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Abstract

Background

A long-term projection model based on nationally representative data and tracking disease

progression across Alzheimer’s disease continuum is important for economics evaluation of

Alzheimer’s disease and other dementias (ADOD) therapy.

Methods

The Health and Retirement Study (HRS) includes an adapted version of the Telephone

Interview for Cognitive Status (TICS27) to evaluate respondents’ cognitive function. We

developed an ordered probit transition model to predict future TICS27 score. This transition

model is utilized in the Future Elderly Model (FEM), a dynamic microsimulation model of

health and health-related economic outcomes for the US population. We validated the FEM

TICS27 model using a five-fold cross validation approach, by comparing 10-year (2006–

2016) simulated outcomes against observed HRS data.

Results

In aggregate, the distribution of TICS27 scores after ten years of FEM simulation matches

the HRS. FEM’s assignment of cognitive/mortality status also matches those observed in

HRS on the population level. At the individual level, the area under the receiver operating

characteristic (AUROC) curve is 0.904 for prediction of dementia or dead with dementia in

10 years, the AUROC for predicting significant cognitive decline in two years for mild cogni-

tive impairment patients is 0.722.

Conclusions

The FEM TICS27 model demonstrates its predictive accuracy for both two- and ten-year

cognitive outcomes. Our cognition projection model is unique in its validation with an unbi-

ased approach, resulting in a high-quality platform for assessing the burden of cognitive

decline and translating the benefit of innovative therapies into long-term value to society.
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Introduction

Alzheimer’s disease and other dementias (ADOD) impose an increasing burden on the United

States society and health care system. According to the Alzheimer’s Association, the number

of Americans 65 and older living with Alzheimer’s dementia is estimated to grow from 5.8 mil-

lion in 2019 to 13.8 million by 2050, as the baby boom generation ages [1]. On the other hand,

the US Food and Drug Administration recently approved Aduhelm (Aducanumab), the first

disease-modifying treatment (DMT) for ADOD, with more potential DMTs in the pipeline

[2,3]. With the approval of Aduhelm, discussion arises about the therapies’ real-world value

and their potential costs to the healthcare system. As treatments shift in focus from dementia

to earlier disease phases like mild cognitive impairment (MCI), concerns are rising about the

high upfront costs for initial screening and diagnostics together with late-occurring and uncer-

tain benefits [4,5].

Facing great opportunities and challenges in ADOD therapy development, it is important

that we have the proper analysis tools to evaluate the economic impact of cognitive

impairment and potential therapies. A cognitive model for use in projecting the US population

should model all stages of cognitive decline for a nationally representative sample. Addition-

ally, incorporating predictors and risk factors will make the model useful for assessing counter-

factual scenarios and interventions. We identified six ADOD economic evaluation models for

the US in the literature, and none of the existing models were based on data nationally repre-

sentative of the US population [6–11]. Four models used the Uniform Data Set from the US

National Alzheimer’s Coordinating Center [6,8,10,11]. The Uniform Data Set contains data

from the Alzheimer disease centers across the United States, but it is not considered a popula-

tion-based sample since the enrollment of patients by participating Alzheimer disease centers

is not random [6]. One model was based on the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database, which is a research cohort of participants in cognitively normal, MCI and

dementia states and also not commonly regarded as typical of the current clinical ADOD pop-

ulation [7,10]. One model was not based on a selected sample of participants but used model

input parameters from multiple data sources [9]. Among the six models that used US data,

three models tracked individuals across the full Alzheimer’s disease continuum [7,9,11]. We

also identified three models for other countries that tracked individuals across the full Alzhei-

mer’s disease continuum [12–14]. Among them, one model was based on six longitudinal

cohort studies from different countries; one model for the UK and one model for Spain used

model input parameters from multiple data sources. The Spain model represented the Spanish

population aged 40 years or older from 2010 to 2050 and was validated against published life

expectancy and incidence and prevalence of the dementia stages in Spain [13].

Among the ADOD economic evaluation models we identified, only one model reported

rigorous validation. The Alzheimer’s Disease Archimedes Condition-Event Simulator was vali-

dated by comparison of risk of mortality, institutionalization, and transition to Alzheimer’s

dementia predictions to external data from patient registries, clinical trials and literature. In

each validation, the simulation cohort’s baseline characteristics were matched to the study

population in external data [7]. Several other models reported comparison of estimated transi-

tion probabilities, cognitive trajectories, incidence of dementia and survival to published litera-

ture [6,8–11,13]. However, none of the ADOD economic evaluation models we identified in

the literature validated their models by comparing simulated output against population-based

samples. Model validation is a general challenge in the area of ADOD and many models suffer

from this limitation, due to the lack of publicly available data [10].

In this paper, we introduce and validate a microsimulation model to project trajectories in

cognitive test scores, FEM TICS27, across the full Alzheimer’s disease continuum, based on

PLOS ONE Project cognitive function in the elderly population

PLOS ONE | https://doi.org/10.1371/journal.pone.0274417 September 15, 2022 2 / 16

The University of Michigan Survey Research

Center. To request data access, please access the

HRS sharing site https://hrsdata.isr.umich.edu/

data-products/contributed-projects or contact

hrsquestions@umich.edu.

Funding: This research was supported by National

Institute on Aging under grants R01AG062277 and

P30AG024968. HHJ was supported under

R01AG062277. YW was supported under

P30AG024968. BT received and was supported

under P30AG024968.

Competing interests: NO authors have competing

interests

https://doi.org/10.1371/journal.pone.0274417
https://hrsdata.isr.umich.edu/data-products/contributed-projects
https://hrsdata.isr.umich.edu/data-products/contributed-projects
mailto:hrsquestions@umich.edu


nationally representative data of the US population aged 51 and older from the Health and

Retirement Study (HRS). We compare our model’s 10-year predictive performance against

longitudinal HRS data, using area under the receiver operating characteristics curve (AUROC)

[15] and five-fold cross validation. We also introduce our validation framework which we

believe is valuable to future microsimulation validation studies.

