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Abstract
This review identifies some key concepts of muscle regeneration, viewed from perspectives of classical and modern research. 
Early insights noted the pattern and sequence of regeneration across species was similar, regardless of the type of injury, 
and differed from epimorphic limb regeneration. While potential benefits of exercise for tissue repair was debated, regen-
eration was not presumed to deliver functional restoration, especially after ischemia–reperfusion injury; muscle could 
develop fibrosis and ectopic bone and fat. Standard protocols and tools were identified as necessary for tracking injury and 
outcomes. Current concepts vastly extend early insights. Myogenic regeneration occurs within the environment of muscle 
tissue. Intercellular cross-talk generates an interactive system of cellular networks that with the extracellular matrix and 
local, regional, and systemic influences, forms the larger gestalt of the satellite cell niche. Regenerative potential and adap-
tive plasticity are overlain by epigenetically regionalized responsiveness and contributions by myogenic, endothelial, and 
fibroadipogenic progenitors and inflammatory and metabolic processes. Muscle architecture is a living portrait of functional 
regulatory hierarchies, while cellular dynamics, physical activity, and muscle–tendon–bone biomechanics arbitrate regenera-
tion. The scope of ongoing research—from molecules and exosomes to morphology and physiology—reveals compelling 
new concepts in muscle regeneration that will guide future discoveries for use in application to fitness, rehabilitation, and 
disease prevention and treatment.
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Abbreviations
cGMP	� Cyclic guanosine monophosphate
ECM	� Extracellular matrix
FAP	� Fibro-adipogenic progenitor
HGF	� Hepatocyte growth factor
Hh	� Hedgehog
ICU	� Intensive care unit
IGF-1	� Insulin-like growth factor 1
IL	� Interleukin
mRNA	� Messenger RNA
miRNA	� MicroRNA

MRF	� Muscular regulatory factor
NAMPT	� Nicotinamide phosphoribosyl transferase
NMJ	� Neuromuscular junction
NO	� Nitric oxide
NOS-Iµ	� Neuronal nitric oxide synthase
Sema3A	� Semaphorin3A
siRNA	� Short interference RNA
TSC	� Terminal Schwann cell
VEGF	� Vascular endothelial growth factor

Foundational literature

The basis of any scientific exploration lies in the richness of 
observation and experimentation conveyed by researchers, 
including their respectful discussion of previous and concurrent 
work. Generations of emerging scientists, finding a research 
niche, contributing new concepts, and augmenting earlier 
ideas as their experience and resources grow, further decorate 
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the process of providing this review. The field of research on 
muscle regeneration is remarkably broad in its diversity of 
approaches and prospects, though nowhere near as remarkable 
as the myriad processes that are integrated to restore function 
and enable adaptation. So, a toast to skeletal muscle and all its 
fascinatingly interactive components, and to the ingeniously 
creative use of tools and concepts to push the frontiers of under-
standing muscle regeneration and how it can shape life.

Muscle and physical activity

Early observations, including potential influences of weather 
(barometric pressure, temperature) on strength (manual grip 
strength) by Fischer (1947), and the sociopolitical context of 
rehabilitation after World Wars I and II described by Boyn-
ton (1947), illustrate the broad scope of many early ideas 
about recovery and tissue repair. Few reports are specific 
to what we now understand as muscle-tissue regeneration, 
although the perspectives illustrate the way concepts can 
shape understanding and either extend or squelch curiosity-
driven research.

In 1900, for instance, a pathologist (and assistant medical 
officer for the Royal Exchange Assurance Company) noted 
that exercise should not be abused (i.e., over-indulged), or 
undertaken over the level of normal daily activity, as it led 
to many negative consequences. Lister (1900) cautioned 
against “violent efforts” on summer holidays and offered 
now-quaint commentary on the consequence of over-exer-
tion in the non-athletic. He also described that incidence of 
such injury is likely to increase with the “growing demands 
made on energies, knowledge, and intelligence in the work-
ing months by the increasingly-rapid inter-communications 
and severe competition of advancing civilization.” The 
comment that over-exertion was much less frequent among 
women as they did household chores gives the paper a his-
torical context.

In 1922, Rowlands (1922) suggested for the first time, 
that activity might accelerate wound healing. While not 
specific to muscle regeneration per se, Rowlands ques-
tioned the prescription of prolonged bedrest after sur-
gery—typical accompaniment to hospitalization after 
many procedures well into the 1980s. Rowlands was “not 
aware of any delay in wound healing due to getting up 
early and taking gentle exercise…[since] gentle move-
ments of wounded soft parts do not hinder but help the 
process of healing.” In concluding his conference paper, 
Rowlands called for a more thorough assessment of the 
influence of activity in post-operative recovery, to prevent 
adhesions and muscle shortening that appear after pro-
longed inactivity. He politely recommended that “taking 
gradually increasing exercise, just short of fatigue” would 
be useful and provide interesting “mental diversion” dur-
ing recovery.

Assessing muscle function

By 1949, Newman (1949) recognized “the importance of an 
accurate evaluation of a disability”, since “muscle strength, 
to a great extent, governs the amount of function of a part.” 
While this might seem obvious now, many early measure-
ment devices were not standardized and their use was not 
subject to guidelines for positioning a patient or calibration 
that could be reproduced over time. Use of the tools was not 
standardized across investigators or clinical staff, to assure 
consistent application, and thus jeopardized assessment of 
function. In 1949, Woodard (1949) noted that muscle injury 
in athletes differed from that incurred by non-athletes, and 
thus required particular therapy including gentle muscle 
activity rather than rest, for optimal repair.

Brewerton and Darcus (1956) prefaced a 1956 review 
paper on methods of increasing muscle strength by stating 
that there little new information on muscle function had 
accrued since 1900. He cited Siebert (writing in German 
in Z. Klin. Med., 1928) for recognizing that an increase in 
muscle size is not achieved by increasing the number of 
muscle fibers. (This is the current understanding of growth 
by fiber hypertrophy rather than a hyperplasia of fibers that 
occurs in indeterminate growers such as sturgeon (Hiebert 
and Anderson 2020). Darcus noted that “one of the few 
well-established facts is that the performance of muscles 
can be improved by systematic voluntary exercise.” He then 
discussed the lack of consensus on how that could happen 
or the changes in muscle structure and function that hap-
pen during strengthening, despite “the determination of the 
workers in this field” in developing training routines and 
equipment. He also noted that researchers were still look-
ing for evidence that the muscle capillary network increases 
with training and adaptation.

The neuromuscular system and adaptation

Studying the neuromuscular system, Darcus distinguished 
changes to muscle (from force generation) from those to the 
nervous system (related to making best use of available force 
generation). By 1923, it was already established that rein-
nervating axons could regenerate through nerve stumps from 
early parabiotic-pair experiments (Morpugo 1923). How-
ever, Darcus was not sure that the normal process of muscle 
hypertrophy was different from that in muscle atrophied by 
denervation or inactivity. Further, it was not established how 
much fiber hypertrophy actually contributed to increases in 
human muscle strength, since findings from animal experi-
mentation were not directly applicable to rehabilitation in 
people. Darcus recognized that training-induced increases in 
strength implied the existence of important neuromuscular 
adaptations in skill, recruitment of motor neurons and motor 
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units, and sensory (afferent) inflow to the central nervous 
system from muscle spindle contractions and from other 
tissues. However, he did not know whether the exercise by 
patients recovering from injury should be allowed to induce 
muscle fatigue, and cautioned against inducing “subjectively 
unpleasant” sensations that produced residual stiffness or 
soreness. In short, Darcus considered neuromuscular adapta-
tions to be more important in the outcome of training than 
structural and biochemical changes in muscle. Neuromuscu-
lar adaptation, later termed muscle plasticity, was reviewed 
more recently (Pette 2001).

By 1949, Denny-Brown had published some of his clas-
sical work on electromyography and motor unit recruitment 
(Denny-Brown 1949); others had reported the importance 
of afferent information from muscle, tendons, and muscle 
spindles in regulating contractile force. Darcus noted that 
neuromuscular impulses facilitated synaptic transmission 
at nerve–muscle junctions (NMJs) and all along the reflex 
arc, and with sufficient repetition, might reduce resistance to 
signal transmission from stimulus to contraction.

Writing in the context of a raging polio epidemic, Darcus 
and his contemporaries would have had many daily remind-
ers that compensatory movements during rehabilitation were 
critical to restoring overall function. Relevant to the current 
review, Darcus cited a 1943 paper by Griffiths (1943) that 
“the ultimate recovery of function may be delayed by inhibit-
ing the normal habit” of a muscle. This further emphasized 
that exercise or at least muscle activity is important to func-
tional recovery. Griffiths distinguished passive movement 
and anti-gravity assistance from active movement during 
recovery to restore muscle power after injury or surgery, 
and noted effective venous return was dependent on muscle 
contraction, without discussing myogenic repair itself.

The following year, Eccles (1944) concluded from animal 
physiology experiments that disuse atrophy is best countered 
by exercise in which muscle shortens during contraction; he 
noted that strong isometric contractions can maintain muscle 
condition reasonably well. Eccles also determined that the 
effectiveness of muscle stimulation to maintain muscle mass 
depended on more than changes in muscle length since the 
outcome of stimulation differed between extensor and flexor 
muscles. A 1957 address to the British Medical Society 
(Anonymous 1957) referenced Darcus’ work on neuromus-
cular adaptation, and noted a lack of consensus on how best 
to tailor resistance-exercise protocols to specifically build 
endurance, speed, strength, or coordination.

Modeling muscle

The cultivation of chopped muscle in a medium of embryo 
extract, Tyrode’s solution, and plasma, using a “lying drop” 
technique was described by Popogeff and Murray in 1956 
(1956). Use of that culturing method quickly revealed that 

precursor cell dormancy (muscle satellite cells) was longer 
in normal than in dystrophic human muscle, and demon-
strated myotube growth or hypertrophy in culture (Geiger 
and Garvin 1957). The advent of tissue-culture methodolo-
gies opened the door to many research questions.

