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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that caused
the coronavirus disease 2019 (COVID-19) pandemic. Though previous studies have suggested that
SARS-CoV-2 cellular tropism depends on the host-cell-expressed proteins, whether transcriptional
regulation controls SARS-CoV-2 tropism factors in human lung cells remains unclear. In this study,
we used computational approaches to identify transcription factors (TFs) regulating SARS-CoV-2
tropism for different types of lung cells. We constructed transcriptional regulatory networks (TRNs)
controlling SARS-CoV-2 tropism factors for healthy donors and COVID-19 patients using lung single-
cell RNA-sequencing (scRNA-seq) data. Through differential network analysis, we found that the
altered regulatory role of TFs in the same cell types of healthy and SARS-CoV-2-infected networks
may be partially responsible for differential tropism factor expression. In addition, we identified the
TFs with high centralities from each cell type and proposed currently available drugs that target these
TFs as potential candidates for the treatment of SARS-CoV-2 infection. Altogether, our work provides
valuable cell-type-specific TRN models for understanding the transcriptional regulation and gene
expression of SARS-CoV-2 tropism factors.

Keywords: SARS-CoV-2; single-cell RNA-seq; differential network analysis

1. Introduction

Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has led to a global
public health crisis. Since the first case was reported in late December 2019, SARS-CoV-2
has spread to 215 countries, infected more than 437 million humans, and has led to more
than six million deaths, primarily among the elderly [1]. COVID-19 has a high mortality,
which is largely due to acute respiratory distress syndrome in the lungs [2]. Since SARS-
CoV-2 is mainly transmitted via respiratory droplets, the lung is the preliminary target
organ for SARS-CoV-2 infection [3]. Pathological investigations, including postmortem
biopsies, have confirmed major pulmonary damage in the lungs as the most likely cause of
death, and lifelong damage has been seen in the cases examined [4–6]. Understanding how
SARS-CoV-2 infects human lung cells is important in order to identify effective treatment
options for COVID-19.

SARS-CoV-2 infection in cells (SARS-CoV-2 cellular tropism) is caused by the binding
of the viral spike (S) proteins to cellular receptors (e.g., angiotensin-converting enzyme
2; ACE2) and S protein priming by host cell proteases (e.g., transmembrane protease
serine protease 2; TMPRSS2) [7–9]. The co-expression of ACE2 and TMPRSS2 is widely
used as a marker for identifying cells that have the potential to be infected by SARS-
CoV-2 [7]. Therefore, many studies have revealed a subset of tissues and cell types that
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are potentially susceptible to SARS-CoV-2 using single-cell RNA-seq (scRNA-seq) and
immunocytochemistry for profiling the co-expression of ACE2 and TMPRSS2 across healthy
human tissues [10]. However, ACE2 is not the only functional receptor for SARS-CoV-2.
The cell-surface receptors neuropilin-1 NRP1 and CD209 also facilitate the entry of SARS-
CoV-2 to specific cells [11–14]. Additionally, recent studies have tested whether other
coronavirus (SARS-CoV, MERS-CoV, and HCoV) receptors work as SARS-CoV-2 receptors.
The results have shown that MERS receptor DPP4, SARS-CoV receptors CLEC4G/M, and
HCoV-229E receptor CD13 cannot be SARS-CoV-2 receptors because of their inability to
bind with SARS-CoV-2 [15–17]. The SARS-CoV-2 S protein has been found to be cleaved
by several host cell proteases, including CTSL [18], FURIN [19,20], TMPRSS4 [21], and
TMPRSS11A [22]. Additionally, in response to virus entry, cells usually express interferon-
induced transmembrane proteins (IFITMs) that block the fusion capacity of many enveloped
RNA viruses [23]. SARS-CoV-2, however, can hijack IFITM1, IFITM2, and IFITM3 to
enhance the infection of the viruses [24,25]; thus, IFITMs serve as factors helping the entry
of SARS-CoV-2 into cells. In summary, SARS-CoV-2 cellular tropism depends on the host-
cell-expressed proteins (cellular tropism factors), which include receptors (ACE2, NRP1,
CD209), proteases (TMPRSS2, 4, 11A, CTSL, and FURIN), and IFITMs (IFITM 1, 2, and 3).

There is a lack of experimental data that identify the transcriptional factors (TFs)
that regulate the cellular tropism factors in lung cells. The spatial–temporal expression
profiles of these SARS-CoV-2 cellular tropism factor proteins are largely determined by their
upstream TFs, whose regulatory roles can differ depending on the cell types involved. The
construction of transcriptional regulatory networks (TRNs) can identify potential upstream
TFs controlling SARS-CoV-2 tropism factors and elucidate how regulatory relationships
are established between TFs and targets [26,27]. The susceptibility of each type of lung cell
to SARS-CoV-2 infection can differ widely [18,28,29] and the expression of tropism factors
in each cell is heterogeneous [30–32], suggesting that there is heterogeneity within each
lung cell type in terms of regulating the expression of cellular tropism factors. Therefore, it
is essential to construct TRNs in a cell-type-specific way in order to identify the potential
regulators controlling SARS-CoV-2 tropism factors in different types of lung cells.

Cell type-specific TRNs that are constructed before and after SARS-CoV-2 infection
could be used to compare and identify changes in gene regulation between a healthy and
a diseased condition using differential network analysis [33,34]. The differential analysis
of TRNs can identify topological differences between networks, which can be quantified
using network centrality measures [35]. The most commonly used centrality measures
for TRN include degree, betweenness, closeness, pagerank, and eigenvalue [36]. Using
these measures, the nodes (TFs) with an important role in regulating target genes can be
identified in each network [37,38]. The centrality-based analysis of the TFs in the TRNs
of COVID-19-infected donors and healthy donors can not only provide insight into the
transcriptional regulation alteration of SARS-CoV-2 tropism after virus infection but can
also help identify the candidate nodes (TFs) that may serve as targets for existing drugs to
inhibit the virus entry into the human lungs.

Here, we applied a network approach to investigate the regulators of SARS-CoV-2
tropism factors using human lung scRNA-seq data from healthy and COVID-19-infected
donors. To study the heterogeneity of the SARS-CoV-2 tropism factors between cell types,
we identified cell-type-specific tropism-factor-associated gene modules and potential regu-
lators of these modules specific to each cell type. We then refined the connections within
cell-type-specific networks using motif information including ChIP-Seq. This allowed for
the identification of candidate TFs that directly regulated the SARS-CoV-2 tropism factors
within each cell type. This type of network was constructed for each type of lung cell from
healthy donors and COVID-19 patients. Centrality-based differential network analyses
were performed for the same type of lung cell across healthy donors and COVID-19 patients
and were used to identify how SARS-CoV-2 affected the regulatory signatures of specific
cell types. Finally, we applied a centrality-based approach to identify the master TFs from
each cell-type-specific TRN that regulate tropism factors. The existing drugs targeting these
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master TFs were identified as candidates that could be repurposed to mitigate SARS-CoV-2
infection.