Methods

a. The Future Elderly Model (FEM) Overview

The Future Elderly Model (FEM) is a microsimulation model of health and economic out-

comes for the US population aged 51 and older. Here we summarize FEM’s core functions;

technical details are described in a technical appendix [16]. FEM uses first-order Markov tran-

sition models to simulate individuals’ aging progress. It captures outcomes including health

conditions, functional status, earnings and employment status, participation in government

benefit programs, and mortality. FEM has been used in many studies answering important

policy questions in aging and dementia [17,18]. In this study, we developed and validated a

new model for cognition measurement, TICS27 score, in FEM.

b. Data and measures

FEM uses data from the HRS, a biennial nationally-representative longitudinal survey in the

population with more than 37,000 respondents over age 50 in the US. Baseline interviews with

existing birth cohorts have been conducted in 1992, 1993, 1998, 2004, 2010, and 2016 with

oversampling of Hispanics and African-Americans. Every six years, the HRS enrolls a new

birth cohort in order to maintain a steadystate of the US population over age 50. Participants

are followed through the life course with the core biennial surveys and supplemental data col-

lections. Technical details on HRS sampling design, recruitment, and measurement are pub-

lished before [19]. In this validation study, our simulation sample consisted of HRS

respondents age 53 or older in 2006 in the 2006 HRS survey. All population-level analyses used

HRS sample weights.

With its goal of understanding the challenges and opportunities of aging, HRS includes a

section on cognition, since decline in cognitive functioning is a hallmark of aging and predic-

tive of mortality [20]. HRS uses two different sets of measures to assess cognitive status: for

respondents who complete the survey themselves (“self-respondents”), cognitive functioning

is assessed using an adapted version of the Telephone Interview for Cognitive Status (TICS)

[20,21]. For respondents who are not able to complete the survey themselves, questions about

changes in memory in the last two years are asked to proxy respondents in the HRS.

TICS is modeled after the Mini-Mental State Exam (MMSE) for use over the telephone, and

TICS scores can be converted to MMSE scores using a validated crosswalk [20,22]. TICS tests

respondents’ cognitive impairment and dementia status, and contains test items that evaluate

memory, concentration and executive function, for example by immediate and delayed word

recall, counting back from 100 by 7’s, and counting back from 20. Composite scores using

these test items create a measure of cognitive functioning ranging from 0 to 27 (TICS27)

[20,23]. Respondents with scores from 0 to 6 are classified as having dementia, from 7 to 11 as

having MCI, and from 12 to 27 as being cognitively normal. This approach was developed and

validated by Langa and Weir (2010) [24] and has since been used by many studies on cognitive

functioning [23,25,26]. To reduce measurement error in categorizing cognitive status based on

TICS27, we require two consecutive responses for dementia: one wave with dementia followed

by either dementia or death in the next wave. For MCI, we require either one wave with MCI

followed by MCI, dementia or death, or one wave with dementia followed by MCI. All other
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cases are categorized as cognitively normal. Cognitive status is considered an absorbing state;

once a respondent has been classified with “verified” dementia or MCI, we assume their cogni-

tive status cannot revert to a less severe state.

Our model’s target, TICS27 score, is missing from all respondents using a proxy respondent

in HRS. Some respondents cannot participate in the interview because of cognitive problems;

others might choose to use a proxy because they were working and were thus more likely to be

cognitively normal. For example, in 2016, among the 941 proxy respondents, 41.9% did not

think the respondent had any cognitive limitations, 6.2% thought the respondent may have

some cognitive limitations and 52.0% thought the respondent had cognitive limitations that

prevented him or her from being interviewed. For detailed proxy interview cognitive

impairment ratings from 2006–2016 HRS, please see Technical Table A-1 in S1 Appendix.

This missingness of TICS27 among respondents using a proxy was therefore assumed to be

correlated with respondents’ cognitive functioning, depending on the reason for using a

proxy. Since this missingness is not at random, and HRS does not provide imputed TICS27

values for respondents with a proxy, we adopted a multiple imputation strategy based on HRS’

approach for missing TICS27 among self-respondents. We used a combination of relevant

demographic, health, and economic variables, as well as prior wave cognitive variables to per-

form the imputation using the sequential regression method [27]. The multiple imputation

was performed using the multiple imputation (mi) command in Stata Version 16.0. Following

HRS’s practice, we did not impute for participants who were non-responsive to the survey in a

given wave.

c. Key transition models

FEM transition models are a mixture of continuous, binary, and categorical outcomes, with a

timescale that mimics the two-year structure of the HRS data. The marginal effects of two spe-

cific transition models from the FEM that are most relevant to this study, the TICS27 and mor-

tality transition models, are shown in Table 1. For model coefficients of these two transition

models, please refer to Technical Table A-2 in S1 Appendix. The TICS27 transition model was

estimated with an ordered probit model using HRS data from 2008 to 2016. An ordered probit

model was chosen because TICS27 is a ranked score ranging from 0 to 27. As can be seen in

Table 1, variables in the TICS27 model are the TICS27 score from two and four years prior, cog-

nitive status, demographic variables (age, gender, race and ethnicity, education), chronic disease

indicators, employment, widowhood, smoking status and body mass index. Our choice of vari-

ables aligns with evidence on risk factors for cognitive decline in existing literature [28]. Also,

we limited variables to information that is readily available from the survey, i.e. not based on

blood samples, genetic data, or other clinical procedures. The mortality transition model was

estimated with a probit model using HRS data from 2008 to 2016. Prior validation shows that

FEM projections on mortality are generally in line with observed mortality rates [29].

d. Model validation approach

We validated the FEM TICS27 model at both the population- and individual-levels. At the

population-level, we looked at two outcomes, TICS27 distribution comparisons and 10-year

changes in a composite measure of both cognition and mortality. At the individual-level, we

assessed FEM’s performance in predicting dementia in 2/4/6/8/10 years and significant decline

in TICS27 in two years using receiver operating characteristics (ROC) curves.

We validated the FEM’s TICS27 model using a five-fold cross validation approach, by com-

paring 10-year simulated population- and individual-level outcomes against observed HRS

data in 2016. All validation analyses results are based on 500 Monte Carlo simulations of FEM.
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Table 1. Marginal effect from FEM TICS27 and mortality transition model.

