motor Errors 1.05 (1.18) .68 (.69) 1.72 .09

Values are Mean (SD).
IQ = Intelligence quotient; s = seconds.
1Chi-Square statistic.
doi:10.1371/journal.pone.0063709.t001
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and neurological disorders. Parents of controls less than 18 years

old completed these questionnaires for their children. Control

subjects were excluded for current or past psychiatric or

neurological disorders, family history of ASD in first-, second- or

third-degree relatives, or a history in first-degree relatives of a

developmental or learning disorder, psychosis, or obsessive

compulsive disorder.

No subjects were taking medications known to affect eye

movements at the time of testing, including antipsychotics,

stimulants or anticonvulsants [64]. Subjects had corrected or

uncorrected far visual acuity of at least 20/40. No participant had

a history of head injury, birth injury or seizure disorder. After a

complete description of the study, written informed consent was

obtained for each adult participant and informed parental consent

was obtained for individuals less than 18 years of age. Minors

provided written assent. Study procedures were approved by the

Institutional Review Board of the University of Pittsburgh.

Eye Movement Tasks and Procedures
Saccade adaptation was elicited using an intrasaccadic target

displacement paradigm with a centripetal step. Circular targets

subtending 0.5 degrees (deg) of visual angle were presented in the

horizontal plane at eye level on a computer monitor with a 57 cm

wide screen display (Sony PREMIERPRO Series 24 FD

TrinitronH CRT, Model GDM-FW900). Spatial resolution was

set at 230461440 pixels. Subjects were seated 69 cm from the

monitor and tested alone in an unlit room with flat black walls.

The horizontal display subtended 23 deg of visual angle (29 cm) to

each side of center. A chin rest with forehead and occipital

restraints was used to minimize head movement.

Eye movements were monitored using infrared reflection

sensors mounted on spectacle frames (Applied Science Laborato-

ries, Inc., Model 210). Blinks were identified using electrodes

placed above and below the left eye linked to an AC-coupled

bioamplifier. Prior to performing tasks, subjects fixated a central

target and peripheral targets at +/212 deg of visual angle to

calibrate eye movement recordings. An examiner in an adjacent

room monitored eye movement activity during testing to ensure

that subjects were alert and performing tasks according to

instructions. Subjects performed the following three tasks:

Baseline saccade task. To measure saccade amplitudes

prior to adaptation, subjects first performed 50 trials of visually

guided saccades. Trials began with central fixation for 1000–

1500 ms, after which the target stepped to +/26, 12 or 16 deg in

the horizontal plane. Fifty percent of the trials were presented at

the location from which saccades were to be adapted during the

adaptation task (i.e., +12 deg for rightward adapting subjects, or

212 deg for leftward adapting subjects). Target presentation in

the remaining trials was equally distributed across the other five

locations.

Saccade Adaptation Task (Figure 1). Trials began with

central target fixation for 1000–1500 ms. Subjects were required

to maintain fixation within +/23 deg of center for at least 500 ms

immediately before peripheral targets appeared. Adaptation trials

constituted 90% (180/200) of trials during this phase of testing.

During adaptation trials, the target stepped 12 deg from central

fixation. When saccade velocity exceeded 30 deg/s, close to

saccade initiation, targets were centripetally displaced from 12 to

9 deg from central fixation. The target remained at 9 deg for

1000 ms in 90% of adaptation trials. It remained at that location

for 2000 ms in the remaining 10% of adaptation trials to

encourage sustained fixation of the 9 deg target rather than an

immediate return to central fixation. In 20 randomly interspersed

trials (10% of adaptation trials), targets were presented at 6 deg

from center in the hemifield opposite that in which adaptation was

tested. These ‘‘catch trials’’ were presented without an intrasacca-

dic displacement, and were intended to reduce rates of anticipa-

tory saccades to the +/212 deg location. In this type of saccade

adaptation paradigm, subjects gradually learn to make saccades

closer to the 9 deg location, rather than to the 12 deg location.

Typically, because the 3 degree centripetal step occurs during a

saccade, the displacement is not perceived by subjects. Two

hundred trials were presented in four 50-trial blocks, with 15 s of

darkness between blocks to allow subjects to rest.