2. Materials and Methods
2.1. Acquisition and Procession of Public Datasets

Single-cell RNA sequence (scRNA-seq) data were retrieved from NCBI, EBI, and
the European Genome-Phenome Archive (EGA), including bronchoalveolar lavage fluid
(BALF) from 16 samples taken from COVID-19 patients and 16 samples taken from
healthy donors. For the donors of COVID-19 patients, 9 samples came from Liao et al. [39]
(GSE145926: C141, C142, C143, C144, C145, C146, C148, C149, C152), 2 samples came from
Chua et al. [40] (EGAS00001004481: BIHCoV01_BL_1 and BIHCoV04_BL_1), and 5 sam-
ples came from Grant et al. [41] (GSE155249: GSM4698176, GSM4698177, GSM4698178,
GSM4698180, GSM4698182). For healthy donors, 3 samples came from Liao et al. [39]
(GSE145926: C51, C52, C100), 1 sample came from Morse et al. [42] (GSE128033), 4 hu-
man bronchial epithelial cell samples came from Lukassen et al. [43] (EGAD00001006185),
and 8 samples came from Reyfman et al. [44] (GSE122960: GSM3489182, GSM3489185,
GSM3489187, GSM3489189, GSM3489191, GSM3489193, GSM3489195, GSM3489197). The
clinical characteristics of the scRNA-seq samples are summarized in Table S1. All raw data
and processed data used for analysis are available upon request.

2.2. Assembly of Multiple Distinct scRNA-Seq Datasets

The Seurat framework [45] was used for the comprehensive integration of single-cell
data. Quality control was performed for each gene-cell-barcode matrix by examining the
mitochondrial contamination (mitochondrial gene percentage < 0.1), the total number of
detected molecules (unique molecular identifier count > 1000), and the number of unique
genes in a cell (filtering cells that had unique feature counts of less than 200). Feature
expression measurements were normalized for each cell by dividing the total counts and
multiplying by a scale factor of 10,000, followed by log-transformation (natural logarithm
of the given value plus one). For each dataset, the top 2000 variable genes with the highest
standardized variance were determined using variance stabilizing transformation [46].
These features were then ranked by the number of datasets they were deemed to be
variable in, breaking ties using the median variable feature rank across datasets. The top
2000 genes were selected. The cell pairs were identified by searching for mutual nearest
neighbors (MNNs) [47] in a low-dimensional representation (90 dimensions to use) of both
datasets from canonical correlation analysis (CCA) [48]. The identified anchors were used
to compute all pairwise distances between datasets (total number of cells in the smaller
dataset divided by the total number of anchors between the two datasets). The resulting
distance matrix was clustered to determine a guide tree. The datasets were then iteratively
merged by calculating a transformation matrix based on corresponding anchors [45] for
dimensionality reduction and clustering.

2.3. Unsupervised Dimensionality Reduction and Clustering

We performed unsupervised dimensionality reduction and clustering according to the
method of [45]. A linear transformation was applied by shifting and scaling the expression
of each gene to be zero mean and unit variance across cells. Then, a principal component
analysis (PCA) was performed on the scaled integrated data. The detected principal
components (PCs) were ranked based on their percentage of variance and it was observed
that 50 PCs captured the majority of the true signal. Among density-based clustering
algorithms that can be used to partition gene expression into arbitrary-sized clusters [49],
we used a graph-based clustering analysis, as its clustering results can reflect the cell
types involved with a high accuracy [50]. A K-nearest neighbor (KNN) graph of cells was
constructed based on the Euclidean distance in PCA space. A shared nearest neighbor
(SNN) graph was constructed by calculating the neighborhood overlap (Jaccard index)
between every cell and its 20 nearest neighbors in the KNN graph. The Louvain algorithm
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was used as the modularity optimization technique for extracting communities from the
constructed SNN graph [51,52]. The graph-based clustering results were visualized using
Uniform Manifold Approximation and Projection (UMAP) based on the identified top
50 PCs.

2.4. Marker Gene Selection and the Classification of Cell Types

Marker genes from each cluster were identified via performing Wilcoxon rank sum test
on uncorrected gene expressions, which showed an at least 0.25-fold difference (log-scale)
between the two groups of cells. We manually annotated cell clusters with broad cell-type
classes using the top 2 cluster marker genes compared to the canonical lung cell-type
markers annotated in [53]. Clusters without clear markers for distinguishing types were
excluded from further analysis.

2.5. Module Generation and Direct TF–Target Regulon Identification

Potential regulators were identified for each cell type as TFs whose expression was de-
tected in 0.5% of cells. GRNBoost2 [54] was then used to predict cell-type-specific weighted
regulatory interactions, which were then organized into ranking TF–target regulon lists for
each of the cell types. A module (i.e., a set of co-expressed TFs and a predicted target gene)
was generated based on the top 50 regulators for a gene from the ranking list. Multiple
modules were created for each tropism factor gene and their predicted direct regulators. To
prune indirect regulatory relationships, the proposed gene modules’ connections validated
by the TF–target binding information (with the levels A: high confidence; B: likely confi-
dence; C: medium confidence; D: low confidence taken from [55] used as the TF–target
scoring criteria) were considered as direct regulation and kept for further analysis.

2.6. Defining the Regulatory Direction of Each TF–Target Regulon

The regulatory direction of our identified direct TF–target regulon was defined based
on TF–target data sources [56–58]. We extracted the overexpression effect data of TFs
from [56], which included transcriptome analyses of cell lines overexpressing each of the
514 human TFs. The data processing was followed by [56] in order to determine the
activation or repression effect of each TF on their downstream genes. We extracted the
knock out and knock down effect data of TFs from the KnockTF database [57]. Following
the database instructions, differentially expressed genes (DEGs) were identified for each
TF knock out/knock down using an FDR <0.05. For each TF perturbation experiment, the
TF activity for its downstream DEGs was assigned as activation if the knock out/down
resulted in a decrease in gene expression, and vice versa. For TF–target regulons not covered
by the above analyses, the TRRUST v2 reference database [58] was used to query their
regulatory direction. The regulatory functions of 9396 regulatory interactions of 800 human
transcription factors were downloaded from the TRRUST v2 database to annotate predicted
TRNs. If there was any conflict regarding the assignment of the type of regulation, we
prioritized the signs as follows: overexpression > knock out > knock down > TRRUST v2.
For the regulations that were not annotated from these databases, the Pearson product
moment correlation between the expression of the TF and its targets was used to determine
the type of transcriptional regulation taking place [59]. TF–target pairs that were positively
correlated (Pearson correlation ≤ 0.03) were assigned as activating regulation, whereas
TF–target pairs that were negatively correlated (Pearson correlation ≤−0.03) were assigned
as repressing regulation.

