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HIGHLIGHTS

e Using a U-Net-based pipeline, we
developed a computational tool called
CardioCount that allows for objective and
consistent scoring of nuclei counts in
microscopic images of cardiac tissue.
CardioCount is available to run either
through a Google Colab notebook or
locally by downloading from GitHub.

e We used CardioCount to determine
whether reduced capillary density in the
failing heart is associated with CEC cell
loss or CM hypertrophy. We found that
CM and CEC nuclear density
proportionally decrease in the failing
heart, suggesting that vascular
rarefaction and CM hypertrophy are inter-
related.

e We used CardioCount to confirm prior
work suggesting the cardiac cell cycling in
the human heart is increased with
mechanical unloading. However, we did
not observe any change in cycling rates of
CMs or CECs after LVAD placement.

e When cycling was present in failing
hearts, we found that individuals with
higher levels of CM cycling also had
higher levels of CEC cycling, suggestive of
coupled growth of CMs and CECs in the
adult human heart.
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SUMMARY

Ithough the innate regenerative capacity of

the mammalian heart is limited, multiple

groups have identified a low, but present,
level of cardiomyocyte (CM) turnover in the adult hu-
man heart."* While such a low level of cycling has
largely been considered insignificant, recent genetic
ablation experiments in adult mice suggest that rare
cycling CMs promote functional recovery after
injury.” However, the impact of CM cycling on human
cardiovascular outcomes is unknown.

Elegant transgenic, fate-mapping methods have
been developed to trace and quantify CM prolifera-
tion in adult mice and zebrafish.>® However, such
methods are not feasible for assaying CM cycling in
the human heart. Traditional methods to quantify
cycling cells from human tissue sections require
manual curation of microscopic images. However, for
low-frequency events, such as CM cycling, manual
methods are often insufficient. Because of the sheer
labor required to score thousands of images, manu-
ally curated assessments often lack the sensitivity to
identify subtle phenotypes and could be subject to
biases if readers are not sufficiently blinded. Not
surprisingly, there can be wide variance in the fre-
quency estimates of rare events such as CM cycling
from lab to lab.° A potential solution is to apply
automated image segmentation routines to score mi-
croscopy images more quickly, reproducibly, and
objectively. Once computationally prohibitive, better
computing power has reinvigorated computer vision
by enabling deep learning methods. Deep learning has

The adult mammalian heart harbors minute levels of cycling cardiomyocytes (CMs). Large numbers of images
are needed to accurately quantify cycling events using microscopy-based methods. CardioCount is a new deep
learning-based pipeline to rigorously score nuclei in microscopic images. When applied to a repository of
368,434 human microscopic images, we found evidence of coupled growth between CMs and cardiac endo-
thelial cells in the adult human heart. Additionally, we found that vascular rarefaction and CM hypertrophy are
interrelated in end-stage heart failure. CardioCount is available for use via GitHub and via Google Colab for
users with minimal machine learning experience. (J Am Coll Cardiol Basic Trans Science 2024;9:674-686)
© 2024 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). device
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subsequently been widely applied to various appli-
cations in biology, including image segmentation."
However, these image analysis tools, although high-
ly accurate, can be sensitive to imaging conditions and
often require significant computational resources.

To address these issues, we developed Car-
dioCount, a deep learning routine to score CM cycling
in the human heart. CardioCount is a U-Net-based
deep learning model with a ResNet50 backbone that
was previously utilized to identify solar panels from
drone imagery." CardioCount identifies nuclei from
antibody-labeled fluorescent images and can coloc-
alize nuclear objects from multiple image channels.
Inspired by the DeepLearning4Mic project, the soft-
ware can run on Google Colab’s cloud resources and
score thousands of images with few local computa-
tional tools."”” We show that CardioCount is highly
versatile and can be adapted to different image
acquisition setups and to different species via trans-
fer learning. To demonstrate the functionality of our
deep learning model, we used CardioCount to assay
10,305 mm? of human cardiac tissue obtained from
patients with and without end-stage heart failure
(HF), including some who received left ventricular
assist devices (LVADs). Using this tool, we confirm
that loss of capillary density marks end-stage HF, but
vascular rarefaction results from the proportional
changes of cardiac endothelial cells (CECs) and CMs.
Additionally, we demonstrate that as in zebrafish and
mice, CM cycling is coupled with CEC cycling in the
human heart.