Variables TICS27 Coefficient (Std. Err) Mortality Coefficient (Std.Err)

Two-year lag TICS score 0.0915 (0.0015)���

Four-year lag TICS score 0.0955 (0.0017)���

Non-Hispanic Black -0.2343 (0.0116)��� 0.0028 (0.0023)

Hispanic -0.1502 (0.0144)��� -0.0094 (0.0031)��

Did not graduate high school -0.1361 (0.0131)��� -0.0002 (0.0022)

At least some college 0.1967 (0.0092)��� -0.0072 (0.0019)���

Male -0.0884 (0.0086)��� 0.0177 (0.0019)���

Slope of age spline before age 65 -0.0009 (0.0013) 0.0025 (0.0004)���

Slope of age spline ages 65–74 -0.0173 (0.0015)��� 0.0029 (0.0003)���

Slope of age spline ages 75 and older -0.0353 (0.0013)���

Slope of age spline ages 75–84 0.0040 (0.0003)���

Slope of age spline ages 85 and older 0.0067 (0.0004)���

Ever diagnosed with heart problems -0.0126 (0.0108) 0.0131 (0.0020)���

Ever diagnosed with stroke -0.1288 (0.0165)��� 0.0110 (0.0023)���

Ever diagnosed with cancer 0.0008 (0.0117) 0.0334 (0.0020)���

Ever diagnosed with hypertension -0.0355 (0.0088)��� 0.0097 (0.0019)���

Ever diagnosed with diabetes -0.0693 (0.0105)��� 0.0155 (0.0020)���

Ever diagnosed with lung disease -0.0430 (0.0147)�� 0.0294 (0.0023)���

Heart attack in past 2 years -0.0750 (0.0334)� 0.0049 (0.0047)

Working for pay 0.0943 (0.0100)���

Widowed -0.0298 (0.0121)� 0.0055 (0.0022)�

Ever smoked -0.0426 (0.0083)���

Verified ADOD/MCI ever -0.7105 (0.0155)���

Delta age -0.1374 (0.0208)���

Lag log BMI below 30 0.1314 (0.0350)���

Lag log BMI above 30 -0.0090 (0.0441)

Difficulty with one IADL 0.0162 (0.0028)���

Difficulty with two or more IADLs 0.0483 (0.0031)���

Difficulty with one ADL 0.0222 (0.0025)���

Difficulty with two ADLSs 0.0342 (0.0033)���

Difficulty with three or more ADLs 0.0603 (0.0028)���

Current smoker 0.0187 (0.0027)���

Diagnosed with heart problems by age 50 0.0051 (0.0067)

Diagnosed with stroke by age 50 -0.0107 (0.0167)

Diagnosed with cancer by age 50 -0.0083 (0.0057)

Diagnosed with hypertension by age 50 0.0027 (0.0042)

Diagnosed with diabetes by age 50 0.0142 (0.0034)���

Diagnosed with lung disease by age 50 -0.0278 (0.148)

Ever smoked at age 50 0.0061 (0.0022)��

Current smoker at age 50 0.0174 (0.0024)���

Ever diagnosed with congestive heart failure 0.0259 (0.0028)���

Notes: �, significant at α = 0.05

��, significant at α = 0.01

���, significant at α = 0.001.

https://doi.org/10.1371/journal.pone.0274417.t001
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A five-fold cross validation approach allows us to have separate datasets for estimation and

simulation to evaluate FEM TICS27 model’s performance in an independent dataset. Cross-

validation is a data resampling method to assess the generalizability of predictive models and

to prevent overfitting [30]. To do this, we first randomly partitioned our simulation sample

into five complementary subsets. We then saved one subset for simulation and used the other

four subsets to estimate transition models for this simulation. We repeated this process five

times so that each subset was used once for simulation. Finally, we pooled results from five

simulations on subsets together for validation analyses. We chose to use five folds since it has

been shown empirically that a five- to ten-fold cross validation is the optimal approach [31].

Two different samples were used in the validation analyses. One was the complete 2006

HRS sample, which included HRS respondents age 53 or older in 2006. This sample was used

in population-level distribution comparison analyses. The other was the 2006 HRS with full

10-year follow-up sample, which was a subset of the complete 2006 HRS sample and used to

determine the population-level 10-year change in cognitive/mortality status, and individual-

level analyses. This full 10-year follow-up sample required individuals to respond to every

wave of the HRS survey from 2006 to either 2016 or their death.

Population-level outcomes include TICS27 distribution comparisons and 10-year changes

in a composite measure of both cognition and mortality. We adopted this composite measure

since people with dementia have high mortality rates. Individual-level outcomes include pre-

dicting dementia status in 10 years and predicting decline larger than 3 TICS27 points within

2 years for patients with MCI.

On a population-level, the distribution of simulated TICS27 in 2016 was compared to the

2016 HRS population in the same age range (age 63 or older). We also analyzed the 10-year

change in status by comparing assignment of cognitive status or death by FEM in 2016 given

the 2006 cognitive status to the observed status in HRS. Cognitive status at death was deter-

mined by the cognitive status in the last wave before death.

On the individual level, we assessed FEM’s performance in predicting dementia in 10 years

and significant decline in TICS27 in two years using receiver operating characteristics (ROC)

curves. Though more commonly used in regression-based risk prediction models, ROC curves

have been used for validation of other disease simulation models as well [15,32]. For individ-

ual-level analyses, we ran FEM 500 times over a 10-year time horizon for every individual in

the 2006 HRS full 10-year follow-up sample. After 500 simulation iterations, we calculated the

percentages of iterations for every individual with specific outcomes for two measures: (1)

alive or dead with dementia in 2016; (2) significant decline (decline greater than or equal to 3

points) in TICS27 in 2008. Prior research found that a 3-point decline in MMSE indicated sig-

nificant decline [33,34]. Using a crosswalk between MMSE and TICS27, a 3-point decline in

MMSE translates to a 3-point decline in TICS27 for people with MCI (MMSE from 24 to 27)

[35]. We then ranked every individual in the simulation by their FEM-based risks for each sep-

arate measure. These ranks were compared to their actual outcome in the HRS data to generate

ROC curves. We used area under the ROC curve (AUROC), which is a commonly used mea-

sure for predictive model performance, to evaluate FEM’s performance on these two

measures.

We also compared our model’s performance to one of the best-performing models for pre-

dicting cognitive decline, COMPASS [36]. COMPASS used data from the ADNI database with

information on age, gender, education, APOE genotype and cognitive composite scores on

memory and executive functions to predict changes in MMSE scores over 24-months. COM-

PASS evaluated its performance on predicting significant decline in MMSE scores (3 points)

in MCI subjects in 2 years using AUROC. We compared FEM’s performance on predicting

significant TICS27 decline in MCI subjects in 2 years to COMPASS.
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The University of Southern California IRB approved this research under UP-18-00776

(“Ensuing Access to Novel Alzheimer’s and Dementia Treatments”) on November 21, 2019.