2.7. Network Organization and Visualization

For each cell type, the TF–target regulons were interconnected into a predicted multi-
level gene network that was organized and visualized using Cytoscape 3.8.0.
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2.8. Differential Expression Analysis

A two-sided Wilcoxon rank sum test was performed to identify the differentially
expressed genes of each cell type in COVID-19 patients and healthy donors. Bonferroni
correction was performed to adjust the p-value based on the total number of genes. Genes
were determined to be differentially expressed in a cell type if the adjusted p-value was less
than 0.05.

2.9. Differential Network Analysis

Tools from graph theory were used for pinpointing important genes in cell-type-
specific function and drivers linked to the disease [36]. In each cell-type-specific gene
network, various measures of centrality—namely, degree, betweenness, closeness, eigenval-
ues, and pagerank—were used to calculate the importance of the TFs. All these centralities
were calculated using the package NetworkX 2.4. Single TFs that simultaneously decreased
or increased the five centralities from healthy individuals to COVID-19 patients were iden-
tified as potential important TFs whose topological features significantly differed between
healthy individuals and COVID-19 patients. A cell-type-specific hub TF was identified
with maximum difference for any centrality measurement.

Degree centrality is defined as the number of edges that are connected to a point.
Our inferred networks are directed. Therefore, the degree of a gene is the sum of the
indegree (number of incoming edges) and outdegree (number of outgoing edges) of the
gene. Betweenness centrality is calculated from the number of times each node falls in the
shortest path of a network. Genes with a higher betweenness will have more control over
the network by acting as bridges in the transcriptional cascades. The closeness centrality of
a node is measured as the inverse distance between the node and all others in the network.
Genes with a high level of closeness have the shortest distance to other genes and thus
are able to spread transcriptional information through the network efficiently. In this
study, both betweenness and closeness centrality were normalized to compare the network
property between networks with different numbers of genes. The eigenvalue centrality of
a node is the corresponding element of the principal eigenvector paralleling the largest
eigenvalue of the graph adjacency matrix. Genes with a high eigenvalue are likely to be in-
fluential in the gene network, since they are connected to other influential genes. Pagerank,
a variation of eigenvalue centrality, measures the importance of a node recursively based
on the number of incoming edges (indegree) and the quality (i.e., pagerank) of the nodes
linking to the node. Different from eigenvalue centrality, pagerank centrality models the
probability that the information will continue flowing in the network, as represented by a
damping factor (typically 0.85). Pagerank has been used to prioritize TFs in gene regulatory
networks with the underlying assumption that genes with a high pagerank are likely to be
transcriptionally regulated by [60].

2.10. Hybrid Centrality Measures

Three centrality measures, degree, betweenness, and closeness, were combined into
one measure that determined the importance of genes in a network [61]. For each gene in a
cell-type-specific TRN, the three centrality values were ranked and the consensus measure
was calculated as the mean of the centrality ranks.

2.11. Mapping Drug Targets

The drugs and their annotations for their mode of action, gene target, and undergone
clinical investigations were imported from The Drug Repurposing Hub [62] from the
ConnectivityMap (CMap) database [63]. Information on chemical compounds and their
corresponding gene targets was extracted from The Probes & Drugs portal [64].
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3. Results
3.1. Expression Landscape of the SARS-CoV-2 Tropism Factors Are Largely Different in Each
Cell Type

Previous studies identified receptors (ACE2, NRP1, CD209), proteases (TMPRSS2, 4,
11A, CTSL, and FURIN), and IFITMs (IFITM 1, 2, and 3) as SARS-CoV-2 tropism factors.
To investigate the expression specificity of these tropism factors in various cell types
within healthy lungs or within SARS-CoV-2-infected lungs, we retrieved public scRNA-
seq data from bronchoalveolar lavage fluid (BALF) samples obtained from 16 healthy
donors [39,42–44] and 16 COVID-19 patients [39–41] (Table S1). We applied a graph-based
clustering analysis of the scRNA-seq data from healthy donors and identified 33 distinct
cell clusters. These cell clusters were visualized in two-dimensional spaces using the
Uniform Manifold Approximation and Projection (UMAP) manifold learning technique
(Figure 1a). UMAP is used to construct the fuzzy simplicial set, which is associated with a
low-dimensional data representation from manifold approximation [65] and has been used
to visualize cell types based on data from scRNA-seq [66]. We classified these clusters into
11 cell types based on their marker genes [53], including club cells, ciliated cells, alveolar
epithelial type 1 cells (AT1), alveolar epithelial type 2 cells (AT2), B cells, T cells, natural
killer cells (NK), basophil/mast cells, macrophage/monocyte cells, dendritic cells, and
endothelial cells (Figure 1a). For scRNA-seq data from COVID-19 patients, we identified
30 clusters that were classified into 7 cell types, including ciliated cells, alveolar epithelial
type 2 cells (AT2), B cells, T cells, natural killer cells (NK), macrophage/monocyte cells, and
dendritic cells (Figure 1b). The BALFs of COVID-19 patients have higher proportions of
immune cells (macrophage/monocyte cell, T cell, B cell, and NK cell) than those obtained
from healthy donors and lower proportions of some epithelial cells (ciliated cells and AT2
cells) (Table S2). We quantified the expression of each gene in the specific cell types based
on their percentage of gene-expressing cells and their average expression (Figure 2a,b;
Tables S3 and S4).