The authors attest they are in compliance with human studies committees and animal welfare regulations of the authors’
institutions and Food and Drug Administration guidelines, including patient consent where appropriate. For more information,

visit the Author Center.
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network
FN = false negative
FP = false positive

HF = heart failure

TP = true positive
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CEC = cardiac endothelial cell

CNN = convolutional neural

LVAD = left ventricular assist

PBST = phosphate-buffered
saline and Tween
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METHODS

HUMAN CARDIAC SAMPLES. Human tissue samples
were obtained from the Duke Human Heart Re-
pository.”® Heart tissue was collected from unused
donor hearts without HF (control hearts), from pa-
tients with end-stage HF who underwent LVAD im-
plantation (pre-LVAD), and from LVAD recipients
who underwent LVAD explantation (post-LVAD).

HISTOLOGY AND IMMUNOSTAINING. Cryosections
of fresh, frozen, human cardiac tissue were fixed with
4% paraformaldehyde, washed and permeabilized
with 0.1% Tween (phosphate-buffered saline and
Tween [PBST]), and subjected to heat-induced anti-
gen retrieval with citrate buffer. After additional
washing with PBST, the samples were blocked with
5% bovine serum albumin for an hour and incubated
overnight with primary antibodies. Samples were
then washed with PBST and incubated with second-
ary antibodies and DAPI (1:5,000) for 1 hour. Cry-
osections from neonatal mouse hearts were processed
as previously described.'* Primary antibodies used
for this work included: anti-PCM1 (Sigma-Aldrich,
HPA023370, 1:100); anti-Erg (Abcam, ab92513, 1:25);
anti-CD31 (BD Bioscience, 553370, 1:100), anti-Ki67
(Thermo Fisher Scientific, 4-5698-82, 1:100), anti-
Tnnt (Developmental Studies Hybridoma Bank, CT3,
1:25), and anti-Cre (Cell Signaling Technologies,
15036, 1:50). Secondary antibodies were conjugated to
Alexa-488 (Invitrogen, A21208, 1:1000), Alexa-594
(Invitrogen, A11037, 1:200), Alexa-633 (Invitrogen,
A21052, 1:200), or Alexa-647 (Invitrogen, A21472,
1:200). To ensure quality control within each staining
batch, a human colon tissue sample was included as a
positive control for anti-Ki67 immunostaining.

MICROSCOPY. Stained human tissue samples
were imaged with a Zeiss CSU-X1 spinning disk
confocal microscope or a Zeiss LSM 510 confocal mi-
croscope. Stained murine sections were imaged with
a Zeiss CSU-X1 spinning disk confocal microscope, a
Zeiss Axiolmager M1 epifluorescent microscope, or a
Zeiss LSM 510 confocal microscope.

DEVELOPMENT OF CardioCount. Images (N = 1,333)
stratified across all patients were manually curated
for ground truth by generating ground truth masks
with Fiji/ImageJ (330 images for the Erg model, 330
images for the PCM1 model, and 667 images for the
Ki67 model).” Ten percent of the annotated data set
was set aside for testing, 70% was used for training,
and the last 20% was held for validation and hyper-
parameter selection. Raw RGB images (red: Erg or
PCM1 for cell identity of CECs or CMs respectively,
green: Ki67 for cell cycling, blue: DAPI for nuclei)
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were converted to 2 channel images (either RB to
train the Erg and PCM1 models, or GB to train the Ki67
model). Two channel images and their corresponding
ground truth masks were used to train a U-Net-based
convolutional neural network (CNN), as described
previously.'+

After training CNNs for each marker, the entire
data set of 368,434 images was passed through each
model. The probability map outputs from the CNN for
these images were converted to object maps through
a postprocessing pipeline by binarizing the images,
grouping positive pixels into objects, and assigning a
confidence score to each object. An object confidence
threshold score was used to classify each object as a
true positive (TP), false positive (FP), or false negative
(FN) based on an intersection over union of 0.2
calculated as TP/(TP+FP+FN). Precision (TP/
[TP+FP]), and recall [TP/(TP+FN)] were used to
determine the F1 score (2TP/[2TP+FP+FN]), which
was used to measure model accuracy and was calcu-
lated for each set of hyperparameters on the valida-
tion set. Hyperparameters that were tuned included:
architecture type, learning rate, class weight ratio,
loss weights, and the ratio between loss weights.
Final models were selected by the highest F1 score on
the validation set. To colocalize nuclear objects and
identify double-positive cells, nuclei of Ki67" cells
were filtered by the presence of a centroid of an Erg or
PCM1 nucleus within the borders of the Ki67" nu-
cleus. All code scripts are available on GitHub.

MURINE CARDIAC SAMPLES. Cardiac tissue from
neonatal mice was collected and processed as previ-
ously described.'* For AAV experiments, neonatal ICR
mice were intraperitoneally injected with 10" vg of
AAV.cc47 encoding Cre recombinase carrying
PAAV.cTNT.iCre."”'® Neonatal hearts were collected
9 days after injection. pAAV.cTNT.iCre was a gift from
William Pu (Addgene plasmid # 69916).