Recovery task. To evaluate recovery from adaptation,

subjects completed 80 trials (83% of recovery trials) in which they

made saccades to stimuli presented 12 deg from fixation in the

same hemifield in which adaptation had been tested. These trials

did not include any intrasaccadic target displacement, so that

recovery from adaptation effects could be examined. This task also

included 16 ‘‘catch trials’’ (17% of post-adaptation trials) in which

targets were presented at 6 deg in the opposite hemifield.

Eye Movement Measurements
Eye movement signals were sampled at 500 Hz with a 14-bit A/

D converter (Dataq Instruments, DI-210). Recordings were

smoothed off-line with a finite impulse response filter. The filter

had a gradual transition band (from pass to no pass) between

20 Hz and 65 Hz for velocity and position data, and 30 Hz and

65 Hz for acceleration data. Saccades were identified for scoring

when eye acceleration exceeded 1000 deg/s2, and were measured

until 25% of peak deceleration, permitting resolution of saccade

detection on the order of 0.25 deg. Recordings from the right eye

were scored, unless there were problems with this recording (i.e.,

signal clipping or high noise artifact). Data were scored without

knowledge of subjects’ diagnosis or demographic characteristics.

Manual Motor Testing
Participants completed a manual motor test in which they were

presented with a pegboard of keyholes arranged in a 565 grid and

with various orientations (Lafayette Instruments, Lafayette, IN).

Subjects were instructed to insert a grooved peg into each slot with

the proper orientation as fast as possible. Their dominant and non-

dominant hands were tested separately. Time to completion and

the number of times a peg was dropped were examined.

Statistical Analyses
Because amplitudes did not change over time during baseline

testing, each subject’s amplitude values were averaged over all

12 deg trials in the direction to which adaptation was tested. To

examine the rate of adaptation, we used general linear mixed

models because this type of analysis is robust to missing data and it

increases the precision of slope estimates by providing estimates for

each individual [65]. In the present study, the logarithmic

transformation of trial number was entered as a repeated

measurement (to accommodate nonlinear learning functions),

diagnostic group (ASD, controls) and the group X trial number

interaction terms were entered as independent variables, and

saccade amplitude was the dependent variable. These models

yielded separate estimates of learning rate for each group as well as

estimates of group differences. The same approach was used to

evaluate amplitude change during the recovery phase, but a linear

model is presented as it provided a good fit to the data. To

examine the trial-wise variability of saccade amplitude, trials with

target locations to which subjects adapted were divided into blocks

of 10 sequential trials for baseline, adaptation and recovery phases.

Then, the standard deviation of saccade amplitude was computed

to assess amplitude variability for each block for each individual.

Saccade Adaptation in Autism Spectrum Disorders

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e63709



This yielded 3 blocks for baseline data (the third block consisted of

only 5 trials), 18 blocks of adaptation trials and 8 blocks of

recovery trials. Linear (for baseline testing) and logarithmic models

(for adaptation and recovery testing) were used to examine

changes in amplitude variability during baseline, adaptation and

recovery separately, but subjects did not show changes in

amplitude variability within any phase (baseline: b=–.01;

SE1,319 = .0361021; Z=22.01; p = .05; adaptation:

b= .2461023; SE1,1954 = .3461023; Z= .71; p = .48; recovery:

b= .4261022; SE1,1082 = .3161022; Z= 1.36; p = .18). Therefore,

blocks were averaged within each phase for analyses.

For all tasks, trials were considered invalid and excluded from

analyses if primary saccades occurred simultaneously with a blink,

were made in the wrong direction, or were anticipatory (latency

,70 ms). Saccades more than 3 SD outside of the mean amplitude

for all subjects were excluded from analyses to reduce outlier

effects. For these reasons, the number of trials analyzed per

individual with ASD on the adaptation task was less than that for

controls (ASD: 142 (20); controls: 154 (16); t107 = 3.24, p = .001),

but the number of trials for each group was sufficient to analyze

learning rates. Further, the number of trials analyzed per subject

was not related to adaptation rate (r108 = –.13, p = .18). Analyses of

adaptation rate and amplitude variability each were performed

with and without age entered as a covariate. Including age as a

covariate did not substantively impact the results, so it was not

included in the final models.