(a) (b)

Figure 1. Bronchoalveolar landscapes in healthy donors and COVID-19 patients. (a) Uniform
Manifold Approximation and Projection (UMAP) presentation of 11 major cell types and associated
clusters in BALFs from healthy donors. Healthy cell clusters are annotated with a numeric number
and assigned to a cell type. These cell types include club cells, ciliated cells, alveolar epithelial
type 1 cells (AT1), alveolar epithelial type 2 cells (AT2), B cells, T cells, natural killer cells (NK),
basophil/mast cells, macrophages/monocytes, dendritic cells, and endothelial cells. (b) UMAP
presentation of 7 major cell types and their associated clusters in BALFs from COVID-19 patients.
Infected cell clusters are annotated with a numeric number and assigned to a cell type. Identified cell
types include ciliated cells, alveolar epithelial type 2 cells (AT2), B cells, T cells, natural killer cells
(NK), macrophage/monocyte cells, and dendritic cells.

The expression of experimentally validated SARS-CoV-2 tropism factors (ACE2; NRP1;
CD209; TMPRSS2, 4, and 11A; CTSL; FURIN; IFITM 1, 2, and 3) was profiled in specific
cell types from healthy lungs. The highest proportion of ACE2-expressing cell types was
epithelial cell types (club cells, ciliated cells, AT1, and AT2), and most of the CD209-
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expressed cells were clustered into immune cells (macrophage/monocyte and dendritic
cells) (Figure 2a; Table S3). In contrast with ACE2 and CD209, all healthy lung cell types had
a proportion of cells expressing NRP1 (Figure 2a; Table S3). Our analysis further examined
the co-expression of these receptors and their associated proteases in healthy lungs. ACE2
was preferentially co-expressed with TMPRSS2, 4, FURIN, and CTSL in multiple types of
epithelial cells (Figure 2; Table S3) compared to immune cells, consistent with previous
studies [21,67,68]. CD209 was mainly co-expressed with CTSL and FURIN in dendritic cells
and macrophage/monocyte cells (Figure 2c; Table S4). Likewise, NRP1 was preferentially
co-expressed with CTSL within dendritic cells and macrophage/monocyte cells (Figure 2c;
Table S4). Additionally, we found that IFITM2 and 3 were highly expressed in most lung
cell types, while IFITM1 was only preferentially expressed in natural killer cells and T cells
(Figure 2a). Next, we analyzed the expression profiles of the tropism factors in the lung
cells of COVID-19 patients.

To investigate the effects of virus infection on the expression of tropism factors, the lung
cellular expression landscapes of COVID-19 patients were screened on a cell-type-specific
level (Figure 2b; Table S3). With the infection of SARS-CoV-2, most of the ACE2-expressing
cells were clustered into AT2 and ciliated cells, and the proportion of cells expressing ACE2
was increased in these two cell types seen in infected lungs compared with in healthy lungs
(Figure 2a,b; Table S3). Likewise, the proportion of CD209 in macrophage/monocyte cells
and dendritic cells was increased in the lungs of COVID-19 patients compared to in healthy
lungs (Figure 2a,b). By contrast, the proportion of NRP1-expressing cells was decreased in
most lung cell types in COVID-19 patients (ciliated cells, B cells, T cells, natural killer cells,
macrophages/monocytes, and dendritic cells) compared to the healthy donors (Figure 2a,b;
Table S3). Considering that the entry of SARS-CoV-2 into cells requires the expression of
both receptor and proteases, we next investigated the co-expression of receptors (ACE2,
CD209, and NRP1) with proteases. Consistent with data from healthy donors, we observed
the co-expression of ACE2 with TMPRSS2, 4, FURIN, and CTSL in AT2 and ciliated cells.
However, we observed an increased proportion of cells expressing these ACE2–protease
pairs in each of the cell types in COVID-19 patients’ lungs (Figure 2d; Table S4). Com-
pared to the healthy donors, the proportion of macrophage/monocyte cells expressing
CD209-CTSL and FURIN was increased, whereas the proportion of dendritic cells express-
ing CD209-CTSL was unchanged in COVID-19 patients’ lungs (Figure 2d; Table S4). In
contrast, in macrophage/monocyte and dendritic cells, the proportion co-expressing NRP1
with CTSL and FURIN was reduced in COVID-19 patients’ lungs (Figure 2d; Table S4).
Taken together, the differential co-expression pattern of receptor–protease pairs in lung
cells between healthy donors and COVID-19 patients suggested an enhanced SARS-CoV-2
tropism in AT2 and ciliated cells via ACE2 and macrophage/monocyte cells via CD209
and a reduced SARS-CoV-2 tropism in macrophages/monocytes and dendritic cells via
NRP1 after SARS-CoV-2 infection. For the IFITMs, their expression was increased overall in
SARS-CoV-2-affected lung cells compared to cells from healthy lungs (Figure 2a,b, Table S3).
In summary, the expression level of the tropism factors (Figure 2a,b) and the proportion of
specific cell types co-expressing each pair of receptors and proteases (Figure 2c,d) differed
between the lung cells of healthy donors and those of COVID-19 patients, suggesting that
SARS-CoV-2 altered the TRNs regulating tropism factor expression. These results, com-
bined with the differential expression of these tropism factors in each cell type, prompted us
to construct TRNs to reveal the regulation of these tropism factors at the cell-type-specific
level. We then compared the differential topology of the cell-type-specific TRNs between
healthy lung cells and lung cells infected with SARS-CoV-2.
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Figure 2. Dot plots showing the expression of SARS-CoV-2 tropism factors in 11 cell types from the
BALFs of healthy donors (a) and 7 cell types from the BALFs of COVID-19 patients (b). These factors
include entry receptors (ACE2, CD209, and NRP1; left), entry proteases (CTSL, FURIN, TMPRSS2,
4, and 11A; middle), and interferons (IFITM1, 2, and 3; right). The values of raw expressions were
normalized and log-transformed. The size of the dots represents the proportion of cells in each cell
type with the expression of each gene, while the color indicates the mean expression of each gene.
Dot plots illustrate the co-expression of each receptor–protease pair in 11 cell types from the BALFs of
healthy donors (c) and 7 cell types from the BALFs of COVID-19 patients (d). These receptor–protease
pairs include ACE2-CTSL, FURIN, TMPRSS2, 4, and 11A (left); CD209-CTSL, FURIN, TMPRSS2,
4, and 11A (middle); and NRP1-CTSL, FURIN, TMPRSS2, 4, and 11A (right). The size of the dots
represents the proportion of cells in each type of co-expressed gene of each receptor–protease pair.