ADAPTATION OF CardioCount TO MURINE CARDIAC
IMAGES. CNNs for murine cardiac images were
initially trained using optimized hyperparameters
and model weights from the corresponding human
data set. A total of 50 murine images were annotated
and used as input. Five images were held out for the
test set, while the training and validation sets were
split in a 7:2 ratio. For transfer learning, a learning
rate sweep was performed for the encoder (1E-2, 5E-3,
2.5E-3, 1E-3, 5E-4, 2.5E-4, 1E-4, and 5E-5). The
learning rate for the decoder was set as 10 times that
of the encoder. Following the learning rate sweep, a
class weight ratio sweep was performed with various
background-to-foreground ratios (1:500, 1:250, 1:100,
1:50, 1:25, 1:10, 1:5, 1:2, 1:1, and 2:1). Postprocessing
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was done as described for the human nuclear seg-
mentation pipeline. The optimal model on the vali-
dation set was then run on the testing set for the
F1 statistics.

DEVELOPMENT OF AREA SEGMENTATION PIPELINE.
To compute tissue area for nuclear density calcula-
tions, we developed an area calculation algorithm
that calculates percent tissue coverage, defined as the
number of pixels covered by tissue divided by the
total number of pixels in the image. Segmentation
and calculation of percent tissue coverage in images
were calculated using an algorithm developed using
the scikit-image, NumPy, and OpenCV libraries in
Python.'®' First, images were normalized by multi-
plying pixels by 255 and dividing by the 95th
percentile of the pixel in the thresholded image, un-
less the image was considered a background image
(more than 97% of pixels are near black). A series of
dilation, area closing, binary erosion, area opening,
binary dilation, binary erosion, area opening, and
area closing was used in sequence to obtain the
segmented image. Human verification of a set of
random samples was conducted to ensure the areas
calculated were appropriate.’® !

STATISTICAL ANALYSIS. Continuous data are pre-
sented as mean + SD or median with 25th and 75th
percentiles (Q1-Q3). Statistical analyses between un-
paired data were conducted using Welch’s t-test for
normally distributed data or a Wilcoxon rank sum test
otherwise. Shapiro-Wilk’s test was used to evaluate
data distribution. Categorical data are presented as
count (%) and were analyzed using the Fisher exact
test. Paired data were analyzed by fitting generalized
additive models with random effects. Pearson’s cor-
relation coefficient (r) was used to evaluate the as-
sociation between continuous variables using linear
regression. If data were not log scalable due to zero-
valued datapoints, a small positive constant was
added to each datapoint to ensure normally distrib-
uted axes after log transformation. Statistical ana-
lyses and plot generation were performed in R
software (R Project for Statistical Computing) using
the dplyr, ggpubr, ggplot2, and mgcv packages.”” >
An a priori P value <0.05 was used to determine
statistical significance.

STUDY APPROVAL. All human subjects research was
approved by the Duke University Medical Center
Institutional Review Board (Pro00005621). Informed
consent was obtained for all subjects. All animal
studies were approved by the Duke University Insti-
tutional Animal Care and Use Committee.
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RESULTS

A DEEP LEARNING MODEL TO SCORE CYCLING
CELLS IN THE HUMAN HEART. Based on the low rates
of CM cycling previously reported, we reasoned that
large amounts of cardiac tissue would need to be
assayed to determine whether intrinsic rates of CM
cycling vary between individuals. We leveraged the
Duke Human Heart Repository, a bank of cardiac tis-
sue specimens that contains tissues from individuals
with various etiologies of HF as well as nonfailing
cardiac tissue samples.”®> Baseline characteristics
for the population evaluated are provided in
Supplemental Table 1. We assayed a total of 12 non-
failing control hearts and 32 hearts from patients
undergoing LVAD implantation for end-stage HF
(Supplemental Table 1, Supplemental Figure 1). Pa-
tients with HF were age matched to patients without
HF, with an average age of 54.1 £+ 9.7 years for the 32
HF patients and 53.6 + 8.7 years for the patients
without HF. In general, patients with HF had a lower
left ventricular ejection fraction (17.5% [10.0%-
20.0%] Vs 55.0% [55.0%-62.5%]; P < 0.001, Wilcoxon
rank sum test), had larger left ventricular diameters
as measured by left ventricular internal end-diastolic
diameter (6.60 [5.90-6.85] cm vs 4.50 [4.48-4.58] cm;
P < 0.001, Wilcoxon rank sum test), and were more
likely to have type II diabetes mellitus (56.3% Vs
8.3%; P = 0.006, Fisher exact test). On average, pa-
tients with LVADs were diagnosed with HF 4.9 4+ 5.8
years before LVAD implantation.