This is a retrospective study of secondary data from the Health and Retirement Study that is

de-identified and publicly available. This study uses HRS Public Release data which is fully

anonymized before researchers’ access. Prior to each interview, HRS participants are provided

with a written informed consent information document. At the start of each interview, all HRS

participants are read a confidentiality statement and give oral consent by agreeing to do the

interview. Their oral consents are documented in answers to the survey questionnaire. FEM is

programmed in C++, SAS and Stata, and all validation analyses were performed using Stata

Version 16.0.

Results

a. Sample characteristics

Weighted baseline characteristics for the 2006 HRS and the 2006 HRS with full 10-year follow-

up samples are shown in Table 2. Since the full follow-up sample includes relatively more

Table 2. Characteristics of the 2006 Health and Retirement Survey (HRS) respondents.

2006 HRS 2006 HRS w/ full 10-year follow-up P>|t|

Characteristics Mean

N 15,764 13,106

Age 66.91 67.34 0.000���

Race and Ethnicity

Non-Hispanic White 0.811 0.814 0.041�

Non-Hispanic Black 0.091 0.093 0.056

Hispanic 0.073 0.071 0.031�

Education

Less than high school 0.181 0.183 0.168

High School 0.347 0.348 0.654

Some college and above 0.472 0.469 0.165

TICS score 15.57 15.54 0.205

Verified cognitive status

Dementia 0.012 0.013 0.203

Mild Cognitive Impairment 0.089 0.090 0.203

Normal 0.900 0.898 0.203

Disease status

Heart disease ever 0.215 0.223 0.000���

Stroke ever 0.075 0.080 0.000���

Cancer ever 0.131 0.139 0.000���

Hypertension ever 0.517 0.525 0.001���

Diabetes ever 0.179 0.186 0.000���

Lung disease ever 0.083 0.089 0.000���

Heart attack 0.017 0.016 0.493

Work for pay 0.429 0.417 0.000���

Widowed 0.177 0.186 0.000���

Smoking ever 0.571 0.577 0.006��

Notes: �, significant at α = 0.05

��, significant at α = 0.01

���, significant at α = 0.001.

https://doi.org/10.1371/journal.pone.0274417.t002
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respondents who died between 2006 and 2016, respondents are older and have more chronic

conditions compared to the 2006 HRS sample. Other variables are comparable between the

two samples, including baseline TICS27 score and confirmed cognitive status. In 2006, the

mean TICS27 score for the HRS sample and the full follow-up samples were 15.57 and 15.54,

respectively (P = 0.21). In the 2006 HRS sample, 1.2% of respondents were living with demen-

tia, 8.9% had MCI and 90.0% were cognitively normal; in the full follow-up sample, 1.2% of

respondents were living with dementia, 9.0% had MCI and 89.8% were cognitively normal.

b. Population-level predictions

Fig 1 shows the distribution of TICS27 in 2006 (grey line) and the subsequent decline in this

cognitive measure in 2016 from FEM simulations (black line) and HRS observations (dashed

line), for HRS respondents ages 53+ and 65+ in 2006. Table 3 shows the mean TICS27 score,

10-year change in mean TICS27 score and TICS27 score at different percentiles for both FEM

and HRS, for HRS respondent ages 53+ and 65+ in 2006. In aggregate, the distribution of

TICS scores after ten years of FEM simulation matches the 2016 HRS distribution well, both at

the mean and at specific points in the distribution, for both age groups. For HRS respondents

ages 53+ in 2006, the mean ten-year change in TICS27 is -0.62, compared to -0.64 in FEM sim-

ulation; at the 10th, 50th and 90th percentiles of 2016 TICS27 distribution, the TICS27 score in

HRS is 9, 15, 21, and the TICS27 score in FEM is 9, 15, 20, respectively. For HRS respondents

ages 65+ in 2006, the mean ten-year change in TICS27 is -1.51, compared to -1.67 in FEM sim-

ulation; at the 10th, 50th and 90th percentiles of 2016 TICS27 distribution, the TICS27 score in

HRS is 6, 12, 18, and the TICS27 score in FEM is 5, 12, 18, respectively.

Table 4 shows the 10-year change in distributions of combined cognitive/mortality status

given a respondent’s initial status. The 2016 status has five categories: cognitively normal,

MCI, dementia, dead without dementia, and dead with dementia. Overall, compared to HRS

data, FEM assigns similar percentages of people to each cognitive/mortality category in 2016.

Of HRS respondents, 56.7% retained normal cognitive function between 2006 and 2016; FEM

assigns 58.5% of respondents to this category. In HRS in 2016, 9.9% of respondents were in the

MCI category, and 1.9% of respondents were in the dementia category; the predictions from

FEM are 9.0% and 2.5%, respectively. In HRS in 2016, 27.0% of respondents were dead without

dementia and 4.5% were dead with dementia; FEM predicts 25.5% and 4.5% of respondents to

be in these categories, respectively.

c. Individual-level predictions

Table 5 shows AUROC results for FEM predicting (1) dementia or death with dementia, and

(2) dementia conditional on being alive in 10 years, for both the full follow-up sample and

sub-population analyses (e.g. by race and ethnicity). Fig 2 shows the ROC curves for the full

follow-up sample (Panels A and B) and individuals with MCI in the 2006 sample (Panels C

and D). In the full follow-up sample, the AUROC for dementia or dead with dementia in 10

years is 0.904, the AUROC for dementia conditional on being alive is 0.868. FEM’s perfor-

mance on predicting MCI or worse is comparable to that of predicting dementia (Table 5).

Furthermore, FEM’s predictive performance is comparable for subgroups of age, race and eth-

nicity, education and disease status. For people aged 65 years or older in 2006, the AUROC for

dementia or dead with dementia is 0.875. For non-Hispanic Black and Hispanic people, the

AUROC for dementia or dead with dementia is 0.906 and 0.881, compared to 0.891 for non-

Hispanic White people. For people without a high school degree, the AUROC for dementia or

dead with dementia is 0.866, compared to 0.856 for people with high school education and

0.880 for people with at least some college education. For people who ever had a stroke before
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2006, the AUROC for dementia or dead with dementia is 0.875. For people with MCI in 2006,

the AUROC for dementia or dead with dementia is 0.720, and the AUROC for dementia con-

ditional on being alive is 0.705.

d. External comparison

Table 7 shows FEM’s AUROC results predicting significant decline (greater than or equal to 3

points) in TICS27 in two years and its comparison to the COMPASS model’s performance in

MCI subjects. The AUROC for FEM on predicting significant decline in TICS27 in two years

is 0.722 for people with MCI in 2006. FEM’s performance is better than Base COMPASS

Fig 1. Distribution comparison between HRS and FEM, 2006–2016.

https://doi.org/10.1371/journal.pone.0274417.g001
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(AUROC 0.641), which is a machine learning model that additionally uses APOE genotype

information. Advanced COMPASS (AUROC 0.814) outperforms FEM, although Advanced

COMPASS includes information not only on APOE genotype but also on neuropsychological

tests and validated composite scores for memory and executive functions.