3.2. Cell-Type-Specific Trns Affecting Tropism Factors

Three key steps were used for the construction of cell-type-specific TRNs for healthy
lung cells and lung cells from COVID-19 patients (Figure 3). In Step 1 (single-cell gene
expression analysis), we used the integrated scRNA-seq of lung samples obtained from
16 healthy donors [39,42–44] and 16 COVID-19 patients [39–41], then used Seurat’s scRNA-
seq toolbox to categorize the healthy lung cells into 11 cell types and the COVID-19 patient
cells into 7 cell types [45,48]. In Step 2 (TRN inference), we used 1639 human TFs [69]
as predefined regulators and 11 experimentally validated SARS-CoV-2 tropism factors as
targets for inferring TF–target regulatory networks via the regression tool GRNboost2 [54].
GRNboost2 infers TF–target regulatory networks based on the gene co-expression pattern
for each cell type. GRNBoost2 adopts the GENIE3 algorithm, which was the winner of
the DREAM5 network challenge, and uses gradient boosting to reduce the time needed to
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infer a TRN [54]. The direct regulators of the tropism factors are identified by incorporating
each target and its 50 top co-expressed TFs as bottom-layered regulators. The network is
then expanded by identifying the 50 top co-expressed TFs with bottom-layered regulators
as the top-layered regulators. We filter out the indirect TF–target interaction from the
candidate regulon based on the ChIP-Seq data and TF-motif binding data [55] (Table S5).
The regulatory direction (activation or repression) of each TF–target is defined based on
the public experimental data sources for TF overexpression, TF knock out, and TF knock
down, with the data ordered as follows: overexpression > knock out > knock down [56–58]
(Table S5). For the TF–target pairs for which there is no experimental evidence, we used in
silico correlation analysis to elucidate their regulatory direction. Finally, 18 two-layered
TRNs were constructed for the 11 major lung cell types of the healthy donors and the
7 major lung cell types of the COVID-19 patients (Figures S1–S26). In Step 3 (network-based
drug repositioning), we quantified the topological features of cell-type-specificTRN across
healthy donors and COVID-19 patients via differential network analysis, then used these
features to identify the hub TFs that were important for regulating tropism factors in the
cells of healthy individuals and COVID-19 patients. The drugs affecting the expression and
activity of the identified hub TFs were used as candidates for mitigating the tropism of
SARS-CoV-2.

Figure 3. Methodology flowchart. In Step 1, the scRNA-seq of the BALF samples obtained from
healthy donors and COVID-19 patients was integrated to identify each cell’s identity and analyze the
gene expression within each cell type. In Step 2, the cell-type-specific gene expression was used to
reconstruct the transcriptional regulatory network. In Step 3, the roles of TFs were evaluated in the
TRNs of each cell type across healthy individuals and SARS-CoV-2 patients, thus providing a clue for
repurposing drugs for use in COVID-19 treatment.

3.3. Identification of TFs Directly Regulating Tropism Factors within Each Cell Type

The TRNs from healthy cell types were analyzed and compared to determine how TFs
regulate the tropism factors expressed in each healthy cell type. In total, we identified 144
TF–target relationships, including 49 unique TFs directly targeting 11 tropism factors from
the networks across all healthy cell types (Table S5; Figure 4a; Figures S1a, S2a, S3a, S4a,
S5a, S6a, S7, S8, S9, and S10). We first checked whether the canonical receptor–protease
pair ACE2 and TMPRSS2 were directly regulated by a single TF in each specific cell type.
Network analyses showed that no TFs had this ability, which suggested that ACE2- and
TMPRSS2-mediated SARS-CoV-2 cellular tropism may depend on cooperative regulation
by multiple TFs. As such, TMPRSS2 was directly activated by EGR1 and ACE2 was directly
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activated by c-FOS and repressed by FOXA1 in AT2 cells (Figure 4a). In addition, ACE2
was directly regulated by STAT1 and TMPRSS2 was directly activated by FOXA1 in ciliated
cells (Figure S2a). Of these four TFs (EGR1, c-Fos, FOXA1, and STAT1), STAT1 and FOXA1
have been shown to regulate ACE2 or TMPRSS2 [70–72]. STAT1 is required for SARS-CoV-1
infection [73] and enhances ACE2 expression in mammary tissue during pregnancy [71].
FOXA1 is driven by the androgen receptors and regulates the expression of TMPRSS2
and ACE2 in prostate cancer cells [74,75]. Together with previous studies showing that
SARS-CoV-2 virus infection induces EGR1 expression [76] and activates c-FOS via MAPKs
using its spike protein [77], we hypothesized that SARS-CoV-2 infection may enhance the
tropism of AT2 cells through regulatory cascades of EGR1 and c-Fos and the tropism factors
ACE2 and TMPRSS2.

(a)

(b)

Figure 4. Transcriptional regulatory networks controlling SARS-CoV-2 tropism factors in AT2. In-
ferred regulation for tropism factors for AT2 in healthy donors (a) and in COVID-19 patients (b) based
on an integrated analysis of in silico and experimental data. The orange nodes represent tropism
factors, the purple nodes represent TFs that directly regulate tropism factors, and the gray nodes
represent the TFs that indirectly regulate tropism factors. Direct regulations for tropism factors are
differentiated between transcriptional activation (delta shape arrows), repression (T shape arrows),
and undetermined (square shape arrows).

We then asked the question of whether any of the TFs were able to directly regulate
any receptor–protease pairs in the individual healthy cell types. Three TFs—CEBPA in
monocytes/macrophages (Figure S4a), c-Fos in endothelial cells (Figure S10), and STAT1 in
monocytes/macrophages (Figure S4a) were identified to have this ability. Of endothelial
cells co-expressing any receptor–protease pairs, almost 50% of these cells co-express NRP1
and CTSL, which are directly targeted by c-Fos (Table S4). Of monocyte/macrophage cells
co-expressing any receptor–protease pairs, about 79% of these co-express NRP1 and CTSL
(STAT1 target), and only 4% of these cells co-express NRP1 and TMPRSS2 (CEBPA target).
Our results suggested that the regulons c-Fos-NRP1-CTSL and STAT1-NRP1-TMPRSS2
have the potential to regulate tropism in monocyte/macrophage cells (Figure S4a) and
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endothelial cells (Figure S10a), respectively. Additionally, NRP1-CTSL was also identified as
the major co-expressed receptor–protease pair in AT1 cells (Figure S8), B cells (Figure S1a),
basophil/mast cells (Figure S7), club cells (Figure S9), dendritic cells (Figure S3a), NK cells
(Figure S5a), and T cells (Figure S6a). Instead of regulating the NRP1-CTSL pair using a
single TF, our networks showed that multiple TFs coordinate to regulate NRP1 and CTSL
in these healthy cell types, suggesting the robustness of these TRNs in cell types controlling
the cellular tropism of SARS-CoV-2.