Studying muscle regeneration

As early as 1947, Diaz-Guerrero and Thomson reported 
(Diaz-Guerrero et al. 1947b) that the restoration of func-
tion after denervating gastrocnemius muscle (using a crush 
injury of the tibial nerve) was slower in hypothyroid than 
hyperthyroid rats. As well, they reported that denervation 
atrophy occurred more quickly in hyper- than hypothyroid 
animals. These findings were based on initial studies of 
muscle strength without denervation. The force of mus-
cle contraction produced after indirect stimulation (i.e., 
stimulation to an innervating nerve) was lower, and fatigue 
greater in hyperthyroid than normal animals; hypothyroid 
animals showed no change in strength and had only a slightly 
increased fatigue of muscles tested with the nerve-stimula-
tion protocol (Diaz-Guerrero et al. 1947a). In that exercise 
and activity provide voluntary (nerve-dependent) generation 
of muscle contractile force, these early studies established 
the important impact of the metabolic state on nerve–muscle 
interactions, atrophy, and neuromuscular repair.

Studitsky conducted early experiments focussed on mus-
cle regeneration from 1952 to 1964, He compared regenera-
tion in young and old animals (often rats), and transplanted 
crushed or minced muscle into an emptied muscle bed. He 
also documented the progressive return of function during 
muscle recovery from damage. Unfortunately, the intriguing 
titles in Russian are not accompanied by translations (Carl-
son 1968). His book chapter in English in 1963 (Studitsky 
1963) describes the fascinating process of myogenesis in 
cultures of muscle explants. Fortunately, Carlson visited and 
worked in Studitsky’s lab, and was able to bring to broad 
attention to those experiments in later reports in English. 
By 1968, Carlson confirmed that use of minced-muscle in 
modeling cellular processes provides major opportunities 
for observing the chronology of a synchronized process of 
muscle regeneration (Carlson 1968).

Notably, by 1945, the surgical literature had identified the 
features of muscle regeneration induced by loss of vascular 
supply, including the “myotube stage” discussed by Le Gros 
Clark and Blomfield (1945) and took note of previous stud-
ies of contractures after traumatic wartime injuries or vascu-
lar occlusion (Brooks 1922). Brooks confirmed findings of 
an earlier paper by Rowlands (1905) that identified the seri-
ous sequelae of muscle damage from ischemia–reperfusion 
injury. Church cited even earlier work by Waldeyer (1865) 
and Volkman (1893) that described regeneration processes 
that involved “continuous sprouting from viable fibres… 
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and discontinuous budding from surviving fibres of single 
cells… that ultimately give rise to new fibers” (Church et al. 
1966). These were early observations that identified the role 
of activated satellite cells in myogenic repair, although the 
cells were not named as such, or identified in their quiescent 
state, for years to come.

Carlson’s impressive monograph in 1973, The Regenera-
tion of Minced Muscles (Carlson 1972), detailed the histo-
logical progression of muscle tissue repair. In the epilogue, 
Carlson notes seven “potentially… most profitable direc-
tions for future research,” including how damaged muscle 
survives, the source of muscle progenitor cells, muscle 
interactions (with vessels, nerves, and endocrine signals), 
the functional outcome of muscle regenerates, and the pos-
sibility that transplanting muscle minces or cells could be 
used to treat muscle damage or disease. Carlson identified 
problems in repairing muscle damage that involved exces-
sive deposition of connective tissue and skeletal nodules; 
those sequelae were often related to poor vascularization at 
a particular stage of myogenic regeneration.

Muscle histology

Our current knowledge of the muscle regeneration process 
was founded on the rich descriptions of histological fea-
tures of normal or pathological muscle repair under various 
conditions reported by many investigators, typically using 
mammalian models (e.g., Le Gros Clark and Blomfield 
1945; Murray and Kodicek 1949). The often-voluminous 
descriptive text in these reports would never be accepted for 
publication in current journals, it clearly provides important 
details. Early histologists thoroughly explored the chemistry 
of tissue staining and learned about muscle metabolism. This 
was followed within a few decades by enzyme histochem-
istry (Snow 1973) and an early method of staining muscle 
satellite cells in a particular state (Ontell 1974). Sometimes 
descriptions were “persuaded” by presumptions about the 
process under investigation. For example, a description of 
fiber fragmentation (Murray and Kodicek 1949) refers in 
error, to two structures shown in figures that are actually 
muscle spindle fibers and “cuffs” of myoblasts and myotubes 
within endomysial sheaths of fiber remnants. Since such 
observations, confounded by interpretation or assumption, 
can linger in the literature and our brains, their influence 
on understanding may persist longer than new evidence. 
There is real merit to digging back with a skeptical lens, 
through classical reports to explore the basis of our current 
etymologies and insights. Often, though, early descriptions 
are valuable, and serve as a caution when we consider an 
observation is “the first report” on a topic.

Muscle satellite cells

Histology studies were quickly augmented by major 
advances in development of electron microscopy techniques 
in the 1950s. Techniques for ultrathin sections and electron-
dense stains led to Mauro’s report (1961) of a presumptive 
muscle precursor cell, termed the satellite cell due to the 
position of those cells on muscle fibers. The same cells were 
the subject of speculation by Church et al. (1966), Shafiq 
et al. (1967), and Carlson (1968) who suggested they may 
become activated into myoblast precursors for muscle for-
mation. By 1966 (Church et al. 1966), satellite cells were 
known to survive muscle damage and serve as reserve cells 
that transform into myoblasts that proliferate and form new 
fibers.

The 1969 monograph on Regeneration of Striated muscle, 
and Myogenesis (Mauro et al. 1970) illustrates the intense 
discussions during an international conference at the Insti-
tute for Muscle Disease in New York on the time-course of 
regeneration in amphibians and rodent muscle. Attendees at 
the conference also discussed the myoblast cell cycle, myo-
blast fusion into myotubes in vivo and in vitro, and the ultra-
structural morphology of the satellite cell. In 1968, Carlson 
showed that muscle fibers regenerate with guidance from 
the internal structure of connective tissue in a muscle, such 
that new fibers are aligned to the direction of tension in the 
muscle regenerated from minced fragments, and that early 
muscle regeneration occurs independent of nerve supply 
(Carlson 1968).

In 1975, Bischoff (1975) reported use of a method of 
culturing single muscle fibers to examine the population of 
inactive satellite cells in residence on isolated fibers. In addi-
tion, he used a direct method, autoradiography to track the 
entry of satellite cells into the cell cycle, by their uptake of 
tritiated-thymidine into new strands of DNA during mito-
sis. Although immune detection methods are much faster, 
autoradiography is still a valuable technique, especially in 
combination with other methods of tracking gene expres-
sion and the histology of regenerative processes (Anderson 
et al. 1996, 1998a; McIntosh et al. 1998). By the 1980s, 
research had identified differences between muscle devel-
opment in the embryo and muscle regeneration in adults 
(e.g., Hansen-Smith and Carlson 1979; Carlson and Faulkner 
1983) and many details of the time-course of muscle regen-
eration (e.g., Aloisi 1970; Reznik 1970; Shafiq 1970; Hall-
Craggs 1980; Maxwell et al. 1984; Schultz and Jaryszak 
1985; Ontell 1986; Grounds 1987; Grounds and McGeachie 
1987; McGeachie and Grounds 1987; Brooks and Faulkner 
1988; Carlson and Faulkner 1989).
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Muscle fiber types

In 1968, McComas and Thomas (1968) reported electro-
physiology studies that implicated the existence of slow 
and fast muscles in humans. In 1976, Khan confirmed the 
likelihood that slow-twitch muscle had the same histochemi-
cal pH-dependent staining pattern as type-I oxidative fibers 
(Khan 1976b) and had identified fast-oxidative-glycolytic 
fibers (type-IIA) (Khan 1976a). By the end of the 1980s, 
there was a burgeoning literature describing fiber-typing 
studies that compared different muscles in a huge range of 
species, and during development, adaptation, aging, regen-
eration, reinnervation, metabolic shifts, and disease (McCo-
mas and Thomas 1968; Tomonaga 1977; Haggmark et al. 
1981; Haggmark et al. 1986; Staron and Pette 1986, 1987a, 
b; Anderson et al. 1988; Coulton et al. 1988; Jakobsson et al. 
1988; Termin et al. 1989; Dusterhoft et al. 1990; Klitgaard 
et al. 1990; LaFramboise et al. 1990; Parry and Wilkinson 
1990; Goldspink, 1991; Coggan et al. 1992; Welle et al. 
1993).

The basics of myogenic regeneration

Myogenic regeneration begins with damage to fibers that 
degenerate and are removed by phagocytosis. Damage also 
activates satellite cells which proliferate as spindle-shaped 
myoblasts that cycle, fuse and form new syncytial fibers, 
initially with central nuclei. Myotubes subsequently elon-
gate toward attachment sites at tendons and on bone. Bone 
also responds to the presence or loss of pull from muscle 
(Anderson et al. 1993). Tissue repair in a muscle belly can 
be highly successful, comprising restoration of many types 
of tissue: myogenic, vascular (initially capillaries), nervous 
(initially Wallerian degeneration of axons and then elonga-
tion of growth cones through any surviving nerve stumps, or 
toward NMJs on remnant tubes of endomysial basal lamina 
tubes (previously surrounding fibers), and connective tis-
sues (extracellular matrix (ECM) including endomysium, 
perimysium, epimysium, and tendon connections to fibers). 
Regenerated muscle fibers are typically aligned to the origi-
nal orientation of fibers.

Given the architecture of skeletal muscle tissue and the 
wide range of injuries and diseases that provoke muscle to 
regenerate, it is important to remember that a reproducible 
approach to sampling the regeneration time-course requires 
attention to the location and type of injury in the tissue and 
the time elapsed since injury. Regeneration is typically 
localized around an area of injury, with some extension 
into the surrounding undamaged tissue due to the migration 
of myoblasts along fiber and endomysial remnants in the 
ECM (McIntosh et al. 1994). Injury can be very focal, more 
broadly segmental across a short portion of the fiber length 
as in muscular dystrophy, or widespread as in avascular 

necrosis modelled by denervation–devascularization injury 
(Anderson 1991; Mechalchuk and Bressler 1992; Lefau-
cheur and Sébille 1995). Thus, the extent and location of 
initial tissue damage, whether it is synchronous or sporadic 
and recurrent, and its homogeneity in a muscle belly should 
determine the timing and location of any approach to inves-
tigating the time-course or outcome of regeneration. It is 
useful to remember that delayed regeneration is not neces-
sarily defective.