From each individual, we immunostained cry-
osections with PCM1 to mark CM nuclei, Erg to mark
CEC nuclei, and Ki67 to mark cycling nuclei.?**?7 In
total, we imaged 83.1 + 36.9 mm? of cardiac tissue per
individual, for a total of 10,305 mm? across 368,434
images. To score such a large number of images, we
developed a customized U-Net-based deep learning
algorithm based on prior work used to identify solar
panels from satellite images (Figure 1)."" Broadly, we
established an approach to identify specific types of
nuclei by colocalization of a cycling marker with a
cell-type specific nuclear marker. We adapted this
framework to develop specific models for resolving
PCM1" CM nuclei, Erg* CEC nuclei, and Ki67" cycling
nuclei. As ground truth for model training and vali-
dation, we manually curated a library of 1,333 images
(330 images for Erg, 330 images for PCM1, and 667
images for Ki67). Seventy percent of each data set was
used for model training, with 20% set aside for vali-
dation and hyperparameter testing and 10% held out
for final model F1 score statistics. Training data were
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FIGURE 1 Generation and Validation of CardioCount
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(A) Diagram of CardioCount's machine learning pipeline for instance segmentation of RGB microscopy images. RGB images were converted to
RB (red--blue channel) images as input to the Erg or PCM1 cell-identity models and GB (green-+blue channel) images as input to the Ki67

cycling model. Probability map outputs were then converted to object maps using a postprocessing script. Lastly, cycling information was
overlayed with cell-identity information by colocalizing nuclear objects. Ki67* nuclei were filtered by the presence of a centroid of an Erg or
PCM1 nucleus within the borders of the Ki67 nucleus. (B) Precision-recall (PR) curves for Erg, PCM1, and Ki67 models using test data (Erg,
PCM1, Ki67). The red data point indicates the optimal machine learning model parameters, as determined by the best F1 score on the
validation image set. (C) Representative application CardioCount to identify cycling cardiomyocytes from human cardiac sections immuno-
stained for PCM1 and Ki67. Object instances of PCM1" nuclei are outlined in the second subpanel; object instances of Ki67 ™" cells are outlined
in the third subpanel, and a PCM17Ki67" double-positive object is outlined in the fourth subpanel. Scale bars are 50 pum. (D) Representative
application CardioCount to identify cycling cardiac endothelial cells from human cardiac sections immunostained for Erg and Ki67. Object
instances of Erg™ nuclei are outlined in the second subpanel; object instances of Ki67" cells are outlined in the third subpanel, and an
Erg*Ki67" double-positive object is outlined in the fourth subpanel. Scale bars are 50 um. CNN = convolutional neural network.
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passed through a U-Net CNN to determine model
weights and to generate probability maps of nuclei
locations. Raw probability maps were then converted
into nuclei objects. Models were optimized based on
precision-recall curves and tuned by sweeping across
hyperparameters for learning rate, loss weights, loss-
weight ratio, and class-weight ratio (Supplemental
Figure 2A). Final models for identifying CM, CEC,
and cycling nuclei achieved F1 scores of 0.85, 0.86,
and 0.89, respectively (Figure 1, Supplemental
Figure 2B).

MYOVASCULAR RATIO IS LARGELY MAINTAINED
DURING DISEASE. HF is a progressive disease,
marked by CM hypertrophy and loss of CMs.
Numerous studies have cited vascular rarefaction, or
the loss of capillary density, as a marker of more
advanced disease.’®3° However, whether this
decrease in capillary density is associated with CEC
loss or CM hypertrophy has yet to be resolved. To
address this outstanding question, we used Car-
dioCount to compare CEC and CM densities from pre-
LVAD implantation HF samples to control samples.
CEC and CM densities were computed by dividing
nuclei counts by tissue areas calculated by a custom
area segmentation pipeline. As expected, based on
the CM hypertrophy known to occur in HF (Figures 2A
and 2B), the density of CM nuclei was decreased by
~33% in samples from patients with HF (135.1 [102.0-
155.5] CM nuclei/mm? vs 201.5 [181.6-229.3] CM
nuclei/mm?; P < 0.001, Wilcoxon rank sum test)
(Figure 2C). When we evaluated CECs, we noted a
similar decrease in nuclear density, with a ~54.8%
decrease in patients with HF compared with control
patients (306.1 + 60.9 CECs/mm? vs 138.2 + 61.2
CECs/mm? P < 0.001, 2-sided unpaired t-test)
(Figure 2D). Based on the overall similarity in this
decline, we compared the ratio of CEC/CM nuclei
across patients. Patients without HF had largely the
same ratio as those with HF (1.45 + 0.46 CECs/CM vs
1.16 + 0.53 CECs/CM; P = 0.123, 2-sided t-test)
(Figure 2E), indicating that vascular rarefaction is
either secondary to CM hypertrophy or due to a
proportional loss of CECs and CMs. However, we
noted a wider spread in the CEC:CM ratio among
patients with HF compared with control patients,
suggesting heterogeneity in the CEC:CM ratio within
HF patients. When we evaluated which clinical fac-
tors might be related to CEC:CM ratio, only N-termi-
nal pro-B-type natriuretic peptide (NT-proBNP)
levels—a marker clinically used to mark ventricular
stress and identify HF patients at high risk*"**—~were
significantly correlated, with a decrease of 0.562
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CECs per CM per doubling of NT-proBNP (r = —0.547;
P = 0.007) (Figure 2F).