To further understand how each type of lung cell transcriptionally regulates its cellular
tropism after SARS-CoV-2 infection, we analyzed and compared the TRNs of different
cell types of COVID-19 patients. From the TRNs, we could identify 35 unique TFs which
directly regulate 10 tropism factors through 119 TF–target relationships across patient lung
cells (Table S5; Figure 4b; Figures S1b, S2b, S3b, S4b, S5b, and S6b). Of these 35 TFs, 10 TFs
(SPI1, USF1, NR2F6, KLF6, HNF4G, MAFB, IRF1, NR1H2, ZNF274, and ELF3) were not
determined to regulate tropism factors in the TRNs of healthy cell types. We then identified
what tropism factors were directly regulated by these 10 TFs in the lung cell types of COVID-
19 patients. Our networks showed that SPI regulates NRP1 and FURIN, HNF4G regulates
TMPRSS2, ZNF274 regulates TMPRSS4, and the last seven TFs only target NRP1 in either
epithelial cells (AT2, ciliated cells) or immune cells (dendritic, monocytes/macrophages, NK
cells, and T cells) (Table S5). These TFs may be responsible for the dynamic NRP1 mRNA ex-
pression change in the lungs of severely ill COVID-19 patients [78]. However, none of these
10 COVID-19 patients TRNs’ TFs regulate receptor–protease pairs in the same cell type from
COVID-19 patients. We then queried whether the individual TFs could directly regulate
receptor–protease pairs in each of these cell-type-specific TRNs of COVID-19 patients. As a
result, five TFs were identified with this regulatory role, including HIF1A, which inhibits
ACE2 and FURIN in ciliated cells and monocyte/macrophage cells (Figure S4b); c-Jun,
which regulates NRP1 and CTSL in dendritic and monocyte/macrophage cells (Figure S4b)
and CD209 and CTSL in T cells (Figure S6b); c-Fos, which regulates NRP1 and CTSL in
monocyte/macrophage cells (Figure S4b); STAT1, which regulates NRP1 and TMPRSS2
in T cells (Figure S6b); and TFAP2C, which regulates CD209 and TMPRSS2 in AT2 cells
(Figure 4b). It is noteworthy that c-Jun and c-Fos form an AP-1 early response transcription
factor that could be activated by the SARS-CoV-1 nucleocapsid protein [79]. Given the
similarity of the sequence identity between SARS-CoV-2 and SARS-CoV-1 in nucleocapsid
protein [80], SARS-CoV-2 nucleocapsid protein might also activate the AP-1 early response
transcription factor, as SARS-CoV-1 nucleocapsid protein does. With the direct activation
of AP-1 (c-Jun and c-Fos) in NRP1–CTSL pairs, monocyte/macrophage cells may be more
susceptible to SARS-CoV-2 infection in COVID-19 patients compared to healthy donors. To
further understand the transcriptional regulation of the SARS-CoV-2 tropism between lung
cell types in healthy and infected states, we quantitatively measured the differential role of
TFs in healthy-donor TRNs versus COVID-19-patient TRNs.

3.4. Centrality Analysis for Predicting TFs That Are Important in Host Cell Tropism

The regulatory importance of each TF (node) in each network can be evaluated through
its centrality (degree, betweenness, closeness, pagerank, and eigenvalues). Knowing the
centrality differences between the cell-type-specific TRNs of healthy donors and COVID-
19 patients would be helpful for screening out the TFs whose regulatory role is mostly
influenced by SARS-CoV-2 infection [36,61]. First, we calculated the centralities of each
common TF in the TRNs of healthy individuals and COVID-19 patients for each cell type.
Next, we subtracted all the centralities of each common TF in the COVID-19 network and
healthy network for the same cell types (AT2, B, ciliate, dendritic, macrophage/monocyte,
T, and NK); the TFs showing increases or decreases in the five centralities were used for
further analysis (Figure 5; Figures S21, S22, S23, S24, S25, and S26). We identified 53 TFs
with positive rewiring (increased centrality change) which were more central in COVID-
19 networks (Table S6) and suggested that these TFs might play more important roles
in regulating the tropism factors after infection with SARS-CoV-2. We identified 48 TFs
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with decreased centralities which were more important in the networks of healthy lung
cells. To test whether our centrality-identified TFs were functionally associated with SARS-
CoV-2 infection, we selected the TFs displaying any of the largest centrality differences
between the networks of healthy individuals and COVID-19 patients and assessed their
characteristics using the existing literature. A total of 16 unique TFs (FOXP1, STAT3, ATF3,
STAT1, SMAD3, ETS1, ETV6, BHLHE40, SPI1, NFKB1, IRF1, RUNX1, MEF2C, RARA,
FOS, CREB5) were characterized for further analysis (Table S7). Of these 16 TFs, 9 TFs
(FOXP1, STAT1, STAT3, ATF3, SMAD3, NFKB1, RARA, FOS, IRF1) have been identified
as potential drug targets for preventing SARS-CoV-2 infection or inhibiting the activity
of SARS-CoV-2 [15,72,81–86], suggesting that centrality analysis could be a useful tool for
identifying TFs from networks regulating tropism factors.

(a)

(b)

Figure 5. Differential network analysis for ciliated cells. Red (blue) nodes represent TFs that show a
significant increase (decrease) in network centralizes from the TRN of healthy donors to the TRN
of COVID-19 patients. These red (blue) nodes are marked in the TRN of healthy ciliated cells (a)
and the TRN of ciliated cells from COVID-19 patients (b). The orange nodes represent tropism
factors, the purple nodes represent TFs that directly regulate the tropism factors, and the gray nodes
represent the TFs that indirectly regulate the tropism factors. Direct regulations of tropism factors
are differentiated between transcriptional activation (delta-shaped arrows), repression (T-shaped
arrows), and undetermined (square-shaped arrows).