Results

Saccade Amplitude
During the baseline condition, subjects with ASD and healthy

controls did not differ in mean saccade amplitude (t107 = 1.23,

p = .22; Table 2). During adaptation, healthy subjects (b=–.41;

SE1,15902 = .02; Z=217.51; p,.01) and subjects with ASD

significantly reduced their saccade amplitudes over trials (b=–

.31; SE1,15902 = .03; Z= 10.61; p,.01). Subjects with ASD

adapted at a slower rate than controls (Figure 2; b= .11;

SE1,15902 = .04; Z= 2.83; p,.01).

The rate at which subjects adapted was greatest during initial

trials of adaptation; specifically, subjects achieved 66% of their

total amplitude reduction by trial 30. Therefore, we tested whether

subjects with ASD also showed adaptation deficits during this

initial phase of rapid amplitude reduction. ASD subjects adapted

slower during the first 30 trials than healthy controls (b= .13;

SE1,2743 = .06; Z= 2.01; p = .04).

We compared the proportion of individuals with ASD and

healthy controls who did not adapt by classifying subjects whose

rate of change over adaptation trials was not significant (p..05) as

‘‘non-adapters’’. A higher proportion of ASD subjects were non-

adapters compared to healthy controls (Figure 3; ASD: 30% (17/

56); controls: 6% (3/53); X2 = 11.09, p,.01). There were no

differences between subjects with ASD that adapted versus those

that did not adapt in terms of age (t53 = .10, p = .93), IQ

(t53 = 1.12, p= .24), ADI-R social scores (t53 = .29, p = .77), ADI-

R communication scores (t53 = 1.06, p = .29), ADOS social-

communication scores (t53 = .24, p = .81), or baseline saccade

amplitudes (t53 = .91, p = .37).

A comparison of mean saccade amplitudes during recovery

indicated that they remained decreased relative to baseline saccade

amplitudes in both groups (Figure 2; F1,104 = 248.42, p,.01),

which is typical for this type of paradigm and number of recovery

trials [66,67]. Overall, subjects showed a linear increase in their

saccade amplitudes during recovery trials (b= .0361021;

SE1,7357 = .0161021; Z= 2.18; p = .03). The rate of recovery did

not differ between subject groups (b= .0361023;

SE1,7357 = .0761022; Z= .04; p = .97).

Amplitude Variability across Trials
Subjects with ASD showed more trial-wise variability in saccade

amplitudes relative to controls across conditions (baseline,

adaptation, and recovery; F1,106 = 11.32, p,.01). We analyzed

each condition separately and found that subjects with ASD

showed increased trial-wise amplitude variability prior to adapta-

tion (Table 2; t107 = 2.13, p = .03), although this difference was no

longer significant when a Bonferroni correction for multiple

comparisons was applied (p,.017). Across groups, amplitude

variability was greater during adaptation trials compared to

baseline trials (F1,105 = 141.27, p,.01). During adaptation, sub-

jects with ASD continued to show greater mean amplitude

variability than controls (Figure 4; t107 = 3.37, p,.01), but the

degree to which amplitude variability increased during adaptation

relative to baseline did not differ between subjects with ASD and

controls (mean (sd) % increase: ASD=82% (81); controls = 89%

(96); t107 = .43, p = .67). During the recovery phase, individuals

with ASD continued to show more amplitude variability than

controls (t107 = 2.74; p,.01). Non-adapting subjects with ASD

showed greater amplitude variability than adapters with ASD

during adaptation (t54 = 3.68, p,.01) and during recovery

(t54 = 2.93, p,.01), but not at baseline (t54 = 1.17, p = .25).

Correlational Analyses
Neither the rate of adaptation nor amplitude variability was

associated with age or IQ (for either group), or social-communi-

cation impairments on the ADOS or ADI-R for ASD participants

(see Tables S1 and S2). Subjects with ASD were slower to

complete the manual motor test (F1,86 = 21.65, p,.01), but there

was no difference between groups in the number of dropped pegs

(F1,86 = 2.96, p = .09). The group x hand (dominant vs. non-

dominant) interactions were not significant (time to completion:

F1,75 = .11, p= .74; dropped pegs: F1,75 = .08, p = .78), so perfor-

mance was averaged across hands for correlational analyses. We

used a Bonferroni corrected alpha level ,.013 for these analyses.