MYOVASCULAR DYNAMICS ON LVAD SUPPORT.
LVADs are surgically implanted pumps that improve
survival in patients with advanced HF. Blood is drawn
into the LVAD from the left ventricle through an
inflow cannula and propelled into the aorta, effec-
tively decompressing the left ventricle. In select
patients, LVADs have been associated with reverse
remodeling and recovery of ventricular function.*
Histologically, LVAD support leads to regression of
CM hypertrophy and increased capillary density.>*
Because our samples from the LVAD cohort were
collected at the time of LVAD insertion, we had a
unique opportunity to use CardioCount to evaluate
myovascular dynamics after LVAD support in in-
dividuals by also assaying LVAD explanation sam-
ples from the same individual. We obtained 20
matched pre-LVAD and post-LVAD cardiac tissue
samples from the same patient along with an
additional 5 unmatched pre-LVAD tissue samples and
7 unmatched post-LVAD tissue samples. On average,
sex, age, race, and heart size measured by left ven-
tricular internal end-diastolic diameter were consis-
tent. However, post-LVAD patients compared with
pre-LVAD patients had lower NT-proBNP levels
(3,550 + 4,040 pg/mL vs 11,300 + 14,600 pg/mL)
(Supplemental Table 2).

Consistent with prior work, we found that LVAD
support resulted in an increase in the density of
CM nuclei (126.6 + 39.3 CMs/mm? vs 177.7 + 50.9
CMs/mm?; P < 0.001, 2-sided paired t-test) and the
density of CEC nuclei (138.2 4+ 61.2 CECs/mm? vs 222.1
+ 116.8 CECs/mm?; P = 0.002, 2-sided paired t-test)
(Figures 3A to 3D).>* We did not observe any changesin
CEC:CM ratio with LVAD support (1.16 + 0.53 CECs/CM
vs 1.27 + 0.59 CECs/CM) (Figure 3E).

Although CMs in the postnatal mammalian heart
have largely exited the cell cycle, recent work has
measured a low, but present, rate of CM turnover in
the adult human heart," including a recent report that
the rate of CM cycling increases with LVAD support.*
Thus, we sought to characterize cellular cycling in our
cohort by colocalizing Ki67* nuclei with CECs and CM
nuclei. Overall, we found evidence for rare cycling
CMs and CECs either before or after LVAD support
(Figures 4A to 4D). However, we noted considerable
heterogeneity among patients with regards to CM and
CEC cycling. We have recently described that coupled
expansion of CMs and CECs is required for cardiac
growth and regeneration in neonatal mice.'”* To
determine whether CEC and CM cycling might be
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FIGURE 2 Myovascular Dynamics With HF
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(A and B) Representative images of human cardiac sections from a control patient and a patient with heart failure (HF). Sections in (A) are
immunostained for PCM1 to mark cardiomyocyte (CM) nuclei (yellow), WGA to mark cell membranes (magenta), and nuclei (cyan). Sections in
(B) are immunostained for Erg to mark cardiac endothelial cell (CEC) nuclei (yellow), WGA to mark cell membranes (purple) and nuclei
(turquoise). Insets show a magnified image of a PCM1* CM nucleus and an Erg™ CEC nucleus. Scale bars are 50 um. Arrowheads indicate
double-positive nuclei. (C) Violin plot of CM nuclear density in patients without heart failure (control patients) and with heart failure (HF/
pre-LVAD). ***P < 0.001, Wilcoxon rank sum test. (D) Violin plot of CEC nuclear density in patients without heart failure (control patients)
and with heart failure (pre-LVAD). ***P < 0.001 2-sided t-test. (E) Violin plot of the CEC:CM ratio in patients without heart failure (control
patients) and with heart failure (pre-LVAD). P = 0.13, n.s. = not significant, 2-sided t-test. (F) Correlation of CEC:CM to NT-proBNP levels in
patients with HF. Blue line is best-fit regression line. P = 0.007, Pearson correlation test. LVAD = left ventricular assist device.