Early concepts

	 i.	 Myogenic regeneration follows a similar pattern and 
sequence, albeit with different timing, across species 
and many types of damage; the pattern differs from the 
epimorphic regeneration of limbs in urodele amphib-
ians.

	 ii.	 Muscle tissue regeneration can be very successful but 
does not always restore function.

	 iii.	 Large areas of damage often leave a deep fibrotic scar.
	 iv.	 Cells in skeletal muscle can form bone, adipose, and 

fibrous connective tissues.
	 v.	 Regeneration from ischemia–reperfusion injury has a 

less functional outcome than after anoxia.
	 vi.	 Assessing muscle function to track regeneration 

requires standardized protocols and tools.

The current context

Myogenic regeneration is the subject of many excellent 
reports and reviews (Charge and Rudnicki 2004; Ciciliot 
and Schiaffino 2010; Carosio et al. 2011; Tidball 2011; 
Musaro 2014; Dumont et al. 2015a; Domingues-Faria et al. 
2016; Qaisar et al. 2016; Joanisse et al. 2017; Le Moal et al. 
2017; Zammit 2017; Cornelison 2018; Li et al. 2018; Wosc-
zyna and Rando 2018; Chen and Shan 2019; Chazaud 2020; 
Forcina et al. 2020), and there are many more related to the 
benefit of activity or exercise, the impact of aging, differen-
tial injury-dependent regenerative responses, roles of micro-
RNAs in regulating the stem cell niche, and the responsive-
ness of satellite cells. Although selected topics in the overall 
process will be highlighted, this review is primarily focussed 
on a high-level synthesis rather than a comprehensive over-
view of the wealth of important or essential factors involved 
in orchestrating effective myogenic regeneration and muscle 
tissue repair.

Injury

A diverse range of injuries leads to muscle regeneration, and 
some damage to fibers is needed to prompt the onset of the 
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muscle regeneration cascade; this is a truly beautiful exam-
ple of tissue homeostasis in action (Musaro 2014; Musarò 
2020). The impact of trauma changes the environment of all 
types of proximate and surrounding cells and the acellular 
matrix, and cells respond in marvelously coordinated fashion 
toward resolving an injury and restoring muscle function. 
However, the extent to which muscle-tissue damage is fol-
lowed by regeneration and functionality is highly depend-
ent on many variables. There are considerations about the 
initial insult, such as whether it is an acute or chronic injury 
or a single or repetitive injury; the volume of tissue injury 
and its distribution (widespread or focal) are also important. 
The age of the individual or animal are notable features as 
well, since age affects the number of satellite cells, the state 
of satellite cells (activation, senescence, stemness and self-
renewal capacity, and exhaustion), and their responsiveness 
to muscle injury. Age also affects the composition and char-
acter of the ECM, the vascular supply, innervation, insertion 
points on bone, and any accrual of prior injury, scarring or 
disease conditions. The nature and configuration of the ECM 
(fibrotic or not) are additional determinants to the ultimate 
recovery of function, as is the possible involvement of den-
ervation that may accompany the injury to fibers.

The timing by which inflammation is resolved has a major 
impact on functional recovery, as is the timing of vascular 
regeneration to ensure blood supply for debris removal and 
support regenerating tissue. Adiposity within muscle fas-
cicles and the level of physical activity prior to an injury 
also play into the timing and extent of recovery, along with 
stresses of metabolic disease, transient systemic conditions, 
and/or the secondary impact of genetic, biochemical, devel-
opmental or epigenetic modifications to cells or molecules 
that mediate the outcome of regeneration, as reviewed else-
where (Urso 2013; Mok et al. 2017; Robinson and Dilworth 
2018; Mitchell et al. 2019; Long et al. 2021; Machado et al. 
2021; Vechetti et al. 2021; Wen et al. 2021).

The discovery of muscle regulatory factor genes (MRFs) 
was a remarkable turning point in our understanding of the 
embryological development of muscle (Esteves de Lima and 
Relaix 2021); the four MRFs are re-expressed during the 
post-natal myogenic process of muscle regeneration. Expres-
sion of the first two MRF genes, MyoD and Myf5 by satel-
lite cells increases after satellite cell activation. MyoD and 
Myf5 regulate the commitment of daughter myoblasts into 
the muscle lineage and myoblast proliferation, and induce 
expression of myogenin. Myogenin and MRF4 are expressed 
soon after under appropriate conditions, and induce differ-
entiation (Bentzinger et al. 2012; Knappe et al. 2015; Zam-
mit 2017). Pax7 and Pax3 function in advance of MRFs in 
postnatal myogenesis (Buckingham and Rigby 2014; Buck-
ingham and Relaix 2015).

Satellite cell activation, stemness, and motility

Initial damage induces degeneration of fibers and at the same 
time, activates muscle satellite cells, the stem cells that pos-
sess the all-important dual capability of self-renewing the 
stem cell compartment and producing committed myogenic 
cells. Satellite cells activation and cell cycle entry are regu-
lated through Notch Wnt-signaling pathways (Conboy and 
Rando 2002; Conboy et al. 2003; Dhawan and Rando 2005; 
Luo et al. 2005; Le Grand and Rudnicki 2007; Srivastava 
et al. 2010; von Maltzahn et al. 2012; Subramaniam et al. 
2013). It is well established that muscle satellite cells are a 
heterogeneous population (Tierney and Sacco 2016) that is 
regulated to maintain quiescence (Subramaniam et al. 2013; 
Arora et al. 2017; van Velthoven et al. 2017; Purohit and 
Dhawan 2019; Puri et al. 2021). Satellite cells are rapidly 
activated in response to damage, mechanical stretching and 
nitric oxide release, exercise and physical activity (Anderson 
2000; Anderson and Pilipowicz 2002; Wozniak et al. 2003; 
Wozniak and Anderson 2007, 2009; Wang et al. 2009). Such 
regulation is affected by aging (Brack et al. 2005, 2007; 
Brack and Rando 2007; Collins et al. 2007; Joanisse et al. 
2017; Snijders and Parise 2017; Hwang and Brack 2018; 
Tierney et al. 2018, 2019; Kimmel et al. 2020).

Recent study of the capacity for stem-cell renewal—by 
way of CD34 expression modulated through insulin-like 
growth factor-1 (IGF1)-mediated Akt activation that reduces 
CD34 expression by inhibiting FoxO—introduced even fur-
ther complexity in satellite cell heterogeneity. Experiments 
identified a state of “primed stemness” (cells with myogenic 
commitment) and more prevalent “genuine stemness” in 
muscle of younger animals (García-Prat et al. 2020), expand-
ing on earlier studies of CD34-mediated satellite cell motil-
ity (Alfaro et al. 2011).

Although the proportion of the satellite-cell population 
with genuine-stem capability declines with age (Day et al. 
2010; García-Prat et al. 2020) and satellite cells become 
increasingly refractory to stretch-induced activation with 
age (Leiter and Anderson 2010), those cells retain the 
capability of responding to damage and producing effec-
tive repair in old animals (Smythe et al. 2008; Shavlakadze 
et al. 2010; Lee et al. 2013; Domingues-Faria et al. 2016; 
Snijders and Parise 2017; Franco et al. 2019; García-Prat 
et al. 2020; Kimmel et al. 2020; Yamakawa et al. 2020; 
Delsmann et al. 2021). Thus, satellite cells clearly respond 
to mechanical stimulation through exercise (Wozniak et al. 
2003; Gomes et al. 2004; Tidball 2005; Tatsumi and Allen 
2008; Wozniak and Anderson 2009; Leiter and Anderson 
2010; Tatsumi 2010; Hara et al. 2012; Zhang and Ander-
son 2014; Li et al. 2018; Eliazer et al. 2019); that and the 
regenerative response to injury are muscle-specific and 
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age-dependent (Leiter and Anderson 2010; Gigliotti et al. 
2015, 2016).

The timing of satellite cell activation is important in mus-
cle tissue regeneration. Premature activation before injury, 
established using treatment with a nitric oxide donor, can 
accelerate myogenesis following a myotoxic or crush injury, 
whereas the restoration of NMJs on newly formed myotubes 
is disrupted (Daneshvar et al. 2020). This reminds us that the 
desired outcome of regeneration, strength and voluntary con-
trol, results from coordinated nerve–muscle interactions, and 
that myogenesis is only one, albeit an important aspect of 
muscle-tissue regeneration. Interestingly, experiments with 
nitric oxide-donor treatments in mice also improve regenera-
tion and reduce exercise-induced damage in dystrophic mice 
(Archer et al. 2006; Wang et al. 2009; Mizunoya et al. 2011), 
attenuate disuse atrophy after hindlimb suspension (Ander-
son et al. 2017b), enable exercise-induced hypertrophy in 
atrophic muscle of old mice (Leiter et al. 2012). While many 
mouse studies highlight the exciting potential for treating 
human Duchenne dystrophy via nitric oxide donors (Scio-
rati et al. 2006, 2010, 2011, 2013; Brunelli et al. 2007; De 
Palma and Clementi 2012), simply increasing its bioavail-
ability by inhibiting phosphodiesterase can be detrimental 
(Timpani et al. 2020). Further investigations of applications 
to safely deliver nitric oxide to replace the normal func-
tional release during muscle activity and mechanical stretch 
(Wozniak and Anderson 2007, 2009) in a dosing regimen 
that avoids excessive oxidative stress could promote muscle 
growth and regeneration, and benefit people with dystrophy, 
disuse atrophy, and sarcopenia (Alrushaid et al. 2018). Satel-
lite cells are essential for myogenesis, hypertrophy during 
maturation, and regeneration. By contrast, muscle hypertro-
phy in adults can occur without satellite cell contributions 
to myofibers. However, that hypertrophy ultimately restricts 
growth, vascular arborization, strength, and remodelling of 
collagen, which affect longer term plasticity and adaptability 
(McCarthy et al. 2011; Jackson et al. 2012; Fry et al. 2014, 
2015; Englund et al. 2020, 2021). The elegant experimenta-
tion demonstrated that the satellite cell population affects 
expression by myonuclei inside fibers, possibly through their 
production of extracellular vesicles. To quote a perspective 
on the paper, “in essence, satellite cells are more than just 
myonuclei in waiting, capable of affecting muscle health in 
a fusion-independent fashion”(Hawke 2020).