For subjects with ASD, adaptation rate was not associated with

manual motor time to completion (r56 = .11, p = .43), but slower

learning rates were associated with more dropped pegs during

Figure 2. Saccade amplitudes for subjects with autism
spectrum disorders (ASD) and healthy controls during adap-
tation and recovery. The natural logarithmic model fit is presented
for adaptation, and each data point represents the group mean for an
individual trial. Subjects with ASD showed reduced rates of learning
(p,.01). The linear fit is presented for recovery data. There was no
difference in the rate at which subjects with ASD and healthy controls
increased their amplitudes during the recovery phase (p = .66).
doi:10.1371/journal.pone.0063709.g002
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manual testing (Figure 5A; r56 = .39, p,.01). Neither of these

relationships were significant for healthy controls (time to

completion: r37 = .22, p = .19; dropped pegs: r37 = .18, p = .30).

Increased amplitude variability in subjects with ASD showed a

modest non-significant relationship with the number of dropped

pegs, (Figure 5B; r40 = .30, p= .03). Amplitude variability was not

related to manual motor completion time in subjects with ASD

(r56 = -.04, p= .79). The relationships between saccade amplitude

variability and manual motor indices were not significant for

healthy controls (time to completion: r37 = .21, p = .22; dropped

pegs: r37 = .17, p= .31). Increased amplitude variability during

adaptation was related to reduced rates of adaptation for both

healthy controls (r53 = .50, p,.01) and subjects with ASD

(r54 = .58, p,.01). For both groups, less amplitude variability

predicted faster adaptation.

Performance on 6 Degree ‘‘Catch Trials’’ during
Adaptation and Recovery
Subjects showed a reduction in saccade amplitudes on the catch

trials during adaptation relative to baseline saccade performance

(F1,107 = 24.36, p,.01). However, the level to which amplitudes

were reduced (4%) was less than that seen for adaptation trials

with an intrasaccadic displacement (19%; F1,107 = 233.56, p,.01)

and is less than the range of amplitude reduction for adapted

saccades (10–40%) reported in previous studies [67–69]. The

degree to which amplitudes were reduced on adaptation catch

trials relative to saccades to the same location during baseline

testing did not differ between individuals with ASD and healthy

controls (F1,107 = .29, p = .59). Saccade amplitudes during recovery

catch trials were greater than adaptation catch trials (F1,106 = 4.19,

p = .04) but did not differ between subject groups (F1,106 = .02,

p = .88). Variability in saccade amplitude for 6 deg trials also

increased during adaptation compared to baseline trials

(F1,105 = 46.21, p,.01), but the degree to which it changed did

not differ between groups (F1,107 = .31, p= .58). No changes in

amplitude variability occurred from adaptation to recovery for

catch trials (F1,106 = .65, p= .42).

Discussion

We used a saccadic adaptation test to examine how individuals

with ASD adjusted their eye movements to systematically induced

retinal image position errors [60]. This test requires that

individuals refine their movement trajectories over trials to

minimize error in the focus of gaze at the completion of saccades.

Saccade adaptations are thought to be organized within the

oculomotor vermis [54,70], a region implicated in post-mortem

and MRI studies of ASD [6,10,71]. In the present study,

individuals with ASD adapted at a slower rate than healthy

controls, suggesting that learning mechanisms within the oculo-

motor vermis are compromised. Our finding that saccade

Table 2. Saccade amplitude and amplitude variability on 12 deg trials for individuals with autism spectrum disorders (ASD) and
healthy controls during baseline testing, adaptation, and post-adaptation recovery.