Discussion

We extended the FEM microsimulation model to include a widely used cognitive test based on

nationally representative HRS data, using individual-level information on demographics (age,

gender, race and ethnicity, education), chronic disease indicators (heart disease, stroke, cancer,

hypertension, diabetes, lung disease, heart attack), employment, smoking status, marital status

and body mass index. The FEM TICS27 model can be used to estimate the future burden and

long-term value of treatments of cognitive decline in the US. It also provides a 10-year risk

score for dementia based on information attainable from a telephone-based survey.

To our knowledge, most disease simulation models for cognitive decline and dementia are

not validated or are not validated using an unbiased approach like five-fold cross validation.

Given the limited access to data and adoption of different cognitive function tests, validation

of modeling methods is a general challenge in the area of ADOD [10]. We are not aware of

data sources other than the HRS using TICS27 as cognitive function measurement that are

available as independent datasets for external validation. Adoption of five-fold cross validation

is an improvement compared to most existing economic evaluation models for ADOD in this

Table 3. Distribution comparison between HRS respondents and FEM simulation, 2006–2016.

Ages 53+ in 2006

1th 5th 10th 25th 50th 75th 90th 95th 99th Mean Diff (Mean)

2006 3 7 9 13 16 19 21 22 25 15.57

2016 HRS (observed) 3 7 9 12 15 18 21 22 24 14.95 -0.62

2016 FEM (predicted) 3 6 9 12 15 18 20 22 24 14.93 -0.64

Ages 65+ in 2006

1th 5th 10th 25th 50th 75th 90th 95th 99th Mean Diff (Mean)

2006 2 5 7 11 14 17 19 20 23 13.55

2016 HRS (observed) 1 4 6 9 12 15 18 19 22 12.04 -1.51

2016 FEM (predicted) 1 4 5 9 12 15 18 19 21 11.88 -1.67

Note: HRS stands for Health and Retirement Study, which is the observed survey data. FEM stands for Future Elderly Model, which generates the simulated results.

https://doi.org/10.1371/journal.pone.0274417.t003

Table 4. 10-year change in distributions of cognitive status based on TICS score, HRS and FEM.

Cognitively Normal

2016 (%)

MCI

2016 (%)

Dementia

2016 (%)

Dead w/o dementia

2016 (%)

Dead w/ dementia

2016 (%)

Total

HRS FEM HRS FEM HRS FEM HRS FEM HRS FEM

Cognitively Normal

2006

56.7 58.5 7.4 6.4 0.8 1.0 23.0 22.5 1.8 1.4 89.8

MCI

2006

0 0 2.5 2.6 0.9 1.2 4.0 3.0 1.7 2.2 9.0

Dementia

2006

0 0 0 0 0.2 0.3 0 0 1.0 0.9 1.3

Total 56.7 58.5 9.9 9.0 1.9 2.5 27.0 25.5 4.5 4.5 100

Note: HRS stands for Health and Retirement Study, which is the observed survey data. FEM stands for Future Elderly Model, which generates the simulated result.

https://doi.org/10.1371/journal.pone.0274417.t004
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situation to validate model performance. Using the same data for model estimation and valida-

tion can lead to an upward bias in model performance estimates due to overfitting. Although

k-fold cross validation is one of the most widely used data resampling methods to estimate the

true prediction error of models and to tune model parameters in risk prediction models, it is

rarely used in validation for disease simulation models. Cross validation enables us to assess

the generalizability of a model without using a new independent dataset, which is critical to

obtaining unbiased results for model prediction performance [30,31].

The FEM TICS27 model demonstrates excellent internal validity: the TICS27 distribution

and 10-year change in cognitive status generated by FEM simulation closely matches observed

HRS data, and the AUROCs are larger than 0.85 for dementia prediction. For prediction of sig-

nificant decline in MCI patients, FEM’s performance is comparable to one of the best-per-

forming models reported in the literature [36].

Table 5. Area under the receiver operating characteristics curve (AUROC) for predicting dementia from 5-fold cross-validation.

Sample Sample Size Outcome AUROC

Full sample 13,106 Dementia or dead w/ dementia 0.904

Dementia (conditional on alive) 0.868

MCI or worse or dead w/ MCI or worse 0.897

MCI or worse (conditional on alive) 0.826

Verified MCI in 2006 1,512 Dementia or dead w/ dementia 0.720

Dementia (conditional on alive) 0.705

Non-Hispanic White 9,922 Dementia or dead w/ dementia 0.891

Dementia (conditional on alive) 0.838

Non-Hispanic Black 1,824 Dementia or dead w/ dementia 0.906

Dementia (conditional on alive) 0.814

Hispanic 1,107 Dementia or dead w/ dementia 0.881

Dementia (conditional on alive) 0.827

Less than high school 2,983 Dementia or dead w/ dementia 0.866

Dementia (conditional on alive) 0.788

High School 4656 Dementia or dead w/ dementia 0.856

Dementia (conditional on alive) 0.821

Some college or above 5,467 Dementia or dead w/ dementia 0.880

Dementia (conditional on alive) 0.806

Age 65+ in 2006 6,272 Dementia or dead w/ dementia 0.875

Dementia (conditional on alive) 0.828

MCI or worse or dead w/ MCI or worse 0.861

MCI or worse (conditional on alive) 0.766

Ever had diabetes before 2006 2,681 Dementia or dead w/ dementia 0.884

Dementia (conditional on alive) 0.825

Ever had stroke before 2006 1,239 Dementia or dead w/ dementia 0.875

Dementia (conditional on alive) 0.849

Ever had hypertension before 2006 7,445 Dementia or dead w/ dementia 0.906

Dementia (conditional on alive) 0.859

Ever had heart disease before 2006 3,312 Dementia or dead w/ dementia 0.895

Dementia (conditional on alive) 0.833

To demonstrate FEM TICS27’s performance across years, Table 6 shows AUROC for predicting the main outcome, dementia or dead with dementia, in 2, 4, 6, 8 and 10

years. As shown, FEM TICS27’s predictive performance is highest for 2-year prediction and decreases as the prediction timeframe increases. The 10-year AUROC for

the full sample is still above 0.9.