Migratory movements by myoblasts and others cells are 
implicated as determinants of the success of muscle regen-
eration (Siegel et al. 2009, 2011; Alfaro et al. 2011; Stark 
et al. 2011; Kowalski et al. 2017). Myoblast movement is 
itself, mediated from the supporting substrate containing 
fibronectin, which regulates Wnt7a signaling and myoblast 
proliferation (Bentzinger et al. 2013, 2014). The research 
platform of microfluidics technology with applications to 
tissue engineering, is a powerful tool in studying migration. 

Microfluidics experiments provide major advances over 
earlier approaches to the real-time visualization of cellular 
physiology under exquisitely controlled conditions (Roveim-
iab et al. 2019) and disease modeling (Wang et al. 2021). 
For example, our recent microfluidics study explored the 
mechanisms by which the niche substrate has significant 
impact on responses by myoblasts (Roveimiab et al. 2020). 
Myoblast interactions with the substrate composition (col-
lagens, fibronectin, laminin, etc.) as well as the extent and 
nature of connective tissue elements in the substrate, affect 
myoblast migration by the complex process of haptotaxis. 
Very recent experiments with inhibitors (Roveimiab, Lin and 
Anderson, unpublished) suggest a hierarchy of disruptions to 
different aspects of adhesion, speed and direction of move-
ment, and cell–cell fusion result from interference in the 
fibronectin-integrin signaling pathway, affect the alignment 
of one myoblast and its juxtaposition toward the nucleus of 
a differentiated myotube. The movements of individual cells 
play a significant role in the outcome of myogenesis during 
muscle-tissue regeneration.

In addition, soluble elements in the niche also provide 
input to guide myoblast movements including the speed and 
direction of migration along isolated fibers (Siegel et al. 
2009, 2011) or within a microfluidic device (Roveimiab et al. 
2020). In particular, hepatocyte growth factor (HGF), also 
called scatter factor, binds to the “motogenic” c-met recep-
tor expressed by both activated and quiescent satellite cells 
(Hartmann et al. 1992; Sonnenberg et al. 1993; Cornelison 
and Wold 1997; Dietrich et al. 1999; Webster and Fan 2013). 
HGF delivers a potent signal for positive chemotaxis and 
mobilizes populations of myoblasts (Roveimiab et al. 2020). 
Traction enabled by a haptotaxis substrate interacts with the 
configuration of the chemokine signal provided by the con-
centration or a directional gradient of HGF (Roveimiab et al. 
2020). Even more complex is the signaling among different 
cell types including leukocytes (Panci and Chazaud 2021) 
and other inflammatory cells (Sakaguchi et al. 2014; Chen 
et al. 2015; Ferreira et al. 2015; Saini et al. 2016) in the envi-
ronment of muscle precursors that are mobilized by injury.

Recently Hox10 expression and epigenetic methylation 
events at the Hox-A locus were found to mediate the topo-
graphical distribution of differential responsiveness by adult 
muscle stem cells (Yoshioka et al. 2021). This paper recalled 
earlier reports on cranial muscles that present continuous 
“remodeling” through satellite cell turnover and fusion into 
undamaged muscle fibers above levels seen in limb muscle 
fibers (e.g., McLoon and Wirtschafter 2002, 2003; McLoon 
et al. 2004). In these cases, there was higher Hox-A hyper-
methylation and Hox-A and Hox-C cluster gene expression, 
both robustly sustained after transplantation and regenera-
tion by engrafted satellite cells. Loss of Hoxa10 expression 
by postnatal muscle reduced the capacity for regeneration, 
indicating that satellite cells display a fascinating “positional 
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memory” based on developmental topography (including 
distinction between limb muscles and those innervated by 
cranial nerves). This memory-of-source feature of regenera-
tion did not affect Pax7 or MyoD expression, the size of the 
satellite cell population or its ability to become activated. 
However, with Hoxa10 inactivation, satellite cells resident 
on fibers cultured ex vivo, were not as good at migration—an 
essential process in myogenic repair; they also had impaired 
proliferation without displaying apoptosis. Rather, satellite 
cell-specific disruption of Hoxa10 affected genes important 
in chromosomal segregation and spindle formation during 
mitosis, and in limb muscle, induced changes that led to 
the formation of micronuclei and chromosomal bridges 
without affecting myogenic differentiation or self-renewal 
capacity. Human satellite cells in culture mirrored the posi-
tion-dependent distinctions in cell-cycling, gene expression, 
and the impact of HOXA10 knockdown by short interfer-
ence RNA (siRNA) found in the transgenic mouse experi-
ments. This report opens a new avenue toward understand-
ing regional and muscle-specific differences in regeneration 
capacity and plasticity of limb muscles toward adaptation.

Two ideas: that the potential of muscle for regeneration 
and plasticity is regionalized, and that stem-cell function 
is influenced by epigenetic acetylation of Pax7 (Sincennes 
et al. 2021), together bring new implications to considering 
epigenetic modifications in responses to exercise, training, 
aging, hormones. Such ideas also raise to mind the regional 
patterning of genetic neuromuscular diseases such as the 
family of muscular dystrophies involving disruptions of the 
dystrophin-associated cytoskeleton (Sunada and Campbell 
1995; Cohn and Campbell 2000; Durbeej and Campbell 
2002). Epigenetic modifications to post-mitotic muscle fib-
ers, recently identified to involve long non-coding RNA mol-
ecules, also affect adaptive responses to stress (El Said et al. 
2021). The full-length influences of RNA sequences will 
likely be revealed to have further impact on skeletal muscle 
adaptation and repair.

Inflammation

Inflammatory cells are resident (as macrophages) in muscle 
tissue and attracted to the site of injury. They promote sar-
colemmal repair, fiber growth, and regeneration (Cheung 
and Tidball 2003; Tidball and Wehling-Henricks 2007) 
in addition to removing damaged tissue following muscle 
injury. Macrophages resident within muscle tissue are highly 
plastic in establishing the stem cell niche and interact with 
satellite and other cells (Ratnayake et al. 2021). Experiments 
using a beautifully designed system to follow individual 
macrophages in real time in living zebrafish (Montandon 
et al. 2021) revealed that there are early interactions of mus-
cle-resident macrophages with satellite cells through a mac-
rophage-secreted compound, nicotinamide phosphoribosyl 

transferase (NAMPT). NAMPT in turn, acts via the CCR5 
chemokine receptor and establishes a short-lived niche that 
activates satellite cells; the same signaling contributes to 
regulate the pace and timing of myogenic regeneration (Rat-
nayake et al. 2021).

Muscle stem cell interactions with pro-inflammatory 
macrophages are thus very broad, and as macrophages rap-
idly shift to become anti-inflammatory, clues for both myo-
genic and non-myogenic processes are compiled over time 
through interactions of immune cells including macrophages 
with muscle stem cells (Chazaud 2020). Recent literature 
highlights the notion that macrophage activity determines 
whether repair is regenerative or fibrotic (Moyer and Wag-
ner 2011; Muñoz-Cánoves and Serrano 2015; Juban et al. 
2018; Yang and Hu 2018) through considerable cross-talk 
with muscle cells (Mann et al. 2011; Muñoz-Cánoves et al. 
2013; Yang and Hu 2018). Thus, there is a balance between 
inflammation and myogenic repair in regenerating muscle: 
the inflammatory response to damage will ideally maximize 
the prospects for an effective regenerative response while 
avoiding a large catabolic response (Urso 2013).

The timing of macrophage transition from pro- to anti-
inflammatory—required to trigger the resolution of inflam-
mation during muscle regeneration—is critical, since early 
and late transition are both detrimental for recovery (Chaz-
aud 2020). Signals that resolve inflammation begin when 
prostaglandins and other proinflammatory signals are inacti-
vated or blocked; inflammatory cells are then removed from 
the damaged tissue by reverse migration, drainage and cell 
apoptosis, and apoptotic neutrophils (to minimize secondary 
necrosis) are cleared from the tissue. The transition to an 
anti-inflammatory state is facilitated by macrophage plastic-
ity (Sugimoto et al. 2019).

Notably, muscle regeneration is impaired in autoim-
mune myopathies that result from inflammatory cell acti-
vation by antibodies against signal-recognition protein or 
HMG-CoA reductase; the impairment, a defect in myoblast 
fusion and fiber formation, was associated with deficient 
levels of IL-4 and IL-13 (Arouche-Delaperche et al. 2017). 
Thus, inflammation, its resolution and its etiology including 
direct muscle infection by viruses such as Zika, arboviruses, 
and SARS-CoV-2 (COVID-19) (Disser et al. 2020; Filip-
pone et al. 2020; Legros et al. 2020; Paliwal et al. 2020), are 
important during regeneration.

Fibro‑adipogenic precursors

Fibro-adipogenic precursors (FAPs) in muscle are derived 
from neural crest; since the first report in 2010, FAPs are 
now understood to play key roles in configuring lineage 
determination and the outcome of proliferation by mesen-
chymal cells—both essential in regeneration of muscle (Joe 
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et al. 2010; Uezumi et al. 2010; Theret et al. 2021) and other 
tissues (Natarajan et al. 2010; Lemos et al. 2012; Paylor 
et al. 2014; Giuliani et al. 2021). FAPs are non-myogenic 
and give rise to fibroblasts and adipocytes, depending on 
signals such as from the innate immune system that regulates 
eosinophil and anti-inflammatory macrophage activity soon 
after tissue damage. Interleukin signaling, specifically IL-4 
from eosinophils, promotes FAP proliferation and restricts 
the progression of FAPs to adipocytes. Notably, FAPs also 
mediate the removal of damaged, necrotic tissues after injury 
or in culture, and stimulate myogenic differentiation and 
MRF-gene expression by muscle precursors (Heredia et al. 
2013).