ASD Controls t p

Baseline

Mean Amplitude (deg) 11.75 (.58) 11.79 (.45) 1.23 .22

Amplitude variability (deg) 0.84 (.40) 0.69 (.33) 2.13 .03

Adaptation

Rate of amplitude changea b= -.31 (SE = .03) b= –.41 (SE = .02) 2.83b ,.01

Amplitude variability (deg) 1.45 (.47) 1.17 (.38) 3.37 ,.01

Recovery

Rate of amplitude changea b= .0261021 (SE = .0561022) b= .0261021 (SE = .0261021) .04b .97

Amplitude variability (deg) 1.10 (.40) 0.89 (.39) 2.74 ,.01

Values are Mean (SD).
anegative values indicate reduction over trials.
bz-score for comparisons of slopes between subjects with ASD and controls.
doi:10.1371/journal.pone.0063709.t002

Figure 3. Cumulative frequency of adaptation rates (i.e., rate of
amplitude reduction) for subjects with autism spectrum
disorders (ASD) and healthy controls. Positive values represent
faster learning rates. Triangles are used to represent non-adapters for
both diagnostic groups. Asterisks (*) are used to identify two control
subjects whose rates of adaptation were statistically significant (p,.05)
but also less than those of two non-adapting subjects with ASD. These
two controls made more saccades that could be scored during
adaptation (151 and 170 out of 180 respectively) than the two non-
adapting subjects with ASD whose learning rate was faster but non-
significant (133 and 135 out of 180 respectively). If these two subjects
with ASD are re-classified as adapters, there is still a higher proportion
of non-adapting ASD subjects compared to healthy controls (ASD: 27%
(15/56); controls: 6% (3/53); X21 = 8.81, p,.01).
doi:10.1371/journal.pone.0063709.g003
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adaptation was altered despite no impairment being observed in

the average accuracy of visually guided saccades during baseline

testing indicates that cerebellar circuitry supporting on-line

refinements of eye movements may be selectively disrupted in

ASD. Alternatively, compensatory processes in other brain regions

may be sufficient to minimize errors in gaze shifts over a longer

period of time (days or weeks), so that the accuracy of visually

guided saccades in individuals with ASD is less affected [36,39].

The amplitude variability reducing function of the cerebellum

also was abnormal in individuals with ASD. Increased trial-to-trial

variability of saccade amplitudes was associated with reduced rates

of adaptation, consistent with the hypothesis that vermal

dysfunction contributes to both impaired adaptation and a failure

to compensate for within-trial variability within the saccadic

system, such as in the cumulative neuronal activity in the superior

colliculus before and during the saccade. It also is possible that the

increased variability of saccade landing positions, and thus the

reduced consistency of the error signal relayed to the cerebellum

reduces the rate at which adaptive mechanisms within the vermis

can make systematic adjustments to saccade trajectories [72].

Studies in which the degree of error is systematically controlled for

each individual subject are needed to address the relative

contribution of increased amplitude variability to adaptation

impairments in ASD.

Our results confirm and extend previous reports describing

saccadic eye movement deficits in ASD. Prior studies documenting

modest hypometria and greater variability in amplitude gain

provide indirect evidence that cerebellar control of saccade

accuracy may be compromised [36,39]. Functional MRI findings

of reduced vermal activation during saccades in ASD provides

additional support for cerebellar alterations during eye move-

ments, but the extent to which these alterations are a consequence

of or causes to dysfunction within frontal and parietal cortical eye

fields and basal ganglia nuclei remains unclear [46]. The present

findings show that brain circuitry supporting the rapid adjustment

of saccadic amplitudes to reduce retinal error is abnormal in ASD.

There is considerable evidence from non-human primate work

and studies of human cerebellar patients (described below) that

modifications of Purkinje cell output within the vermis are

primarily responsible for the short-term adaptation of saccades.

Therefore, this study provides evidence, perhaps as strong as any

available neurobehavioral paradigm can provide, that the function

of the cerebellar vermis is disrupted in ASD and its dysfunction

may underpin the motor coordination and learning impairments

characteristic of this disorder.

The pattern of increased trial-to-trial variation in saccade

accuracy together with a lack of alteration in average saccade

accuracy during baseline testing is similar to that seen after

monkeys have recovered from lesions in the oculomotor vermis

[73]. Acute effects include dysmetria, more variable amplitudes,

and reduced or abolished short-term adaptation. The ability to

make accurate saccades is recovered over time, whereas amplitude

variability and adaptation deficits persist. Thus, while brain

regions outside of the vermis may be able to compensate for

smaller amplitude errors over extended periods of time during

saccades to static targets, they cannot sufficiently support rapid,

larger scale corrections such as those elicited by adaptation

paradigms. Instead, these larger scale corrections are uniquely

dependent on the vermis [74].