coupled in the adult human heart, we regressed CEC
and CM cycling rates for each patient. We found a
modest correlation between CM cycling rate and CEC
cycling rate (r = 0.59; P = 0.002) (Figure 4E), with a
doubling in CEC cycling rate corresponding to a 1.47-
fold increase in CM cycling rate, suggesting that
coupled expansion of CECs and CMs also occurs in
diseased human hearts.

TRANSFER LEARNING ALLOWS CardioCount TO BE
GENERALIZED TO OTHER DATA SETS. Because our
models for CMs, CECs, and cycling cells have the
same underlying architecture and perform similarly

despite different staining morphologies, we reasoned
that our models could be repurposed for additional
applications using transfer learning. We first assayed
the ability to score neonatal mouse hearts, which
have smaller nuclear morphology and higher cell
density than human myocardial tissue. Starting with
the machine learning models trained on the human
data set, we tuned the model hyperparameters with
limited training/validation sets of neonatal mouse
heart images (Figures 5A to 5C, Supplemental
Figure 3). Combined training and validation set sizes
of 0, 10, 15, 30, and 45 were used to train the model,
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FIGURE 3 Myovascular Changes After LVAD Support
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(A and B) Representative images of human cardiac sections from a control patient and a patient with heart failure. (A) Sections are immu-
nostained for PCM1 to mark CM nuclei (yellow), WGA to mark cell membranes (purple) and nuclei (turquoise). (B) Sections are immunostained
for Erg to mark CEC nuclei (yellow), WGA to mark cell membranes (purple) and nuclei (turquoise). Insets show a magnified image of a PCM1*
CM nucleus and Erg* CEC nuclei. Scale bars are 50 pm. Arrowheads indicate PCM1* and Erg™ nuclei. (C) Violin plot of CM nuclear density in
patients pre-LVAD and post-LVAD. ***P < 0.001, generalized additive models with random effects with Wald P. (D) Violin plot of CEC
nuclear density in patients pre-LVAD and post-LVAD. Lines connect paired samples from the same patient. **P = 0.002, generalized additive
models with random effects with Wald P. (E) Violin plot of CEC:CM ratio in patients pre-LVAD and post-LVAD. P = 0.44, n.s.= not significant,
generalized additive models with random effects with Wald P. For C to F, lines connect paired samples from the same patient. Abbreviations

whereas a testing set of 5 images was used to evaluate
the transfer learning trained model. As expected, the
model without transfer learning performed consis-
tently worse than the other models; however, we did
see a plateau in F1 score improvement after a transfer
learning data set size of 15 images (Figure 5B). The
neonatal mouse Erg data set consisted of images with
2,752 x 2,208 pixel dimensions instead of the standard

512 x 512 dimensions of the images used to train the
human data set, suggesting that our modeling
approach can be transferred to diverse imag-
ing conditions.

We next sought to benchmark our data against
other data sets. We first tested the sensitivity of
CardioCount for detecting CM nuclei based on PCM1
immunostaining. Neonatal mice were injected with
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FIGURE 4 CM and CEC Cycling With LVAD Support
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(A and B) Representative images of human cardiac sections from the same patient before and after LVAD support. (A) Sections are immu-
nostained for PCM1 to mark CM nuclei (yellow), Ki67 to mark cycling nuclei (purple) and nuclei (turquoise). (B) Sections are immunostained for
Erg to mark CEC nuclei (yellow), Ki67 to mark cycling nuclei (purple) and nuclei (turquoise). Insets show magnified images of Ki67"PCM1" CM
nuclei (A) and Ki67"Erg™ CEC nuclei (B). Scale bars are 50 pum. Arrowheads indicate Ki67" nuclei. (C) Differences in % of Ki67*, PCM1* CM
nuclei before and after LVAD support. P = 0.102, n.s. = not significant, generalized additive models with random effects with Wald P. (D)
Differences in % of Ki67", Erg* CEC nuclei before and after LVAD support. P = 0.46, n.s. = not significant, generalized additive models with
random effects with Wald P. (E) Correlation of % of Ki67*, Erg" CEC nuclei with % of Ki67*, PCM1* CM nuclei. Note that a constant of 0.001 was
added to log-scale zero-valued data. Blue line is best-fit regression line. P = 0.002, Pearson correlation test. Abbreviations as in Figure 2.