Recently, a subset of FAPs that express Gli1 and Hh 
(hedgehog) proliferates rapidly after muscle injury and was 
identified as being responsible for restricting the develop-
ment of adipose tissue during muscle regeneration. The role 
of Gli1-positive FAPs was emphasized by genetic ablation of 
Gli1-expressing cells, which impaired muscle regeneration 
through a transient expansion that produces paracrine signal-
ing factors such as IL-6 and IGF-1 that act on satellite cells 
(Yao et al. 2021). That fibrosis—another essential aspect of 
muscle regeneration—reduces satellite cell proliferation and 
delays fiber growth during the regenerative response when 
FAP proliferation is inhibited (Fiore et al. 2016). Essentially, 
although the influences of FAPs during muscle repair may 
be short-lived, they make major contributions to the over-
all “tuning” of different molecular players regulating myo-
genic and other stem cells (Biferali et al. 2019; Forcina et al. 
2020). Interactions of FAPs with fibroblast growth factor 2 
(FGF2) through via miRNA-29a signaling promotes forma-
tion of adipose tissue in muscle during aging (Mathes et al. 
2021).

Fascinatingly, fibroblasts were recently shown to fuse to 
skeletal muscle, a feature that enables the transfer of fibro-
blast-specific mRNAs that facilitate the transition of the fiber 
toward its tendinous attachment sites (Yaseen et al. 2021). 
That report solved a puzzle from earlier electron microscopy 
observations of muscle regeneration (Anderson 1991).

Very recently, direct isolation of FAPs, muscle stem cells 
and macrophages from human skeletal muscle biopsies, 
using a combination of fluorescence-activated cell sorting 
and mRNA sequencing at the single-cell level, was found to 
preserve the phenotypic behavior and expression of those 
cells (Jensen et al. 2021). The transcriptomics approach 
should prove exceedingly useful in translating discoveries 
of FAP contributions to muscle regeneration, and age-related 
changes in muscle tissue.

Extracellular matrix

The ECM plays a major role in muscle health, development, 
disease, and regeneration (Goetsch et al. 2003; Csapo et al. 

2020; Forcina et al. 2020). Dynamic ECM interactions with 
every type of cell in the tissue (Cisternas et al. 2014; Dunn 
et al. 2018, 2019; Marcinczyk et al. 2019; Patel et al. 2019) 
occur through enzymatic degradation and remodelling by 
proteinases, including matrix metalloproteinases (Chen and 
Li 2009; Lu et al. 2011). The ECM also serves as a res-
ervoir for growth factors, including HGF and IGF-1, with 
which matrix metalloproteinases can interact to promote 
regeneration (Kok and Barton 2021). ECM actually pro-
motes muscle regeneration (Kuraitis et al. 2012), in part by 
haptotaxis-induced myoblast migration (Roveimiab et al. 
2020). And, ECM proteins mediate adhesion or attachment 
of muscle stem cells, meaning the ECM mediates satellite 
cell responses to mechanical activity and tissue perturbation 
(Li et al. 2018; Moyle et al. 2020).

The ECM forms a complex three-dimensional meshwork 
of proteins that surrounds myogenic and vascular cells, 
fibroblasts, and nerves within muscle tissue; that meshwork 
is synthesized and then modified by epigenetic and post-
translational modifications with important implications in 
disease pathophysiology (Theocharis et al. 2016) and stem 
cell function (Sincennes et al. 2021). Proteins such as pro-
teoglycan, integrin, collagen, fibronectin, hyaluronan, elas-
tin, tenascin, and others, form a vast reference “library” 
that participates in any aspect of cell physiology, including 
regeneration. Realignment, damage, and remodelling of the 
ECM during regeneration also affect function and the out-
come of regeneration, partly through cell attachments to the 
ECM through growth factor and other ligands it displays for 
binding with receptor-expressing cells. Such binding thus 
enables the internal actin cytoskeleton of those cells to be 
polarized according to their residency and migration within 
the interstitial space (Li and Gundersen 2008).

Our understanding of the signaling interplay between 
myogenic cells (and other cells) with components of the 
ECM and basement membrane adherent to cells (Pozzi 
et al. 2017) through receptors, proteolysis, and unmask-
ing of cryptic sites in ECM proteins (Clause and Barker 
2013; Brown et al. 2015; Barker and Engler 2017; Yeh et al. 
2021) has shown major recent advances. These new ideas 
have brought biomechanics, tissue engineering, and nano-
scale three-dimensional scaffold production into the realm 
of therapeutics for muscle regeneration (Turner and Bady-
lak 2012; Choi et al. 2018; Dunn et al. 2019; Marcinczyk 
et al. 2019; Patel et al. 2019; Baiguera et al. 2020; Gilbert-
Honick and Grayson 2020; Mihaly et al. 2021), promising 
prospects for implantable volumes of muscle tissue that will 
promote the ingrowth of vessels and nerves (Laumonier 
and Menetrey 2016; Gilbert-Honick and Grayson 2020). 
Interstitial fibroblasts between muscle fibers, produce many 
components of the extracellular matrix (ECM) and wrap 
around collagen cables (Gillies and Lieber 2011; Gillies 
et al. 2017).
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Excessive deposits of connective tissue are detrimental 
to muscle function in muscular dystrophy, as suggested over 
40 years ago (Duance et al. 1980); that impact is now well 
established in physiological experiments, computational 
modeling (Mann et al. 2011; Martin et al. 2016; Virgilio 
et al. 2021), and the clinical literature (Best et al. 2013; 
Lieber and Ward 2013; Teixeira and Duarte 2016). For 
example, the negative functional impact of extensive fibro-
sis and collagen deposition in skeletal and cardiac muscle of 
dystrophic mdx mice was demonstrated by functional gains 
after an anti-fibrosis treatment that reduced expression of 
collagens I and III. Treatment attenuated dystrophic damage 
due to the tissue stiffness that affects myofibers (Huebner 
et al. 2008), the satellite cell niche (Moyle et al. 2020), satel-
lite cell proliferation, and myogenesis (Teixeira and Duarte 
2016).

Vascular tissue

The supply and configuration of blood vessels around, along, 
and sometimes within muscle fibers is critical to regen-
eration and maintenance of muscle. Plasma carries potent 
systemic factors, and proteins including hormones, and 
cytokines (some anabolic and/or catabolic) (Conboy et al. 
2005; Brack et al. 2007; Cornish et al. 2020a) while perfu-
sion removes waste products and conveys red blood cells. 
Vascular architecture itself regenerates differently among 
various models of injury by freezing or toxicity (Hardy et al. 
2016). Muscle satellite cells in particular, survive the loss of 
vascular supply and local ischemia, and will actively recruit 
endothelial cells to their niche during muscle regeneration 
(Collins and Kardon 2018). Notably, the impact of many 
circulating factors including metabolic regulators and sign-
aling ligands conveyed via vascular supply, will depend on 
revascularization in regeneration.

Cell–cell cross‑talk

Clearly there is cross-talk—a “social network”—among 
cells and between cells and the abiotic environment of 
degenerating and regenerating muscle tissue (Wosczyna 
and Rando 2018; Biferali et al. 2019; Scognamiglio et al. 
2020). Drawing a parallel between populations of organ-
isms and populations of cells in muscle tissue [similar to 
cancerous cells (Somarelli 2021)], such a network could be 
considered a “cellular ecosystem,” since both populations 
are influenced by their environment (as in ecology, the inter-
actions of organisms to each other and their surroundings), 
during adaptation and regeneration. There is very keen inter-
est in what drives the outcome, which cell or combination 
of cells coordinates the many possible responses by other 
cells, and a strong push to identify the signaling networks 

that integrate cellular, tissue, and systemic processes. For 
example, research on the dystrophin cytoskeleton connected 
to ideas of mechanically induced satellite cell activation by 
transients of nitric oxide (NO) gas (Wozniak et al. 2003, 
2005; Wozniak and Anderson 2005, 2007, 2009). Other 
research on activity-induced angiogenesis (McAllister et al. 
2008; Alfaro et al. 2011) and changes in NO concentra-
tion during muscle disuse, aging or dystrophin deficiency 
(Anderson 2000; Anderson and Pilipowicz 2002; Tatsumi 
et al. 2002; Anderson and Wozniak 2004; Wozniak and 
Anderson 2005; Leiter et al. 2012; Janke et al. 2013; Allen 
et al. 2016; Anderson et al. 2017b; Rogers et al. 2017) are 
related. The important structural role of dystrophin in the 
dystroglycan complex, and its anchorage of neuronal NO 
synthase are considered to “orchestrate” the epigenetic pro-
file of muscle cells and affect adipogenesis through miRNA 
regulatory pathways during differentiation and regeneration 
(Marrone and Shcherbata 2011).

Redox control mechanisms also contribute to the pro-
cess and outcome of muscle regeneration (Le Moal et al. 
2017) through NO mediation of initial inflammation, myo-
genic repair, and the FAP-mediated processes of fibrosis 
and adipogenesis (Filippin et al. 2009, 2011a, b). Poten-
tial therapeutics to manipulate NO concentration or the 
NO-cGMP signaling pathway that could promote muscle 
regeneration or growth, attenuate muscular dystrophy, 
or prevent muscle-disuse atrophy were broadly explored 
(Archer et al. 2006; Pisconti et al. 2006; Tatsumi et al. 
2006, 2009b; Betters et al. 2008a, b; Yamada et al. 2008; 
Heydemann and McNally 2009; Song et al. 2009; Wang 
et al. 2009, 2018; Wozniak and Anderson 2009; Li et al. 
2010; Tatsumi 2010; Villanueva and Giulivi 2010; Filippin 
et al. 2011a, b; Mizunoya et al. 2011; Janke et al. 2013; 
Bonafè et al. 2015; Gigliotti et al. 2015; Aguiar et al. 2017; 
Anderson et al. 2017b). Mechanically mediated cellular 
interactions and the potency of NO signaling to satellite 
cells and surrounding blood vessels must be placed in con-
text with the overarching genetic regulation of satellite cell 
activation and quiescence by Wnts, Notch, quiescence-
specific gene-signaling networks, and epigenetics.