4. Discussion

The expression of host tropism factors is used as a molecular indicator for the sus-
ceptibility of lung cells to SARS-CoV-2 [87]. Targeting the transcriptional regulation of
tropism factors has been proposed as a viable treatment strategy to prevent SARS-CoV-2
infection [75]. The single-cell sequence of each lung cell type represents a distinct transcrip-
tional landscape [53]. Therefore, it is necessary to elucidate the transcriptional regulatory
roadmap in each lung cell type, thereby identifying the TFs regulating tropism factors with
the potential to be used as therapeutic targets. We performed a computational analysis
of multiple existing public single-cell sequencing datasets of healthy and SARS-CoV-2
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infected donors’ lung cells and obtained the count matrix depicting the gene abundances
for all single cells. Based on these single-cell data, co-expression modules associated with
SARS-CoV-2 host cell tropism factors were created for each lung cell type for healthy
donors and COVID-19 patients using GRNboost2. Next, the indirect targets were pruned
from these modules based on an available collection of experimentally validated TF–target
interactions. Lastly, the activity and direction of these regulons were determined based on
the effect of TF perturbation on the regulon’s target genes from the public databases. With
these three steps, we established the multiplier hierarchical TRNs targeting tropism factors
in a lung-cell-specific manner, which could help us to answer the questions underlying the
transcriptional regulatory program for host cell tropism.

4.1. Case Study 1: Stat1 Has a Different Regulatory Role for Host Cell Tropism Factors in Healthy
vs. SARS-CoV-2-Infected Donors

SARS-CoV-2 N protein has been reported to suppress phosphorylation and the nuclear
trafficking of STAT1, thus inhibiting the regulatory activity of STAT1 [88]. Based on our
cell-type-specific TRNs, we also identified STAT1 as a direct regulator of tropism factors
in some same lung cell types (ciliated, dendritic, and macrophage/monocyte cells) across
healthy and infected donors. We then checked whether the regulatory effect of STAT1 on
tropism factors was partially diminished in same cell type TRN in healthy and infected
states using the STAT1 regulon, which was scored as “A: high confidence” or “B: likely
confidence”. For healthy donor TRNs, STAT1 directly targets ACE2 in ciliated cells, CTSL
in dendritic cells, and NRP1 and CTSL in macrophage/monocyte cells. In contrast, the
direct regulatory activity of STAT1 towards ACE2, NRP2, and CTSL could not be detected
in the same cell types’ TRNs from SARS-CoV-2 patients. The results suggest that our TRNs
could be used to identify SARS-CoV-2 infection-affected TFs that target tropism factors,
providing additional insights for subsequent experiments that extend our knowledge of
the virus–host interactions of SARS-CoV-2.

4.2. Case Study 2: Differential Centrality Analysis Can Be Used to Identify Important TFs Whose
Expression Is Not Differentially Changed between Healthy and SARS-CoV-2-Infected Donors

We applied the specific centrality measures for each TF in the TRNs and identified the
TFs whose regulatory role in cell tropism became more pronounced after SARS-CoV-2 infec-
tion based on the centrality differences of each TF between healthy donors and COVID-19
patients. Traditionally, differential gene expression analysis between different conditions
can help to uncover important regulatory genes [89]. Here, we query whether TFs with an
increased/decreased network centrality between healthy and COVID-19 cell-type-specific
networks have a corresponding increased/decreased transcriptional expression in each cell
type from healthy to SARS-CoV-2-infected lungs. To answer this question, we took the 16
TFs displaying the largest centrality differences between the healthy and COVID-19 net-
works of the same cell types (FOXP1, STAT3, ATF3, STAT1, SMAD3, ETS1, ETV6, BHLHE40,
SPI1, NFKB1, IRF1, RUNX1, MEF2C, RARA, FOS, CREB5) for further analysis. We found
that the centrality and transcriptional expression of most TFs in each cell type were con-
sistently increased/decreased from healthy to COVID-19 patients (Tables S7 and S8), sug-
gesting that the identification of relative changes in the centrality of single-cell regulatory
networks can be used as an alternative to differential expression analysis to classify the
biological importance of genes. However, the centrality of eight unique TFs (three of five
TFs for B, one of four TFs for ciliated, one of four TFs for macrophage/monocyte, three of
four TFs for NK, and one of four TFs for T cells) was not changed in the same direction as
expression (centrality decreased with gene expression not decreased; centrality increased
with gene expression not increased) (Tables S7 and S8). We hypothesized that this incon-
sistent change between the centrality and expression of these TFs may be attributed to
the effect of SARS-CoV-2 virus infection on these TFs at other regulatory levels, such as
protein modification. A literature-curated analysis was undertaken to test whether these
eight TFs were modified at the protein level. Six TFs (SMAD3, ETS1, RARA, CREB5, FOS,
ETV6) could be phosphorylated [90–95], and two TFs (BHLHE40 and FOXP1) could be
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sumoylated [96,97]. It is noteworthy that the phosphorylation of SMAD3 and FOS could
be induced by hepatitis virus infection [90,94], as our results supported. In summary, our
differential analysis suggested that the transcriptional regulation of SARS-CoV-2 tropism
differs between the lungs of healthy individuals and COVID-19 patients within the same
cell types. Our results highlight important TFs present within the cells of healthy individu-
als and COVID-19 patients and further highlight known candidate drugs that target these
central TFs.

4.3. Case Study 3: Hub Tfs Identified by Network Centrality Analysis Could Be Used as Targets for
Drug Repositioning to Prevent SARS-CoV-2 Infection and Transmission

We first ranked each TF within each TRN using its cumulative centrality, which is a
combination of degree, betweenness, and closeness (Materials and Methods). The TFs with
the top cumulative centrality were then selected as the master regulators in each of the TRNs
(Table S9). From 11 healthy cell-type TRNs and 8 COVID-19 cell-type TRNs, we identified 8
unique central TFs, FOXP1, RUNX1, FOS, SMAD3, JUN, NFKB1, PPARG, and STAT3. Only
the top TF, FOXP1, was specifically identified in the TRNs of healthy lung cell types, which
includes AT1 (Figure S11), AT2 (Figure 6a), club cells (Figure S12), NK cells (Figure S13a),
and T cells (Figure S14a). In contrast, many TFs were identified specifically as the top TFs
in COVID-19 patients’ lung cell types, including SMAD3 in ciliated cells (Figure S15b),
NFKB1 and JUN in dendritic cells (Figure S16b), PPARG in macrophage/monocyte cells
(Figure S17b), and STAT3 in T cells (Figure S14b). In addition, we also identified two
TFs serving as the top TFs in the lung cell type TRNs from both healthy individuals and
COVID-19 patients. The two TFs were RUNX1 in the TRNs of healthy B cells (Figure S18a),
basophil/mast cells (Figure S19), dendritic cells (Figure S16a), macrophage/monocyte cells
(Figure S17a), NK cells (Figure S13a) and COVID-19 patients’ AT2 cells (Figure 6b) and B
cells (Figure 3b) and FOS in the TRNs of healthy ciliated (Figure S15a) and endothelial cells
(Figure S20) and COVID-19 patients’ ciliated cells (Figure S15b) and NK cells (Figure S13b).
Only FOS in ciliated cells (Figure S15) and RUNX1 in B cells (Figure S18) remained as the
top TFs in the TRNs of the same cell type before and after SARS-CoV-2 infection.