https://doi.org/10.1371/journal.pone.0274417.t005

PLOS ONE Project cognitive function in the elderly population

PLOS ONE | https://doi.org/10.1371/journal.pone.0274417 September 15, 2022 11 / 16

https://doi.org/10.1371/journal.pone.0274417.t005
https://doi.org/10.1371/journal.pone.0274417


Fig 2. Receiver operating characteristics curve for predicting dementia in 10 years.

https://doi.org/10.1371/journal.pone.0274417.g002
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FEM TICS27’s performance on two individual-level outcomes, long-term prediction of

dementia and short-term prediction of cognitive decline, is comparable to or exceeds the per-

formance of existing models. Previously published studies reported AUROCs between 0.6 and

0.78 for prediction of AD/dementia within 3–40 years [37], which is lower than the AUROC of

0.904 reported in this study for prediction of 10-year dementia or dead with dementia. For

predictions of significant decline of cognitive test scores in two years, FEM TICS27’s perfor-

mance is comparable with one of the best-performing models, COMPASS, which won the Dia-

logue for Reverse Engineering And Method (DREAM) Alzheimer’s Disease Big Data

challenge. One of the drawbacks of COMPASS is that it requires knowledge of detailed clinical

information and APOE genotype, and is based on a selective disease registry, the ADNI data-

base [36]. FEM TICS27 on the other hand solely relies on demographic and survey-derived

variables, and can provide nationally representative estimates. Thus, FEM TICS27 demon-

strated its predictive accuracy for both long-term dementia status and short-term cognitive

decline outcomes. The increased performance of FEM over other models is likely because it

utilizes information on individual characteristics and behavior, like smoking, widowhood, and

disease history.

On the other hand, Advanced COMPASS is better at predicting outcomes for people with

MCI, which is especially hard because of heterogeneity in the prognosis and the disease pro-

gression with respect to patient characteristics [38]. For this specific group, additional clinical

and genotype information significantly improves prediction performance [36]. Future devel-

opment of FEM TICS27 with genotype, blood-based biomarker variables, behavioral symp-

toms and history of medication, which are available for a subsample of the HRS, will possibly

improve its performance for people with MCI. Additionally, future applications of FEM

TICS27 will include analyses of differences in cognitive trajectory by education, initial cogni-

tive status, and race and ethnicity. The model can also be implemented in microsimulations

for other countries.

With Aduhelm approved as the first ADOD DMT and more DMTs in the development

pipeline, the future looks promising. Though crucial, availability of DMT is only one step in

enhancing cognitive function in elderly population. Demonstrating value of treatment and

identification of people at risk of cognitive impairment are two very important components as

well. FEM microsimulation could help with these. Understanding the long-term impact of

ADOD DMTs beyond direct medical expenditure is crucial to its value demonstration [39]. As

randomized controlled trials can only generate short-term evidence on the efficacy of ADOD

DMTs, to demonstrate their long-term value, projection models are needed to estimate future

Table 7. Two-year TICS27 significant decline in MCI subjects and comparable results from COMPASS.

FEM TICS27 MCI Base COMPASS MCI Advanced COMPASS MCI

AUROC (random = 0.5) 0.722 0.641 0.814

Notes: FEM TICS27 is the model developed and validated in this paper. COMPASS is one of the best-performing models reported in the literature, which won the

Dialogue for Reverse Engineering And Method (DREAM) Alzheimer’s Disease Big Data challenge.

https://doi.org/10.1371/journal.pone.0274417.t007

Table 6. Area under the receiver operating characteristics curve (AUROC) for predicting dementia or dead with dementia for 2, 4, 6, 8 and 10 years.

2 years (2008) 4 years (2010) 6 years (2012) 8 years (2014) 10 years (2016)

Full sample 0.995 0.955 0.941 0.920 0.904

Age 65+ in 2006 0.993 0.946 0.929 0.902 0.883

Verified MCI in 2006 0.961 0.812 0.783 0.740 0.720

https://doi.org/10.1371/journal.pone.0274417.t006
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benefits. Based on nationally representative data and modeling a large spectrum of cognitive

functioning, FEM TICS27 is a useful tool to assess the long-term impact of these future

changes on the US healthcare system. Besides accurately modeling cognitive decline, FEM

tracks other relevant outcomes, such as functional limitations, physical health, formal and

informal care utilization, nursing home living, and medical care costs. FEM is able to provide

much-needed evidence on long-term value of ADOD DMT on a broad range of outcomes.

The advantage of FEM TICS27 is its high prediction accuracy using only information from a

telephone-based survey.

We present FEM TICS27’s model structure, variables, data sources and conduct validation

of its simulation outcomes against observed HRS data. We show that FEM TICS27 model can

accurately predict cognitive test scores covering the full ADOD disease continuum for a

nationally representative sample over a 10-year period. This paper demonstrated FEM

TICS27’s usefulness as a model for long-term economic evaluation for ADOD.

Supporting information

S1 Appendix. Technical appendix.

(DOCX)

Acknowledgments

We thank Dr. Jakub Hlávka, Dr. Darius Lakdawalla, Dr. Dana Goldman, Dr. Julie Zissimopou-

los and Dr. Duncan Ermini Leaf for their feedback on this work.

Author Contributions

Conceptualization: Bryan Tysinger.

Formal analysis: Yifan Wei, Bryan Tysinger.

Funding acquisition: Bryan Tysinger.

Investigation: Yifan Wei, Hanke Heun-Johnson, Bryan Tysinger.

Methodology: Yifan Wei, Hanke Heun-Johnson, Bryan Tysinger.

Project administration: Bryan Tysinger.

Supervision: Bryan Tysinger.

Validation: Yifan Wei, Bryan Tysinger.

Visualization: Yifan Wei.

Writing – original draft: Yifan Wei.

Writing – review & editing: Hanke Heun-Johnson, Bryan Tysinger.

References
1. 2019 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia. 2019; 15(3):321–87.

2. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline:

2019. Alzheimer’s & Dementia: Translational Research & Clinical Interventions. 2019; 5:272–93.

https://doi.org/10.1016/j.trci.2019.05.008 PMID: 31334330

3. Dunn B, Stein P, Cavazzoni P. Approval of Aducanumab for Alzheimer Disease—the FDA’s Perspec-

tive. JAMA Internal Medicine. 2021. https://doi.org/10.1001/jamainternmed.2021.4607 PMID:

34254984

PLOS ONE Project cognitive function in the elderly population

PLOS ONE | https://doi.org/10.1371/journal.pone.0274417 September 15, 2022 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0274417.s001
https://doi.org/10.1016/j.trci.2019.05.008
http://www.ncbi.nlm.nih.gov/pubmed/31334330
https://doi.org/10.1001/jamainternmed.2021.4607
http://www.ncbi.nlm.nih.gov/pubmed/34254984
https://doi.org/10.1371/journal.pone.0274417


4. Wimo A. The End of the Beginning of the Alzheimer’s Disease Nightmare: A Devil’s Advocate’s View.

Journal of Alzheimer’s disease: JAD. 2018; 64(s1):S41–S6. https://doi.org/10.3233/JAD-179905

PMID: 29710714

5. Lin P-J, Cohen JT, Neumann PJ. Preparing the health-care system to pay for new Alzheimer’s drugs.

Alzheimer’s & Dementia. 2020; 16(11):1568–70. https://doi.org/10.1002/alz.12155 PMID: 32808733

6. Spackman DE, Kadiyala S, Neumann PJ, Veenstra DL, Sullivan SD. Measuring Alzheimer Disease

Progression with Transition Probabilities: Estimates from NACC-UDS. Current Alzheimer research.

2012; 9(9):1050–8. https://doi.org/10.2174/156720512803569046 PMID: 22175655

7. Kansal AR, Tafazzoli A, Ishak KJ, Krotneva S. Alzheimer’s disease Archimedes condition-event simula-

tor: Development and validation. Alzheimer’s & Dementia: Translational Research & Clinical Interven-

tions. 2018; 4:76–88. https://doi.org/10.1016/j.trci.2018.01.001 PMID: 29687076

8. Jutkowitz E, MacLehose RF, Gaugler JE, Dowd B, Kuntz KM, Kane RL. Risk Factors Associated With

Cognitive, Functional, and Behavioral Trajectories of Newly Diagnosed Dementia Patients. The Jour-

nals of Gerontology: Series A. 2017; 72(2):251–8.

9. Herring W, Keenan A, Mauskopf J, Michael T, Wiegand F. The potential economic value of disease-

modifying treatments in Alzheimer’s disease: patient-level simulation of predementia symptom trajecto-

ries. Value in Health. 2017; 20(5):A12.

10. Green C, Zhang S. Predicting the progression of Alzheimer’s disease dementia: A multidomain health

policy model. Alzheimer’s & Dementia. 2016; 12(7):776–85. https://doi.org/10.1016/j.jalz.2016.01.011

PMID: 27016691

11. Davis M, O’Connell T, Johnson S, Cline S, Merikle E, Martenyi F, et al. Estimating Alzheimer’s Disease

Progression Rates from Normal Cognition Through Mild Cognitive Impairment and Stages of Dementia.

Current Alzheimer Research. 2018; 15(8):777–88. https://doi.org/10.2174/

1567205015666180119092427 PMID: 29357799

12. Vermunt L, Sikkes SAM, van den Hout A, Handels R, Bos I, van der Flier WM, et al. Duration of preclini-

cal, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE geno-

type. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association. 2019; 15(7):888–98.

13. Soto-Gordoa M, Arrospide A, Moreno-Izco F, Martı́nez-Lage P, Castilla I, Mar J. Projecting Burden of

Dementia in Spain, 2010–2050: Impact of Modifying Risk Factors. Journal of Alzheimer’s Disease.

2015; 48(3):721–30. https://doi.org/10.3233/JAD-150233 PMID: 26402090

14. Anderson R, Knapp M, Wittenberg R, Handels R, Schott JM. Economic Modelling of Disease-Modifying

Therapies in Alzheimer’s Disease. London: Personal Social Services Research Unit; 2018.

15. Pandya A, Sy S, Cho S, Alam S, Weinstein MC, Gaziano TA. Validation of a Cardiovascular Disease

Policy Microsimulation Model Using Both Survival and Receiver Operating Characteristic Curves. Medi-

cal Decision Making. 2017; 37(7):802–14. https://doi.org/10.1177/0272989X17706081 PMID:

28490271

16. Goldman DP, Leaf DE, Sullivan J, Tysinger B. The Future Elderly Model: Technical Documentation:

Univeristy of Southern California; 2018.

17. Zissimopoulos J, Crimmins E, St.Clair P. The Value of Delaying Alzheimer’s Disease Onset. Forum for

Health Economics & Policy. 2015; 18(1):25–39.

18. Zissimopoulos JM, Tysinger BC, St.Clair PA, Crimmins EM. The Impact of Changes in Population

Health and Mortality on Future Prevalence of Alzheimer’s Disease and Other Dementias in the United

States. The Journals of Gerontology: Series B. 2018; 73(suppl_1):S38–S47. https://doi.org/10.1093/

geronb/gbx147 PMID: 29669100

19. Sonnega A, Faul JD, Ofstedal MB, Langa KM, Phillips JW, Weir DR. Cohort Profile: the Health and

Retirement Study (HRS). International Journal of Epidemiology. 2014; 43(2):576–85. https://doi.org/

10.1093/ije/dyu067 PMID: 24671021

20. Ofstedal MB, Fisher GG, Herzog AR. Documentation of Cognitive Functioning Measures in the Health

and Retirement Study. Ann Arbor, Michigan: Institute for Social Research, University of Michigan;

2005.

21. Brandt J, Spencer M, Folstein M. The telephone interview for cognitive status. Neuropsychiatry, Neuro-

psychology, and Behavioral Neurology. 1988; 1(2):111–7.

22. Fong TG, Fearing MA, Jones RN, Shi P, Marcantonio ER, Rudolph JL, et al. The Telephone Interview

for Cognitive Status: Creating a crosswalk with the Mini-Mental State Exam. Alzheimer’s & dementia:

the journal of the Alzheimer’s Association. 2009; 5(6):492–7.

23. Crimmins EM, Kim JK, Langa KM, Weir DR. Assessment of Cognition Using Surveys and Neuropsy-

chological Assessment: The Health and Retirement Study and the Aging, Demographics, and Memory

Study. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences. 2011; 66B

(Suppl 1):i162–i71.