Satellite cells recruit endothelial cells and also promote 
angiogenesis by secreting vascular endothelial growth fac-
tor (VEGF); in turn, endothelial cells promote satellite cell 
expansion (Latroche et al. 2015). Satellite cells also pat-
tern the architecture of nearby capillaries through VEGF-
A signaling, and endothelial cells produce the Notch 
ligand Dll4 that helps sustain the stemness of satellite cells 
close to vessels by maintaining their quiescence (Verma 
et al. 2018). The proximate, even intimate, juxtaposition of 
two cell types, in this case endothelial and muscle satellite 
cells, has potent meaning for interpretation of regenera-
tive signaling, just as the proximity of satellite cells on the 
fiber sarcolemma has for mechanical signal transduction 
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in satellite cell activation (Anderson 2000; Wozniak et al. 
2003; Wozniak and Anderson 2009) and satellite cell 
influences on myonuclei and fibroblasts (Englund et al. 
2021). Satellite cell interactions with macrophages include 
receiving macrophage-derived HGF which mediates secre-
tion of semaphorin3A (Sema3A) by myoblasts (Yamada 
et al. 2010; Do et al. 2011; Sato et al. 2013; Sakaguchi 
et al. 2014). In turn, this influences many cells involved 
in muscle regeneration (Anderson et al. 2017a), and the 
development of slow fibers through neuropilinA–plex-
inA3, myogenin, and Mef2D signaling to slow myosin 
expression (Tatsumi et al. 2017). Importantly, Sema3A 
is implicated in synchronizing motor neurite elongation 
during the re-establishment of NMJs (Tatsumi et al. 2009a; 
Sato et al. 2013).

It is interesting to consider that while FAPs contrib-
ute to regulating satellite cell activity, satellite cells also 
configure the responsiveness of fibroblasts in the niche 
around fibers during hypertrophy (Fry et al. 2014). This 
cross-talk among cells during muscle regeneration thus 
has a systemic context (Pillon et al. 2013; Xie et al. 2013; 
Ferreira et al. 2015; Anderson et al. 2017a; Argiles et al. 
2016; Belizário et al. 2016; Domingues-Faria et al. 2016; 
Gorski and Price 2016; Collins and Kardon 2018; Yang 
and Hu 2018; Chazaud 2020; Daneshvar et al. 2020), and 
that context means that cell-level responses at the local 
area niche (Mashinchian et  al. 2018) integrate all the 
interactions among satellite cells, fibers, macrophages, 
terminal Schwann cells (possibly via Sema3A), the ECM 
(Huijbregts et al. 2001), and circulating factors such as 
cytokines, growth factors, and many other molecules.

Nerve–muscle interaction

The fascinating intricacies of nerve–muscle interaction, 
reviewed elsewhere (Delbono 2011; Shi et al. 2012; Blaauw 
et al. 2013; Witzemann et al. 2013; English et al. 2014; Tin-
tignac et al. 2015; Gordon and English 2016; Gordon and 
Borschel 2017; Cornish et al. 2018; Macefield and Knellwolf 
2018; Lepore et al. 2019; Rudolf et al. 2019; Swenarchuk 
2019; Gordon 2020), underlie the essence of voluntary mus-
cle function after regeneration, and depend on the extent and 
location of initial and secondary damage to fibers. Termi-
nal Schwann cells (TSCs) bridge the synaptic cleft between 
axon terminals and the specialized sarcolemma at the NMJ 
(Barik et al. 2016), help maintain synaptic structure (Reddy 
et al. 2003; Feng et al. 2005; Feng and Ko 2008), and also 
contribute to the satellite cell niche. Recent experiments 
from our lab further implicate satellite-cell derived Sema3A 
secretion in mediating interactions of satellite cells with ter-
minal Schwann cells during muscle regeneration and rein-
nervation processes (Daneshvar et al. 2020) (and Daneshvar, 
Matsuyoshi, Tatsumi, and Anderson, unpublished).

Physical activity and exercise

Physical activity and exercise induce muscle plasticity and 
adaptive responses in the absence of injury. During activ-
ity, fibers release myokines (cytokines) that exert autocrine, 
paracrine and systemic effects on muscle fibers (anabolic 
and catabolic) and satellite cells (Bugera et al. 2018; Cor-
nish et al. 2018, 2020a, b). Those actions are integrated 
into the network of signals released from inflammatory and 
other cells (Febbraio and Pedersen 2005, 2020; Pedersen 
and Febbraio 2008, 2012) including bone and adipose tis-
sues (Kirk et al. 2020). Regeneration of muscle after injury 
is significantly enhanced by exercise especially in synergy 
with injection of muscle stem cells (Contreras-Muñoz 
et al. 2021). Physical activity also modulates the immune 
response, releasing growth factors that promote angiogen-
esis (Gregory et al. 1995; Brutsaert et al. 2002; Faria et al. 
2008; Aurora et al. 2014), and muscle contractile activity 
induced by electrical stimulation promotes nerve repair by 
upregulating neurotrophins and brain-derived neurotrophic 
factor (Gordon and English 2016).

Interestingly, optimal fiber hypertrophy requires satellite 
cell proliferation and accrued contributions of their daughter 
cells toward fusion, fiber hypertrophy is possible through 
myonuclear domain expansion without satellite cell contri-
butions, and satellite cells are not essential for fiber-type 
adaptations to life-long physical activity (Egan and Zierath 
2013; Qaisar et al. 2016; Englund et al. 2020). One form of 
severe muscle atrophy in humans is associated with admis-
sion to an intensive care unit (ICU) and is exceedingly resist-
ant to treatment; it is attributed to the critical illness behind 
admission. A recent review distinguished ICU-acquired 
weakness by the predominant loss of myosin that affects 
both type-I (slow-twitch) and type-II (fast-twitch) fibers, and 
suggested resistance exercise during restricted blood flow 
(BFR) as a potential treatment (Lad et al. 2020). Metformin, 
a drug compound used to increase glucose transport into 
muscle and reduce blood glucose, reduces hypertrophy and 
transcriptional responses of skeletal muscle to resistance 
exercise training (Walton et al. 2019; Kulkarni et al. 2020). 
Interestingly, recent findings on a trial of BFR resistance-
exercise training suggested that changes in systemic concen-
trations of a subset of myokines show differential responses 
based on age and resistance training, in association with 
increases in muscle strength and quality (Cordingly, Ander-
son, and Cornish, submitted).

A very recent paper demonstrated that exercise training 
in adult mice has differential impact on DNA methylation 
in muscle and non-muscle interstitial cells; detraining and 
also retraining demonstrated further differential responses, 
implicating “epigenetic memory” of prior adaptation that 
may help account for well-established differential response 
to exercise among muscles (Lavin et al. 2021; Sharples 
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2021; Wen et al. 2021). Of note, that even non-muscle cells 
respond to exercise training highlights the system-wide 
impact of physical activity.

Metabolism

Systemic and muscle-tissue metabolism, including vari-
ations due to nutritional status, metabolic diseases (e.g., 
cachexia), and non-neuromuscular conditions such as dia-
betes and non-alcoholic fatty liver, affect the outcome of 
muscle regeneration—so many features of muscle growth, 
power, strength, endurance, and plasticity are reliant on ana-
bolic processes. Anything that impacts protein synthesis, 
turnover, and remodelling—including responses to systemic 
stress—will reduce the capacity for timely regeneration (i.e., 
the speed of tissue repair) if not its effectiveness. The issue 
of protein turnover is especially important in interpreting 
results, given that use of transgenic technologies to condi-
tionally alter the expression of particular genes in a cell or 
tissue of interest at a particular age, are typically validated 
by testing the level of mRNA or protein expression from tis-
sue, without identifying the half-life of the targeted protein 
or synthetic rate after tamoxifen administration ends.

A recently reported atlas of single cells and nuclei in dam-
aged muscle and liver revealed a common stress–response 
profile or signature is shared by many types of cells in both 
tissues, and other tissues as found in published datasets. In 
both liver and muscle stem cells, quiescent prior to tissue 
damage, ERK1/2 expression was essential prior to the onset 
of Notch-regulated myogenesis (Machado et al. 2021). With 
parallel stress-response expression patterns in muscle and 
liver, it is not surprising to find that muscle is receptive to 
systemic physiological stressors (or that cell isolation itself 
is a stressor). The observation that metabolism itself makes 
system-wide interconnections across many types of cells 
including muscle stem cells. Each cell type has its own inter-
nal metabolic character, responsiveness and regulatory pat-
terns mediated in its own distinctive niche; that idea forms 
a window into understanding tissue physiology (Chen et al. 
2019; Purohit and Dhawan 2019).

A recent exciting report demonstrated systemic signaling 
through release of exosomal vesicles from myoblasts. Those 
vesicles are now known to mediate muscle growth (Murach 
et al. 2021; Vechetti et al. 2021) in the absence of satellite 
cell cycling. The notion of non-cellular, circulating and/or 
local influences on growth, cell–cell signaling, and likely 
regeneration in muscle, extend findings of systemic influ-
ences on regenerative capacity between old and younger ani-
mals in earlier parabiosis experiments (Conboy et al. 2005; 
Brack et al. 2007).