A pattern similar to that seen in chronic lesions may occur in a

neurodevelopmental disorder such as ASD, with putative alter-

ations of the cerebellar vermis occurring within the first years of

Figure 4. Standard deviation of the amplitude of primary saccades, a measure of trial-wise variability in saccade accuracy, during
baseline testing, adaptation and recovery. Data are presented in blocks of 10 trials. Subjects with autism spectrum disorders (ASD) showed
greater trial-wise variability in saccade accuracy during each phase of testing (p,.01), but the rates at which variability changed during each of the
phases were not different between subjects with ASD and healthy controls (p..10).
doi:10.1371/journal.pone.0063709.g004

Figure 5. Relationships between saccade adaptation and
manual motor performance. The number of errors during the
manual motor test were averaged across hands and are presented for
subjects with ASD in relation to A) the rate at which they adapted and
B) their trial-to-trial amplitude variability across baseline testing and the
adaptation and recovery phases.
doi:10.1371/journal.pone.0063709.g005
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life [7]. It is possible that brain systems controlling the accuracy of

saccades may be rescued at least partially during development, a

hypothesis consistent with findings from a study of ASD

documenting saccadic hypometria in children, but not adolescents

or adults with ASD [36]. Adaptation mechanisms do not appear to

recover, as we did not observe age-related differences in

adaptation rate across the relatively wide age range of our study

sample. Still, some caution should be exercised in interpreting the

absence of developmental group differences as longitudinal studies

would be necessary to characterize the maturation of adaptive

mechanisms in ASD. Notably, baseline testing in the present study

was designed specifically to assess saccade amplitudes to a

particular location from which adaptation would be measured.

The increased predictability of target locations (50% of trials were

to the to-be-adapted location) may have limited our ability to

identify the modest differences in saccade amplitude gain that have

been reported in some prior studies [36,39]. Similarly, no

amplitude differences were seen between groups during ‘‘catch

trials’’, suggesting that there may have been too few trials to detect

deficits, or that the accuracy of smaller saccades is relatively

preserved in ASD as we have reported previously [37,41].

The Neural Circuitry of Adaptation Deficits in ASD
The cerebellum supports motor adaptation by monitoring the

difference between expected and observed movement outcomes,

adjusting movements on-line and refining future motor commands

[75,76]. The oculomotor vermis receives retinal error signals via

olivary climbing fibers (Figure 6) [77–79]. Olivary inputs create

complex spike discharges which, when co-occurring with more

frequent simple spike discharges at parallel fiber-Purkinje cell

synapses, can lead to a long lasting depression (LTD) and selective

pruning of the parallel fiber input [80]. These processes modulate

the amplitude and timing of Purkinje cell population bursts

converging on fastigial neurons, and are the plastic mechanisms

thought to support saccade adaptation [81]. Inactivation of vermal

Purkinje cells eliminates short-term saccade adaptation and

produces more variable saccades across trials in monkeys

[59,82]. Patients with cerebellar disease show saccade adaptation

deficits and an impaired ability to modulate saccade accuracy

across trials only if the vermis is affected [56]. The similarity

between the pattern of deficit seen in patients with vermal lesions

and individuals with ASD suggests that alterations in the

oculomotor vermis are the primary factor responsible for saccade

abnormalities observed in the present study.

The majority of post-mortem brain studies of ASD examining

the cerebellum have documented cellular and neurochemical

alterations [6,7,9,83–86]. Still, some individuals examined in post-

mortem studies were taking anticonvulsant medications that could

selectively affect Purkinje cell neurochemistry and anatomy.

Adaptation abnormalities in medication-free individuals with

ASD observed in the present study indicate that functional

alterations implicating the vermis are not a result of medication

effects.

