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Abstract: In this work, we have successfully produced a conductive and stretchable knitted cotton
fabric by screen printing of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)
and poly(dimethylsiloxane-b-ethylene oxide)(PDMS-b-PEO) conductive polymer composite. It was
observed that the mechanical and electrical properties highly depend on the proportion of the polymers,
which opens a new window to produce PEDOT:PSS-based conductive fabric with distinctive properties
for different application areas. The bending length analysis proved that the flexural rigidity was
lower with higher PDMS-b-PEO to PEDOT:PSS ratio while tensile strength was increased. The SEM
test showed that the smoothness of the fabric was better when PDMS-b-PEO is added compared to
PEDOT:PSS alone. Fabrics with electrical resistance from 24.8 to 90.8 kΩ/sq have been obtained by
varying the PDMS-b-PEO to PEDOT:PSS ratio. Moreover, the resistance increased with extension
and washing. However, the change in surface resistance drops linearly at higher PDMS-b-PEO to
PEDOT:PSS ratio. The conductive fabrics were used to construct textile-based strain, moisture and
biopotential sensors depending upon their respective surface resistance.

Keywords: conductive polymer composite; PEDOT:PSS; flexible electronics; wearable application

1. Introduction

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) conductive polymer is
well-known for its high conductivity and applications in conductive synthetic textiles. It has been used
with encouraging results as electrodes for flexible electronics. Unfortunately the use of PEDOT:PSS is
currently constrained by its brittleness and limited processability. As a result many researchers have
been trying preparing PEDOT:PSS-based conductive polymer composites. For instance, PEDOT:PSS
and graphene oxide (GO) as an efficient alternative structure for indium tin oxide (ITO) in organic
photovoltaics [1], ITO-PEDOT:PSS/poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester/Al [2],
poly (vinyl alcohol) (PVA)–PEDOT:PSS blend filled with synthesized GO and reduced GO by solvent
casting technique [3], PEDOT:PSS@polyurethane nonwovens by electrospinning and dip-coating [4],
super paramagnetic PEDOT/magnetite nano particles [5], GO/glucose/PEDOT:PSS super capacitor [6],
graphene and poly(3,4-ethylenedioxy thiophene)–poly(styrenesulfonate) (G-PEDOT:PSS) [7] an
electroactive bacterium, Shewanellaoneidensis MR-1, inside a conductive three-dimensional
PEDOT:PSS matrix [8], thermoelectric PEDOT:PSS with polyurethane [9], UV-ozone treated
GO/PEDOT:PSS [10], graphenenano-platelets with PEDOT:PSS solutions to produce conductive,
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breathable, and light-weight mercerized cotton fabrics by spray coating [11]. PVA, phosphoric acid,
PEDOT:PSS, and silver flakes [12], 3D graphene–PEDOT:PSS skeleton with poly(dimethylsiloxane)
(PDMS) [13], and single-walled carbon nanotubes/PEDOT:PSS coated Tenano-rod composite films [14]
have all been successfully developed. Though promising results have been found, a truly textile-based
conductive device with adequate flexibility and stretchability without intensive impact on the bulk
property of the textile fabric is still required.

On the other hand highly flexible and biocompatible conductive polymer composites are required.
Because it is biocompatible, transparent, gas permeable, and economical, PDMS is widely used in
medical research and technology, and there are a wide array of manufacturing techniques used for
forming PDMS including soft-lithography and its derivatives, molding, dip casting, spin coating and
many others. Besides, PDMS has a dielectric constant and a tunable elasticity which make it suitable
for flexible electronic sensors [15]. As a result, PDMS-based flexible composites have been studied
by many researchers. For example, high strain biocompatible PDMS-based conductive graphene
and multi-walled carbon nanotube as a nano-composite strain sensors [16],electrically conductive
PDMS-grafted carbon nanotubes-reinforced silicone elastomer [17], enhanced conductivity behavior of
PDMS hybrid composites containing exfoliated graphite nano-platelets and carbon nano-tubes [18],
high electro-conductive PDMS/short carbon fiber binary composites with electrical conductivity of
1.67 × 102 S/m [19], conductive elastomers based on multi-walled carbon nanotubes in PDMS with
up to 0.01 S/cm conductivity [20], silver nano-wire network embedded in PDMS as a stretchable,
transparent, and conductive substrate with 15 Ohm/sq [20], and stretchable electronics based on
Ag-PDMS PCB (Printed circuit board) with a typical resistance of 2 Ohms/cm [21], have been reported.