AAV encoding Cre recombinase under the control ofa nuclei using the PCM1 and DAPI channels, and
CM-specific chicken troponin T promoter, followed manually corroborated with Cre signals. Of 7,834
by immunostaining of sections for Cre and PCM1 CM nuclei that were labeled with Cre, 7685 nuclei
(Figure 5D).'® CardioCount was used to identify CM  were correctly scored as CM nuclei, giving a
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FIGURE 5 Application of CardioCount to Murine Hearts
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(A) Schematic of transfer learning to assay murine data. Optimal model parameters for the human cardiac data sets were used as a starting
point to train models for microscopy images of mouse hearts. (B) Final F1 scores for murine images as a function of different training and
validation (Train/Val) set sizes. (C) Representative application of CardioCount to identify PCM1* cardiomyocytes, Erg™ cardiac endothelial
cells, and EdU" cycling cells from a mouse cardiac section. The Erg" cardiac endothelial cell image is a 512 x 512 crop of a full image.
Identified objects are outlined in green for each marker. (D) Representative image from a neonatal mouse heart after injection with AAV-
cTnT-Cre. Sections were stained for Cre (green), PCM1 (red), and DAPI (blue). The circles indicate Cre* cells that were counted as PCM17, and
arrowheads point to Cre™ cells missed by CardioCount. Magnified images point to a correctly scored Cre™ nucleus and a missed Cre™* nucleus.
(E) Comparison of scores from CardioCount to prior published work, when applied to the same set of images. Scale bars are 50 pm.

CNN = convolutional neural network.

sensitivity of 98.1%. Of note, the Cre® cells that
were missed tended to be out of plane or have
atypical PCM1 immunostaining patterns. Finally, we
compared CM cycling rates determined by Car-
dioCount against our prior work that used a 2-step
process to identify CM nuclei with a random forest
model (ilastik),*> followed by segmentation and
colocalization with EdU signals in CellProfiler.
Across 528 images scored for PCM1" EdU" cells,
CardioCount produced a nearly identical output
(r = 0.97; P < 0.001) (Figure 5E).

To enhance use, we developed an easy-to-use user
interface for CardioCount in Google Colab, a free,
cloud-based notebook environment that provides GPU
access and directly integrates with Google Drive. The
Google Colab implementation of CardioCount is aimed
towards users with minimal machine learning experi-
ence or command line expertise. Users can upload
their images to Google Drive and directly run the pre-
viously described human or mouse models on data sets
through the Google Colab interface. Users can also
perform transfer learning or train machine learning
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models from scratch without the need for any software
setup on their local computers. One caveat to using the
software is that it remains limited by Google’s resource
partitioning, including memory and computational
resources. The Google Colab CardioCount software
works optimally for smaller image sets where fewer
computational resources are needed to process the
images. The full code scripts needed to run the ma-
chine learning pipelines on larger data sets are avail-
able on GitHub and can be implemented locally.

DISCUSSION

Assays of cellular cycling and proliferation are
fundamental for tissue regeneration research. Or-
gans, such as the heart, with low basal proliferation
rates are particularly problematic because an accurate
assessment of rare events requires surveying large
amounts of tissue to quantify enough events for ac-
curate estimates, much less to be able to compare
treatment effects. To address the need for automated
and accurate scoring of cellular cycling, we developed
CardioCount, a deep learning-powered pipeline to
score cells from antibody-labeled immunofluorescent
cardiac tissue. We adapted a prior machine learning
platform used to identify solar panels from satellite
images to identify labeled nuclei. We were able to use
this framework to develop highly accurate models for
identifying and scoring CMs, CEC, and Ki67" cells in
cardiac tissue sections with test set F1 scores of >0.85
on each of the 3 data sets. Our work differs from prior
machine learning approaches that identify CM nuclei
after immunostaining for sarcomeric proteins—spe-
cifically our models are based on nuclear markers and
enable colocalization of different immunostains.?®
Our approach compares well with other prominent
deep learning and cell segmentation techniques such
as Cellpose, Mesmer, and CellProfiler, which regularly
segment cells on data sets with F1 scores of 0.4 to 0.9
on general segmentation tasks with broad, diverse
data sets.>”*° Of note, our model assays CM cycling
and cannot differentiate CM proliferation from
endocycling, which typically requires lineage tracing
approaches or cardiac dissociation to determine
cellular ploidy.