Myogenesis vs. muscle‑tissue regeneration

Muscle regeneration is a “team effort”; an individual cell 
lineage acting on its own, cannot establish a fully functional 
muscle. The effective outcome of muscle regeneration there-
fore, depends on all the cellular players, the timing of dam-
age and inflammation, muscle-specific architecture, and the 
physical use and activity of a muscle. The exquisite genetic, 
biochemical, physiological, and epigenetic regulation of the 
timing of satellite cell activation and changes in satellite cell 
transitions to and from quiescence with aging (Addicks et al. 
2019; Kimmel et al. 2020; Sincennes et al. 2021) have major 
implications for muscle regeneration capacity. As well, the 
distribution of fibrosis, vascular compromise and oxygena-
tion, inflammation, and muscle anatomy before injury will 
affect the whole gamut of myogenic processes that ensue, 
from a particular mode of injury in each muscle to the out-
come of satellite cell cycling and myotube maturation (Csete 
et al. 2001). Again, fiber type plays a role, since shear forces 
on the sarcolemma are higher in rapidly contracting type-II 
fibers and make them more susceptible to exercise-related 
damage. Different species and taxa also present fascinating 
distinctions across many features of muscle development, 
satellite cell distribution and regulation, muscle use, and 
evolutionary modifications based on life-history that may 
affect regeneration capacity, as recently explored in a variety 
of fish species (Zhang and Anderson 2014; Knappe et al. 
2015; Gurevich et al. 2016; Ratnayake and Currie 2017; 
Anderson et al. 2019; Pourghadamyari et al. 2019; Tingle 
et al. 2019; Christian and Benian 2020; Hiebert and Ander-
son 2020; Montandon et al. 2021). Although autophagy may 
decrease with aging, inducing an increase in autophagy can 
rescue the effectiveness of regeneration by muscles in old 
animals (Park et al. 2019; You and Chen 2021; You et al. 
2021).

The balance between stem capability and myogenic 
commitment by proliferating myoblasts is highly depend-
ent on the cytoskeleton of the underlying muscle fiber. The 
dystrophin-associated protein complex (DAPC) distributes 
neuronal NO synthase (NOS-Iµ) within the dividing cell; 
that distribution, in turn, shapes the polarity of asymmetric 
division by muscle stem cells and normally ensures stem 
cell renewal (Dumont et al. 2015a, b; Chang et al. 2018; 
Feige et al. 2018; Addicks et al. 2019). Loss of dystrophin 
from the cytoskeletal complex has serious impact in dys-
trophic muscle, and leads to exhaustion of the stem cells 
(and self-renewal capacity) during the ongoing regenera-
tive response to dystrophic damage. The mechanistic fine-
tuning that retains or restores and sustains the viability of 
stem cell pool (Wang et al. 2019) is an essential concept for 
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undertaking future research; that viability encapsulates what 
otherwise may appear as a stochastic or randomized process 
that determines the fate of daughter cells—that was the basis 
of a fascinating discussion at conferences in the late 1990s, 
and the puzzle took decades of focussed research to resolve. 
The process by which epidermal growth factor rescues the 
function of dystrophic satellite cells and builds the stem-cell 
potential of their progeny (Wang et al. 2019) is only one 
of many details that now guides the search for therapies to 
promote regeneration.

The regulation of regenerative-muscle-cell lineages fol-
lows the pattern of networks mediated by muscle regula-
tory genes during development (Hernández-Hernández et al. 
2017). The discovery of MyoD and other MRF genes in the 
mid-1980s (Zammit 2017) and the impact of their deficient 
expression (Megeney et al. 1996; Anderson et al. 1998b; 
McIntosh et al. 1998; Huijbregts et al. 2001) have since 
revealed many key aspects of muscle regeneration (Lassar 
2017). The identification of non-coding micro RNAs that 
help regulate development (Mok et al. 2017) and regenera-
tion (Drummond et al. 2008; Safdar et al. 2009; Aoi et al. 
2010; Guller and Russell 2010; Nielsen et al. 2010; Wessner 
et al. 2010; Cheung et al. 2012; Sharma et al. 2014; Diniz 
and Wang 2016) adds additional layers of complexity to 
muscle responses to injury and disease. Further, the notion 
that exosomal vesicles convey important intercellular signals 
vociferously demands new approaches for testing hypothe-
ses, including those used to characterize exocrine regulation 
(Mitchell et al. 2019).

A systems-biology approach incorporates the complexi-
ties of stem cell function (Wosczyna and Rando 2018) and 
myogenic regeneration that proceeds in synchrony with 
inflammation and its resolution (Csete and Doyle 2002; 
Vodovotz et al. 2008), exosome signaling, re-innervation 
processes (Daneshvar et  al. 2020), vascular perfusion, 
metabolism, and exercise (Henriksen et al. 2012; Bugera 
et al. 2018; Cornish et al. 2020a). Future research will reveal 
key intersections of the different processes that regulate 
muscle regeneration.

Notably, the mechanisms and actions of at least 25 gene 
products considered essential for myoblast fusion into the 
multinucleated syncytium known as a muscle fiber are not 
known (Deng et al. 2017). There is so much more to learn 
about myoblast interaction with, and migration through 
the ECM, and many physical properties of the cellular and 
acellular components of the niche around myoblasts as they 
fuse (Roveimiab et al. 2020). Figure 1 provides an overview 
of local influences, muscle-specific environment, regional 
adaptive plasticity, and systemic influences on muscle regen-
eration from a generic injury.

Current key concepts of muscle regeneration

1.	 Myogenic regeneration occurs within the cellular eco-
system of muscle tissue. The ecosystem includes signals 
and responses by satellite cells, inflammatory and vas-
cular cells, fibro-adipogenic precursors and derivatives, 
the ECM, and nervous tissue. Cells and their interac-
tions within muscle tissue during myogenesis are fur-
ther embedded in systemic physiology, physical activ-
ity, and aging. Evaluating the integrative physiology of 
this “ecosystem” with an open-ended systems-biology 
approach will become an increasingly essential, coun-
terpart to the exciting and more focussed research that 
targets the single-cell behavior or molecular interactions.

2.	 Regenerative potential and the adaptive plasticity of 
skeletal muscle are overlain by regionalized epigenetic 
modifications implicated in responses to exercise, aging, 
hormones, circulating factors, and disease. The extent 
and timing of regeneration are muscle-specific and inter-
related with the vascular architecture and the use of that 
muscle.

3.	 Cells “talk” and socialize amongst themselves and with 
the ECM while they respond to systemic influences. Pre-
cisely how this happens is exquisitely complex, as tan-
talizingly illustrated by ongoing discovery of processes 
influenced via nanotubes, exosomal vesicles, gaseous 
transmission, and systemic factors. New hypotheses now 
must account for the hierarchy by which responses of 
one cell induce and direct subsequent responses by other 
cells, including fibers. This systemic, intercellular cross-
talk during muscle regeneration forms the gestalt at the 
satellite cell niche, the focal point of muscle regenera-
tion. However, we should not forget that satellite cells 
also influence the postmitotic nuclei inside fibers, and 
can optimize long-term adaptation and muscle responses 
to exercise.

4.	 Cells move; all types of cells in muscle, will move, and 
their migration processes are essential to regeneration. 
Migration behavior is highly dynamic, both biomechani-
cally and in time. Myoblasts build and change their own 
operational niche and leave exosome and nano-scale 
“clues” to other cells along their trajectory, with major 
implications to fiber formation and health, as well as 
regeneration. Anticipating cell movement necessitates 
innovative experiments to visualize and track func-
tional molecular cascades – these methods are real-time 
“lenses” to help interpret observations by accounting for 
motility.

5.	 Physical activity and concomitant signaling are high-
impact arbiters of the outcome of regeneration. As in 
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muscle hypertrophy, such signals to and from satellite 
(and other) cells in muscle, are mediated by integrated 
influences of metabolism, myokines, angiogenesis, 
innervation, and the configuration and composition of 
the ECM.

6.	 The intricate architecture of skeletal muscle, from the 
level of gross morphology in classical anatomy to its 
structure at ultrastructural, spectroscopic, and nanoscale 
resolutions, displays the functional hierarchy of a highly 
evolved muscle physiology. The complexity of muscle 
regeneration in three dimensions over time cannot be 
fully modeled by deconstructing the tissue processes in 
culture.

Research tools

Astute experimental design is critical to the clarity of 
research findings. The variables we measure, the research 
tools we use, the independent animal controls or human par-
ticipants, and the specificity of our hypotheses—the ques-
tions we ask—are all part of anticipating research outcomes.

The tools for tracking the outcome of muscle regeneration 
have evolved tremendously since the early development of 
standardized instrumentation. Even a new, simple way to 
isolating primary satellite cells using ice-cold incubation, 
can advance research on regeneration (Benedetti et al. 2021). 
Recent discovery of MYC-dependent satellite cell func-
tion, revealed through CRISPR/Cas9 editing of the MyoD 
locus in young growing muscle, opened new potential for 
understanding how genome topology mediates activation 
of satellite cells (He et al. 2021). Exciting new avenues for 
conditional, cell-specific genetic manipulation will provide 
highly refined, wonderful insights into processes that change 
with gain- or loss-of-function by particular cells at particular 
junctures in regeneration, disease, and activity [e.g., (Wen 
et al. 2021)].

Multivariate readouts of muscle and single-cell transcrip-
tomics, physiology and metabolism; systemic metabolism 
and biochemical interactions; and muscle structure coupled 
with functional genomics, cell-lineage tracing, and single-
cell real-time tracking are all powerful tools, often accessible 
through collaboration. In effect, data readouts from studies 
on single fibers, dispersed cell cultures and co-cultures, and 
in vivo muscle tissue, coupled with diagnostics and treat-
ment outcomes in a clinical setting can now be re-integrated 
by systems approaches (Owens et al. 2015). My lab ventured 
a short distance in that direction in our investigations of 
potential denervation and preserved satellite-cell respon-
siveness in muscle after rotator-cuff injury (Gigliotti et al. 
2015, 2016, 2017), aiming toward eventual clinical trials to 
promote regeneration (Gigliotti et al. 2016).

Gaps

There are still major gaps in our knowledge of muscle regen-
eration related to the impact and type of physical activity, 
with all the local and systemic mediators released by exer-
cise (Bugera et al. 2018; Cornish et al. 2018, 2020a, b). 
Physical activity likely influences the resolution of inflam-
mation, where the timing is critical; myotube alignment dur-
ing regeneration; and the role of the ECM and ECM-bound 
ligands in guiding cells during movement. Myoblast migra-
tion (Roveimiab et al. 2020) and the mechanisms of axonal 
targeting to neuromuscular junctions through synchronized 
myogenesis and nerve–muscle connectivity during regen-
eration (Daneshvar et al. 2020) can be closely scrutinized 
by microfluidics applications, now used for high-throughput 
screening for mutations (Markin et al. 2021) and biological 
assays (Grant et al. 2018).