It was noticed that the common limitations of the conductive polymer composite-based conductive
textiles reported in many works of the literature are that they possess inadequate flexibility, stretchability,
and biocompatibility. Moreover, technical and scientific experimental evidence about the effect the
conductive polymer composite has on the textile bulk properties like flexural rigidity, tensile strength,
and extension at break, were not reported, which does not allow to determine if the fabrics still remain
a true textile or if they lost their texture.

Therefore, another approach is introduced in this work to produce a PEDOT:PSS Clevios PH
1000 (Figure 1a) and PDMS-b-PEO (Figure 1b) conductive polymer composite-based fabric. As fabric,
we selected knitted cotton, as cotton fabric is available everywhere and making cotton conductive
will make access to conductive fabric easier. In addition, this work contains an in-depth study on the
properties of the conductive textile, not only from an electronically point of view, but also as a textile
material. The effect of the conductive polymer composite on bending length, flexural rigidity, tensile
strength, and extension at break, thickness, add-on and weight has been studied.
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Figure 1. Chemical structure: (a) polystyrene sulfonate (PEDOT:PSS); (b) poly(dimethylsiloxane-b-ethylene
oxide) (PDMS-b-PEO).
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2. Materials and Methods

2.1. Material and Chemicals

The conductive textile fabric produced consists of two parts: a water repellent textile substrate
and an electro-conductive polymer composite. A weft knitted cotton fabric (S0) with 140 GSM
and 0.5 mm thickness obtained from UGent, MaTCh laboratory was used as the textile fabric.
Nano Spray water repellent (WR) for textile obtained from Lab@Home, Netherlands was utilized.
PEDOT:PSS PH1000 Clevious conductive polymer obtained from Ossila Ltd. (Sheffield, UK) and
poly(dimethylsiloxane-b-ethylene oxide) methyl terminated (PDMS-b-EO) obtained from Polyscience,
Inc. (Warrington, UK) were used to produce the conductive polymer composite. The sheet resistance
of each conductive polymer composite (PEDOT:PSS/PDMS-b-PEO) screen-printed fabric with different
dimensions (sample sizes) was measured by a two point-method.

2.2. Methods

2.2.1. Fabric Water Repellency Pre-Treatment

Before applying the PEDOT:PSS/PDMS-b-PEO conductive polymer composite (CPC), the fabric
was pre-treated with WR to impart a hydrophobic effect on the fabric surface, and therefore prevent
absorption of CPC into the fabric structure giving a confined CPC distribution within the required
area. 3% owf (own weight of fabric) WR was gently sprayed on the fabric surface and then dried at
80 ◦C for 3 min. A drop test with water and PEDOT:PSS performed on the fabric showed an effective
hydrophobicity as shown in Figure 2.
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Figure 2. Effect of WR treatment on knitted cotton fabric: (a) PEDOT:PSS polymer dispersion on
untreated fabric (S0); (b) drops of water on untreated fabric (S0); (c) drops of water on water repellent
(WR)-treated fabric (S1); (d) PEDOT:PSS polymer dispersion on water repellent (WR)-treated fabric.

2.2.2. Flat Screen Printing

Flat screen printing was preferred for this work because attaining the required conductive polymer
composite paste viscosity and transferring it to the substrate by this technique is straightforward. Other
possible techniques that could be explored are transfer printing [22], while also mechanics designs via
transfer printing may provide another effective route toward stretchable conductive fabric [23].