To test the utility of our tool, we sought to address
a long-standing question regarding the cellular basis
for the vascular rarefaction that occurs in progressive
HF. Consistent with prior work, we were able to
identify decreases in both CM and CEC nuclear den-
sity in patients with HF. When we evaluated the
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overall CEC:CM ratio, we did not observe significant
differences between end-state HF and control hearts,
with approximately 1.2 to 1.3 CECs/CM, a figure that
compares favorably with other approaches™*
(Figure 2). Our data suggest that vascular rarefaction
may be a marker of CM hypertrophy or an indicator of
proportional loss of CECs and CMs. However, we also
noted that the CEC:CM ratio is highly related to NT-
proBNP levels, a biomarker that clinically relates to
higher filling pressure and worse prognosis
(Figure 2F). Thus, our work is also consistent with
prior studies suggesting that reduced coronary flow is
related to worse HF and may further suggest that
individuals with extremely elevated NT-proBNP
levels might benefit from mechanical or molecular
revascularization  approaches. One  potential
confounder to our work is we assume that the pro-
portion of mononuclear (~74% in the normal heart)
and multinucleated CMs stays constant during HF.**
Finally, we evaluated cellular dynamics of mechani-
cal unloading with LVAD support. Unlike prior work,
we did not identify a significant increase in CM
cycling after LVAD support (Figure 4). However,
different patient populations and different pump
management strategies might partially explain why
our results differ from prior work. Importantly, we
did note that CEC and CM cycling are associated in
the human heart, consistent with prior work in pre-
clinical models and raising the possibility that
revascularization strategies might be an important
adjunct to tissue regeneration approaches
(Figure 4E)."*

Our goal was to establish a platform that could
broadly be used to score tissue sections. Towards that
goal, we have made our platform available using
Google Colab to minimize the entry barrier in terms of
computational resources and setup. We have also
developed a transfer learning module to enable users
to develop customized models for their own tissues of
interest and imaging setups. As proof of principle, we
applied our method to neonatal mouse section images
under different microscopy conditions and show that
our platform can be highly accurate even when
trained with a small number of training images uti-
lizing transfer learning. Overall, the use of accurate
and reproducible algorithms for image quantification
has the potential to improve experimental rigor and
precision.

Although our models are highly promising, we
acknowledge several limitations. CardioCount is a
nuclei-based model, meaning that CM counts
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reported are only a proxy for the total number of CM
cells obtained in the images. For this reason, the
model works best on nuclear markers and may not be
readily transferable to other types of markers. Addi-
tionally, though we expect the general approach of
our model to work for other data sets, our models
were specifically trained on human and mouse car-
diac data and therefore may require larger amounts of
training data if transfer learning were to be applied to
noncardiac contexts. Finally, our Google Colab
implementation of the machine learning training re-
mains limited by the hardware Google provides on its
free tier to Google Colab users. The Colab notebook
works optimally only on smaller image sets, and for
larger image sets, the scripts likely need to be run
locally.

CONCLUSIONS

We developed CardioCount, a deep learning-based
computational pipeline that can be used to segment
nuclei and count cells from diverse microscopy
setups. Using this tool on a large data set of human
myocardium, we were able to make unique observa-
tions regarding the composition of human cardiac
tissue, including coupled growth between CECs and
CMs, the lack of any association between LVAD sup-
port and CM cycling, and findings suggestive of
vascular rarefaction as a marker of CM hypertrophy.
CardioCount is publicly accessible via GitHub or
Google Colab, and we hope this platform can be
used broadly for similar applications of tissue
segmentation.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: Cardiovascular
disease is a leading cause of death worldwide, and understanding
cardiac tissue composition and cycling is essential for developing
effective therapies. Current methods to quantitatively assay
cardiac tissue composition by histology rely on manual scoring,
often limiting the amount of tissue that can be assayed. We built
a deep learning tool to score large amounts of cardiac tissue.
When applied to images of failing hearts, we find that end-state
heart failure is associated with a decrease in capillary density, but
that this is proportional to changes in myocyte nuclear density.
We also show that there is coupled cycling of cardiac endothelial
cells with cardiomyocytes in the human heart, like our previous
observations in zebrafish and mice. Taken together, we find that
the cellular makeup of the failing heart is dynamic and provides a
resource for largescale histologic assessment of the heart.

TRANSLATIONAL OUTLOOK: We developed an objective and
consistent machine learning model that can segment and count
nuclei in thousands of microscopic images. Tools like this will
allow for rigorous assessment of cardiac cell composition and
will allow for robust, and unbiased, estimates of rare events such
as cardiomyocyte cycling. This resource can enhance the rigor of
translational studies that rely on quantitative assessments of
cardiac tissue. Due to the generalizability of the CardioCount
framework, CardioCount may also be applied more broadly for
nuclear segmentation of tissue sections in other contexts.
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