We then screened candidate drugs targeting these eight top TFs based on the Drug
Repurposing Hub [62]. A total of 67 drugs in clinical and launch stages (Table S10) could
be identified for use in 6 of these 8 TFs (FOS, SMAD3, JUN, NFKB1, PPARG, and STAT3),
and no drugs were identified for FOXP1 and RUNX1. We then queried the Probes & Drugs
portal [64] to identify the compounds targeting FOXP1 and RUNX1. No compound was
identified for FOXP1, and eight compounds targeting RUNX1 were identified (Table S10).
RUNX1 was the only gene targeted by CBFβ Inhibitor. CBFβ Inhibitor has been shown
to alter the ability of RUNX1 to bind to target genes and alter their expression, thereby
inhibiting the growth of leukemia and breast cancer cell lines [98]. Given that RUNX1 is
the top TF for the TRNs of many cell-types, including AT2 cells, the repurposing of the
CBFβ Inhibitor to affect RUNX1 may be beneficial for preventing the SARS-CoV-2 infection
and transmission. In addition to AT2, ciliated cells are also the primary cells infected by
SARS-CoV-2 [99,100]. FOS, as the top TF from healthy ciliated cell TRN, is targeted by the
launched drug ephedrine (Table S10). Ephedrine and its functional analog pseudoephedrine
have been used for treating patients with severe COVID-19 pneumonia [101,102]. However,
except for FOS, ephedrine regulates 19 other genes; thus, more extensive studies are needed
to elucidate the role of FOS and the effect of ephedrine on the treatment of COVID-19
patients. Regarding the TRN of COVID-19 patients’ ciliated cells, its top TF SMAD3 was
only identified to be targeted by SIS3. SIS3 inhibits the activity of SMAD3, and it has been
shown to have a protective effect on SARS-CoV-2-induced death [103]. We then investigated
whether the rest of these 67 drugs specifically target one of the TFs without having any effect
on the other genes. We identified T-5224 specifically targeting c-Jun, 15 drugs specifically
targeting PPARG, and 8 drugs specifically targeting STAT3 (Table S10). Additionally, we
found that bardoxolone-methyl could affect PPARG and STAT3 together without affecting
other genes. Given that Jun, PPARG, and STAT3 are the top TFs from COVID-19 patients’
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TRNs, these identified drugs may be candidates for reducing SARS-CoV-2 infection for
these cell types.

(a)

(b)

Figure 6. Identification of master TFs in AT2. Dotted circled nodes represent the identified master
TFs with the highest hybrid-network centrality. (a) FOXP1 is the predicted master TF for healthy
donors. (b) RUNX1 is the predicted master TF for COVID-19 patients.

4.4. Limitations of the Present Approach

Firstly, the lung cell types are not completely the same in healthy and SARS-CoV-2-
infected donors. Given that SARS-CoV-2 infection can result in the death of lung cells,
particularly for several epithelial cell types, such as AT1 cells, club cells, and endothelial
cells [104], we could not construct TRNs for all lung cell types and compare the TRNs
between healthy and infected donors in our analyses. Secondly, our network construction
stochastic algorithm could not guarantee achieving exactly the same results for independent
runs on the same input data due to the stochastic nature of the inference approach. The
inference approach, the GRNBoost2 algorithm (Step 2 of the Results Section: “Cell-type-
specific TRN affecting tropism factors”), is a tree-based stochastic algorithm that uses
repeated random samplings of genes to model the expression of target genes for the sets of
TFs [105]. Therefore, each regulon composed of TF and target genes might slightly differ
between each independent run. We generally expected to achieve consistent results from
run to run by averaging the predictions of single regression trees using the gradient boosting
machine (GBM) [106]. Thirdly, we employed the information of the TF–target interactions
for 1541 human TFs to annotate the direct regulation and pruning of false positives in our
predicted single-cell TRNs [55]. This was achieved by sacrificing the predictive power of the
TRN models if SARS-CoV-2 could induce a TF–target interaction which was not included
in these known TF–target interactions, in which case these regulons would be classified as
false negatives in the TRN construction. Fourthly, our pipeline could not infer interactions
affected by post-transcriptional regulation. Our GRN boost 2 network inference was based
on the principle that if a TF regulates target genes, a change in TF expression will affect the
expression of its target genes. However, if the regulatory activity of one TF is not controlled
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based on its expression but relies on post-translational modifications, such as dimerization
with another TF or protein modifications such as phosphorylation, our pipeline could not
characterize this type of regulon.

5. Conclusions

Overall, this study tried to enrich the knowledge of the transcriptional regulation of
SARS-CoV-2 tropism in human lungs by constructing the cell-type-specific TRNs of healthy
donors and COVID-19 patients. Our studies comprehensively investigated the expression of
11 tropism factors for 11 healthy lung cell types and 7 cell types from COVID-19 patients. We
then integrated co-expression analysis and experimentally validated TF–target information
to construct the TRNs regulating these 11 tropism factors in each lung cell type. A total
of 11 healthy cell type TRNs and 7 COVID patients’ TRNs were established to visualize
the transcriptional regulatory cascades used for activating or repressing the expression of
tropism factors. Our differential network analysis elucidated the altered regulatory role of
TFs in the same cell types in healthy and SARS-CoV-2-infected states which are responsible
for the expression of differential tropism factors. We screened out the key regulators from
each TRN and repurposed the drugs targeting these regulators for the potential treatment
of SARS-CoV-2 infection. The pipeline described here can also be used to understand the
effects of other virus perturbation on cell regulatory networks.
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TFs in B cells; Figure S19: Identification of master TFs in healthy basophil/mast cells; Figure S20:
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B cells; Figure S22: Differential network analysis for ciliated cells; Figure S23: Differential network
analysis for dendritic cells; Figure S24: Differential network analysis for macrophage/monocyte
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and COVID-19 patients; Table S3: Gene expression analysis for the detected cell types in healthy
donors and COVID-19 patients; Table S4: Co-expression analysis for the detected cell types in healthy
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simultaneously alter in TRNs from healthy state to SARS-CoV-2 affected state; Table S7: The list of TFs
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