Different amounts of PDMS-PEO was manually mixed with a fixed amount of PEDOT:PSS (4 ml)
for 3 min at room temperature. A mixing rod was used to prepare a homogenous blend of the two
polymers. It was observed that stirring of the polymers showed a shearing property, the mixture
solution was converted into a thicker paste which is convenient for screen printing. As a result, any
thickening agent like present in conventional screen printing was not employed. Then the paste was
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applied to the surface of WR-treated cotton fabric (S1) via flat screen printing. A gentle agitation of the
PEDOT:PSS and PDMS-b-PEO mix formed a thick paste and then the paste was simply swept over the
flat screen mesh by a mini squeegee to improve the distribution. The overall printing process for this
work is schematically represented in Figure 3.
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150 ◦C for 5 min. The printed samples were thoroughly washed with distilled water. An example of
the actual conductive knitted fabric produced is shown Figure 4.
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Figure 4. (a) Schematic design of the conductive textile fabric; (b) actual conductive textile fabric.

To study the effect of PDMS-b-PEO on surface resistance, ten different ratios of PDMS-b-PEO to
PEDOT:PSS (Table 1) were prepared and applied on the previously WR-treated knitted fabric via screen
printing over an area of 62.5 cm2 (12.5 cm × 5 cm). The solid add-ons of the PEDOT:PSS/PDMS-b-PEO
conductive polymer composite on the textile fabric were calculated using Equation (1).

w = (Wa −Wb)/A, (1)
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where, Wa = weight of fabric after printing in g and Wb = weight of fabric before printing in g, A =

coated surface area in cm2 and w = solid add on per coated surface area (A) in g/cm2.

Table 1. Mix ratios of the conductive polymer composite and weight before printing.

Sample r
[%]

Vc
[ml]

Ve
[ml]

Wb
[g]

A
[cm2]

r00 0 4 0 1.655 5 × 12.5
r10 10 4 0.4 1.653 5 × 12.5
r20 20 4 0.8 1.629 5 × 12.5
r30 30 4 1.2 1.608 5 × 12.5
r40 40 4 1.6 1.578 5 × 12.5
r50 50 4 2 1.645 5 × 12.5
r60 60 4 2.4 1.678 5 × 12.5
r70 70 4 2.8 1.661 5 × 12.5
r80 80 4 3.2 1.622 5 × 12.5
r90 90 4 3.6 1.628 5 × 12.5

The respective solid add-ons (w) for each percentage volume mix ratio of PDMS-b-PEO to
PEDOT:PSS are provided in Table 1. The percentage volume mix ratio was calculated using Equation (2).

r = (Ve/Vc) × 100, (2)

where, Ve = volume of PDMS-b-PEO in ml, Vc = volume of PEDOT:PSS in ml, and r = percentage
volume mix ratio of PDMS-b-PEO to PEDOT:PSS in %.

2.2.3. Mechanical Characterization

Thickness: The thickness was determined using ISO 5084:1996(E) (determination of thickness of
textile and textile products) using “Mitutoyo Digimatic Indicator.”

Bending Analysis: The bending length was measured according to the test method BS
3356:1990using a bending meter. Using the appropriate mean value, we calculated the flexural
rigidity G, in mg cm, separately for the warp and weft directions by Equation (3).

G = 0.1MC3, (3)

where, G = flexural rigidity (mg cm), C = bending length (cm), M = mass/area of the specimen (g/m2).
Tensile Strength and Elongation at Break: The strength and elongation at break were tested using

INSTRON universal strength tester. A tensile test according to ISO 13934-1 was used.
SEM analysis of CPC: The surface topology, cracks, holes, and appearance of yarns within the

fabric before and after coatings were studied using FEI Quanta 200 FFE-SEM. Images were taken
with an accelerating voltage of 20 kV. The non-conductive samples were prepared prior to analysis by
applying a gold coating using Balzers Union SKD 030 sputter coater.