PLOS ONE Project cognitive function in the elderly population

PLOS ONE | https://doi.org/10.1371/journal.pone.0274417 September 15, 2022 15 / 16

https://doi.org/10.3233/JAD-179905
http://www.ncbi.nlm.nih.gov/pubmed/29710714
https://doi.org/10.1002/alz.12155
http://www.ncbi.nlm.nih.gov/pubmed/32808733
https://doi.org/10.2174/156720512803569046
http://www.ncbi.nlm.nih.gov/pubmed/22175655
https://doi.org/10.1016/j.trci.2018.01.001
http://www.ncbi.nlm.nih.gov/pubmed/29687076
https://doi.org/10.1016/j.jalz.2016.01.011
http://www.ncbi.nlm.nih.gov/pubmed/27016691
https://doi.org/10.2174/1567205015666180119092427
https://doi.org/10.2174/1567205015666180119092427
http://www.ncbi.nlm.nih.gov/pubmed/29357799
https://doi.org/10.3233/JAD-150233
http://www.ncbi.nlm.nih.gov/pubmed/26402090
https://doi.org/10.1177/0272989X17706081
http://www.ncbi.nlm.nih.gov/pubmed/28490271
https://doi.org/10.1093/geronb/gbx147
https://doi.org/10.1093/geronb/gbx147
http://www.ncbi.nlm.nih.gov/pubmed/29669100
https://doi.org/10.1093/ije/dyu067
https://doi.org/10.1093/ije/dyu067
http://www.ncbi.nlm.nih.gov/pubmed/24671021
https://doi.org/10.1371/journal.pone.0274417


24. Langa KM, Kabeto M, Weir D. Report on race and cognitive impairment using HRS in 2010 Alzheimer’s

disease facts and figures. Retrieved July. 2010; 12:2010.

25. Hurd MD, Martorell P, Delavande A, Mullen KJ, Langa KM. Monetary Costs of Dementia in the United

States. New England Journal of Medicine. 2013; 368(14):1326–34. https://doi.org/10.1056/

NEJMsa1204629 PMID: 23550670

26. Chen Y, Tysinger B, Crimmins E, Zissimopoulos JM. Analysis of dementia in the US population using

Medicare claims: Insights from linked survey and administrative claims data. Alzheimer’s & Dementia:

Translational Research & Clinical Interventions. 2019; 5:197–207. https://doi.org/10.1016/j.trci.2019.

04.003 PMID: 31198838

27. McCammon RJ, Fisher GG, Hassan H, Faul JD, Rogers W, Weir DR. Health and Retirement Study

Imputation of Cognitive Functioning Measures: 1992–2016. Ann Arbor, Michigan: Survey Research

Center, University of Michigan; 2019.

28. Baumgart Matthew SHM, Carrillo Maria C., Fazio Sam, Kim Hye, Johns Harry. Summary of the evi-

dence on modifiable risk factors for cognitive decline and dementia: A population-based perspective.

Alzheimer’s & Dementia. 2015; 11(6):718–26. https://doi.org/10.1016/j.jalz.2015.05.016 PMID:

26045020

29. Leaf DE, Tysinger B, Goldman DP, Lakdawalla DN. Predicting quantity and quality of life with the Future

Elderly Model. Health Economics. 2020; n/a(n/a).

30. Berrar D. Cross-Validation. Encyclopedia of Bioinformatics and Computational Biology2019:542–5.

31. Kohavi R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.

Ijcai. 1995; 14(2):1137–45.

32. Tysinger B. Validating risk factor and chronic disease projections in the Future Adult Model. Interna-

tional Journal of Microsimulation. 2020; 13(3):54–69.

33. Hensel Anke MCA, Steffi G. Riedel-Heller. Measuring cognitive change in older adults: reliable change

indices for the Mini-Mental State Examination. Journal of Neurology, Neurosurgery & Psychiatry. 2007;

78:1298–303.

34. Stein J.LM., Wagner M, Wolfsgruber S, Scherer M., Kohler M., Eisele M, et al. Assessing cognitive

changes in the elderly: Reliable Change Indices for the Mini-Mental State Examination. Acta Psychia-

trica Scandinavica. 2012; 126.3:208–18. https://doi.org/10.1111/j.1600-0447.2012.01850.x PMID:

22375927

35. Jakub P. Hlavka JCY, Darius N Lakdawalla. Crosswalk between the Mini-Mental State Examination

and the Telephone Interview for Cognitive Status (TICS-27/30/40). University of Southern California

2021.

36. Zhu F, Panwar B, Dodge HH, Li H, Hampstead BM, Albin RL, et al. COMPASS: A computational model

to predict changes in MMSE scores 24-months after initial assessment of Alzheimer’s disease. Scien-

tific Reports. 2016; 6(1):34567. https://doi.org/10.1038/srep34567 PMID: 27703197

37. Albrecht JS, Hanna M, Kim D, Perfetto EM. Predicting Diagnosis of Alzheimer’s Disease and Related

Dementias Using Administrative Claims. Journal of Managed Care & Specialty Pharmacy. 2018; 24

(11):1138–45. https://doi.org/10.18553/jmcp.2018.24.11.1138 PMID: 30362918

38. Lin P-J, Neumann PJ. The economics of mild cognitive impairment. Alzheimer’s & Dementia. 2013; 9

(1):58–62. https://doi.org/10.1016/j.jalz.2012.05.2117 PMID: 23141385

39. Barbarino PG, Anders; Neumann Peter J. Long-term value demonstration in Alzheimer’s disease: evi-

dence needs. Signal. 2022; (07).

PLOS ONE Project cognitive function in the elderly population

PLOS ONE | https://doi.org/10.1371/journal.pone.0274417 September 15, 2022 16 / 16

https://doi.org/10.1056/NEJMsa1204629
https://doi.org/10.1056/NEJMsa1204629
http://www.ncbi.nlm.nih.gov/pubmed/23550670
https://doi.org/10.1016/j.trci.2019.04.003
https://doi.org/10.1016/j.trci.2019.04.003
http://www.ncbi.nlm.nih.gov/pubmed/31198838
https://doi.org/10.1016/j.jalz.2015.05.016
http://www.ncbi.nlm.nih.gov/pubmed/26045020
https://doi.org/10.1111/j.1600-0447.2012.01850.x
http://www.ncbi.nlm.nih.gov/pubmed/22375927
https://doi.org/10.1038/srep34567
http://www.ncbi.nlm.nih.gov/pubmed/27703197
https://doi.org/10.18553/jmcp.2018.24.11.1138
http://www.ncbi.nlm.nih.gov/pubmed/30362918
https://doi.org/10.1016/j.jalz.2012.05.2117
http://www.ncbi.nlm.nih.gov/pubmed/23141385
https://doi.org/10.1371/journal.pone.0274417