Newly formed fibers will continue to grow by hypertro-
phy and nuclear accretion as part of adaptations to activity 
or compensation for disease, but the epigenetic “finesse” 
on the outcome of regeneration (Giordani and Puri 2013) 
remains to be mapped. As well, the mitotic clock that short-
ens telomere length with repetitive cell cycling of precursor 
cells during regeneration from disease (Decary et al. 2000; 
Renault et al. 2000; Cooper et al. 2003) plays a role that is 
still contentious. We have yet to understand observations that 
in athletes, minimum terminal restriction fragment length 
is reduced only in proportion to the degree of stress during 
distance running and power lifting (Mouly et al. 2005; Kadi 
and Ponsot 2010).

Conclusions

Overall, the philosophy of research on muscle regeneration, 
if it could be characterized as a philosophy, is ultimately 
directed toward improving the outcome, however, remotely 
feasible. Indeed, functional recovery is the primary hallmark 
of muscle regeneration (Forcina et al. 2020). In considering 
how key concepts in this field of muscle regeneration have 
changed in the past 100 years (Table 1) and how method-
ologies and technologies have advanced, we find that even 
classical ideas, misinterpretations and assumptions (revealed 
by our current knowledge), and speculation and discussion 
by experts, all contribute to re-imagining the horizons of 
possibility.

The stepwise pattern of tissue changes during muscle 
regeneration is well established, involving inflammatory 
cells (M1 and M2), vasculature, satellite cells, fibers, FAPs, 
extracellular matrix, nerves, and myelinating and termi-
nal Schwann cells. Each of type of cell both produces and 
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Fig. 1   Skeletal muscle regeneration in context of local, regional, and 
systemic influences. A Under normal conditions (top right), mus-
cle fibers with adjacent muscle satellite cells are innervated at neu-
romuscular junctions (NMJs) and situated in an active environment 
of multiplex cross-talk with components of the extracellular matrix 
(ECM), fibro-adipogenic precursors (FAPs), resident macrophages, 
fibroblasts, terminal Schwann cells, and endothelial cells lining blood 
vessels. The tissue complex is under tension from muscle insertions. 
B Soon after a disruptive injury (pointed wedge at the right), cells 
and fiber fragments (bottom right) are dispersed in the ECM, inflam-
matory (M1) macrophages infiltrate, satellite cells are activated, and 
many types of cells proliferate. Axons from spinal cord motor neu-
rons (centre) begin to undergo Wallerian degeneration. Cellular 
cross-talk is fully engaged at cellular and molecular levels. Muscle-
specific ecology related to 3-dimensional position and architecture 
(formed through development), the vascular and nerve supplies, and 

influences of genetics and epigenetics, engages signaling pathways 
through microRNAs, muscle regulatory genes, growth factors, exo-
somal vesicles, and their interplay with tension, inflammatory pro-
cesses, ECM composition and fibrosis, with impact on cell cycling, 
migration, and differentiation behavior. C Regional adaptive plasticity 
shapes the regenerating muscle tissue (left) through a balance of ten-
sion, activity, and exercise with metabolic regulatory feedback loops 
(through endocrine, exocrine, and myokine pathways), age, prior 
injury, and extant disease. These influences act on myoblasts, fibro-
blasts, FAPs, endothelial and anti-inflammatory (M2) macrophages, 
as neurites begin to reconnect with elongating myotubes at nascent 
NMJs. Systemic influences of other tissues on the regenerating mus-
cle, including genetics, metabolism, nutrition, disease and age, all 
contribute to the maturation of muscle 3-dimensional structure, 
stiffness, function, and adaptive responsiveness. Legend to symbols 
appears in the box (bottom left)
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receives multiple signals within their occupied niche at any 
given time. While the niche locations of satellite cells and 
terminal Schwann are particularly identifiable, every cell 
occupies and tailors its niche—a niche that presents signal-
ing ligands and receptors, and stores signaling molecules 
produced elsewhere. And every cell responds or very likely 
will respond to metabolic and mechanical or activity-based 
signals, from local to systemic.

All those signals change in a time-dependent manner 
during regeneration; each type of cell and structure “rec-
ognizes” the signals and compiles or integrates them in a 
way that directs a particular response or action. That inte-
gration parallels the way in which the electrical output of a 
neuron is compiled from excitatory and inhibitory input at 
dendritic spines, soma, and axon in a complex summative 
and time-dependent mechanism. In muscle, systemic and 
localized signaling combine to impact the manner of such 
responses. That understanding enhances our ability to dis-
sect and describe the behaviour of a given cell population in 
a region of regenerating muscle tissue.

Notably, the population-level behaviour of any type of cell 
will be displayed as an average response that accounts for 
the level of population heterogeneity. Single-cell approaches 
are astute in displaying responses based on gene and protein 
expression, morphological interactions, and extant physiol-
ogy at a single time point; vital and video-capture imaging 
help capture those responses. We use many models of mus-
cle regeneration, imposing particular injuries or metabolic 
and disease conditions to test new ideas, and have found 
great success in revealing how those cells interact. Over the 
decades of inquiry, those many models of muscle damage 
were explored with increasing ability to resolve patterns. 
Technologies have developed through application of highly 
specific molecular, cellular, and imaging tools that can 
observe and manipulate individual cells or a cell popula-
tion. And objective observations and data can be analyzed 

with powerful computational and statistical approaches of 
genomics, genetics, computational biology, and time-lapse 
imaging. Ongoing research will probe ever-further into the 
mechanisms regulating cell behaviour and interactions.

While science rapidly embraces new methods, classical 
methods are still valuable, as is a review of historical litera-
ture. Understanding the trends in thinking can gives insights 
that refine an experiment or modify an approach. Reading 
old monographs is also fascinating as it helps us feel the 
energy of previous scientists as they reached toward their 
own technological limits to pose questions and open doors, 
ever hopeful they too, might advance the concepts of muscle 
regeneration.

The goal of this review was not to characterize the 
burgeoning literature on molecular genetics, epigenet-
ics, and cell signaling by all types of cells involved in 
muscle regeneration. Nor was it to review the exquisite 
combinations of modern technology such as CRISPR in 
intraosseous chimeric cell therapy to promote systemic 
muscle regeneration and prevent disease progression, now 
supporting huge strides in systemic treatment of diseases 
such as Duchenne muscular dystrophy (Siemionow et al. 
2019, 2021). Rather, the review aimed to identify distinc-
tions between current concepts in muscle regeneration and 
earlier historical ideas, and trace the general timeline of 
research advances (Table 2). Our conceptualization of a 
process shapes the way we approach its exploration, just 
as the model of injury we select for an experiment will 
shape the nature of findings and variables that are avail-
able in studying the outcome of a perturbation or potential 
therapy we might superimpose (Hardy et al. 2016; Tatsumi 
et al. 2017).

It is the accessible scope of activities or responses made 
by a single cell, a cell population, or a mixed collection of 
all the cells within a tissue, that provides the basis of our 
clinical and research practices. Concepts—how we think 

Table 1   Side by side compilation of early and current concepts of muscle regeneration, as presented in the review

Early concepts Current concepts

Cells in skeletal muscle can form bone, adipose, and connective tis-
sues

Contributions by muscle satellite-stem cells, fibroadipogenic precursors, 
immune cells, endothelial precursors, and innervation occur within an 
“ecosystem” of systemic physiology, physical activity, and aging

Regeneration of muscle does not always restore function Muscle-specific overlay of regionalized epigenetic influences and vascu-
lar architecture

large Injuries often leave a scar Cell–cell cross-talk via exosomal vesicles, nanotube connectivity, gase-
ous transmission, systemic and local secretions, including satellite cell 
influences on myonuclei

Similar pattern across types of injury with variable timing Cells are dynamic in time and through biomechanical influences on 
molecular signaling pathways

often Less successful after ischemia–reperfusion injury than after 
anoxia

Physical activity arbitrates the outcome, mediated by metabolism, 
myokines, angiogenesis, innervation, and the extracellular matrix

Tracking functional repair requires standardized protocols and tools 3-Dimensional skeletal muscle architecture over a broad range of resolu-
tions, is an important readout of a highly evolved hierarchy of function
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Table 2   Rough timeline of topical themes and approaches in research on muscle regeneration
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about each level of organization—form the foundational 
map of our understanding. Alas, our concepts also form 
the basis of our assumptions, since we use that map to 
speculate on the unknown, choose a direction, and antici-
pate the next horizon. It’s exciting to learn new concepts 
in our own and other fields, since those ideas bring, even 
force, a paradigm shift in perspectives and redirect our 
attention. Our focus shifts to the next question, whether 
new or refreshed from classical literature by modern tech-
nologies, insights, and skepticism.

The impact of intricate molecular-genetic signaling net-
works—a critical foundation in understanding cell behaviour 
in muscle regeneration and therapeutics—must be inter-
preted in context of the bigger picture of structure–func-
tion relationships and systemic influences (Swaggart and 
McNally 2014). Ongoing discoveries highlight that every 
part of the muscle structure is important in some fashion. 
That notion provides important clues to us as researchers, 
about the functional context and functionality of muscle 
during regeneration. The beautiful three-dimensional archi-
tecture of skeletal muscle has evolved to optimize the func-
tions of all cells in normal muscle; recognizing how that 
architecture integrates with physiology is critical to advanc-
ing our understanding of muscle regeneration. Deciphering 
the interplay of layered mechanisms of damage in traumatic 
muscle injury, for example, by high-energy ballistic damage 
from firearms (Moriscot et al. 2021), will advance our think-
ing about rehabilitation approaches that promote regenera-
tion and function.

Research on muscle regeneration intersects at many lev-
els, with ideas gleaned from other research domains. Even 
apparently simple concepts can spark creativity and drive 
new hypotheses directed to pose the why? and how? and 
what happens then? questions at the core of research. Skel-
etal muscle, the engine of our voluntary activity, is critical to 
health, both physical and mental; one can only hope that the 
remarkable capability of muscle tissue to regenerate through 
myriad dynamic inter-cellular interactions and signaling 
processes, continues to capture the imagination of future 
generations of researchers. Key concepts in skeletal muscle 
regeneration will evolve as does our understanding of the 
processes influencing cellular and molecular interactions.
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