A relatively high number of ASD subjects (30%) did not

significantly adapt. This suggests variability in the extent to which

the cerebellar vermis is functionally impaired in individuals with

ASD, and these results might indicate the presence of a subgroup

of individuals with more severe oculomotor disturbances. Howev-

er, there was no clear bimodality in the distribution of adaptation

rate, nor did we identify clinically distinct features of subjects who

did not adapt. Further phenotypic and genotypic characterization

of non-adapters and their unaffected family members may help

resolve the possibility that they represent a distinct subgroup of

individuals with ASD.

Manual motor error rates (dropping pegs during a pegboard

test) were associated with saccadic adaptation rates in individuals

with ASD, suggesting that cerebellar dysfunctions may involve

circuits supporting motor control across multiple effectors. The

clinical neuropsychology measures of manual motor function did

not detect deficits in manual control or speed in subjects with

ASD. This suggests that oculomotor studies may provide a more

sensitive methodology for identifying impairments or that abnor-

malities are more profound in the oculomotor system. However, it

is important to note that the measure of manual motor control

used in the present study is likely not sensitive to subtle dysmetria

or altered kinematics of movement. Direct comparisons of

oculomotor and manual motor control utilizing similarly sensitive

neurophysiological measures are needed to contrast eye and limb

movement control in ASD.

We cannot completely rule out the possibility that adaptation

deficits seen in individuals with ASD also may reflect dysfunctions

in other brain regions. It has been suggested that retinal error

signals may originate in the superior colliculus [87], although

recent evidence indicates that motor activity in the superior

colliculus is unaltered during saccade adaptation [88]. Inactivation

of the superior colliculus typically affects non-adapted saccades as

well, altering trajectories, lowering peak velocities, and extending

durations and latencies [89]. Neither the present study (Table S3)

nor previous reports examining non-adapted saccades suggest that

saccade dynamics are disrupted in ASD [36,39,41] (although see

[39] for evidence of reduced peak velocity of visually guided

saccades in ASD).

Lesions affecting ventral and lateral thalamic nuclei impair

saccade adaptation [90], suggesting that adaptation deficits in

ASD could reflect alterations in these nuclei. Frontal and parietal

eye fields also are involved in the control of saccade amplitudes,

Figure 6. Schematic representation of a sagittal view of the
cerebellar ‘‘oculomotor’’ vermis - brainstem circuitry involved
in the adaptation of saccadic eye movements. Retinal error
information reaches the inferior olive (IO), which in turn projects
ascending climbing fibers that create complex spike action potentials at
synapses on the Purkinje cell (PC) body and proximal dendrites. PCs also
receive input via mossy fibers projecting from the nucleus reticularis
tegmenti pontis (NRTP), which receives a saccade command from the
superior colliculus (SC). Rapid, simple spike discharges occur at the
synapses of mossy fiber-parallel fiber inputs to PCs. The complex spike
firing of the climbing fiber-PC synapses induces a long-term depression
(LTD) of simple spikes that is thought to be the mechanism guiding
saccade adaptation. Changes in PC simple spike bursts modify saccade
trajectories by altering the level of inhibitory output to fastigial nuclei
(FN), which in turn modulate inhibitory (IBN) and excitatory burst
neuron activity (EBN) in the brainstem burst generator (BBG). The BBG
innervates abducens motoneurons (MN) that control horizontal eye
movements via lateral and medial extraocular muscles.
doi:10.1371/journal.pone.0063709.g006
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although there is less evidence that they are involved in adaptation

of exogenously driven saccades such as those studied here [54].

Still, while there is a relatively strong rationale for interpreting the

present neurophysiological findings as providing evidence for

vermal dysfunction in ASD, research is needed to further link these

behavioral observations to direct physiological studies of the

vermis.

Conclusions
There is considerable evidence of cellular and gross anatomic

changes of the vermis in ASD [10,91]. The present study offers

perhaps the most direct evidence to date that these alterations

have functional implications in this disorder. Our study shows that

individuals with ASD are not able to rapidly adjust to large errors

in saccade landing position. They also have poor control over the

consistency of their movement amplitudes as evidenced by greater

trial-to-trial variability. We hypothesize that important plastic

mechanisms within the cerebellar vermis involving Purkinje cell

output to fastigial nuclei are impaired in ASD. The failure of these

learning mechanisms may contribute to the motor control

impairments in ASD and may have direct implications for

understanding the cellular and molecular bases of this disorder.
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