2.2.4. Electrical Characterization

The sheet resistance of all samples was measured by using two-point methods. The samples were
placed in a 3-7/8" MaxSteel Light Duty Drill Vise 83070 Stanley Hand Tool on both ends to make them
stable for measurement as presented in Figure 5. The effect of stretching on sheet resistance has been
studied from 0 to 35% elongation. The effect of repeated stretching on the sheet resistance has been
studied by stretching the samples to their infliction point within five seconds, releasing from stretch
and measuring the sheet resistance after 5 s.The stretching and releasing have been continued until the
sheet resistance reached an infinite value.
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In addition, we have constructed a 2.5 × 5 cm strain and moisture electrode from sample r60 as a
demonstrator. We have also developed a PEDOT:PSS/PDMS-b-PEO (4:1) coated cotton fabric with a
332.5 Ω sheet resistance by increasing the add-on to 0.013 g/cm2 and tested this for electrocardiography
(ECG) and electroencephalography (EEG) electrodes.

To study the sensing stability of the conductive polymer composite-treated fabric an Arduino
Nano set-up for this particular purpose with the circuitry in Figure 6 was used. One end of the
PEDOT:PSS/PDMS-b-PEO CPC-treated fabric was connected to 5V of Arduino Nano input and the
other was connected to 1MΩpull-down resistor and analog-to-digital converter (ADC) input. An IDE
program suitable for reading out dynamically the resistance of the CPC was written. Then, the
percentage change in resistance at its respective change in elongation from 0 to 35% was calculated
using Equation (4).

∆R = 100 × (Rf − Ri)/Ri, (4)

where, ∆R = percentage change in resistance (%), Ri = initial resistance (kΩ), Rf = final resistance (kΩ).
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In addition, the effect of washing on the surface resistance was measured.
PEDOT:PSS/PDMS-b-PEO-coated knitted cotton fabric specimens of 4 × 4 cm were sandwiched
between cotton fabric and polyester fabric and then sewn along all the four sides to form a composite
specimen. Washing solution containing 5 g/l soap was taken into the launder-o-meter with a liquor
ratio of 1:40. The specimen was treated for 30 min at 30 ◦C at a speed of 40 revolutions per minute.
The specimen was removed and rinsed in cold water. The stitch was opened on three sides and dried
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in shadow. The surface resistance after washing was measured using a multi-meter and the two-point
method. Finally, the percentage change in surface resistance was calculated using Equation (4).

3. Result and Discussion

3.1. Mechanical Property Analysis

3.1.1. Solid Add-on

The solid add-on (w) of the conductive polymer composite on the knitted cotton fabric obviously
increased with the increase in the amount of PDMS-b-PEO percentage mix ratio as represented in
Table 2. This increase in add-on due to the increase in the amount of PDMS-b-PEO may raise the sheet
resistance as the conductive component could probably be trapped inside the PDMS-b-PEO elastomer.

Table 2. Solid add-on of coated samples.

Sample Vc
[ml]

Ve
[ml]

Wb
[g]

Wa
[g]

A
[cm2]

w
[g/cm2]

r00 4 0 1.655 1.913 5 × 12.5 0.0041
r10 4 0.4 1.653 2.142 5 × 12.5 0.0078
r20 4 0.8 1.629 2.344 5 × 12.5 0.0114
r30 4 1.2 1.608 2.401 5 × 12.5 0.0127
r40 4 1.6 1.578 2.462 5 × 12.5 0.0141
r50 4 2 1.645 2.44 5 × 12.5 0.0144
r60 4 2.4 1.678 2.646 5 × 12.5 0.0155
r70 4 2.8 1.661 2.671 5 × 12.5 0.0162
r80 4 3.2 1.622 2.688 5 × 12.5 0.0171
r90 4 3.6 1.628 2.733 5 × 12.5 0.0177

3.1.2. Thickness Analysis

From Figure 7, the thickness of the fabric increased by 0.03 mm when WR is applied. After the
conductive polymer composite has been applied, the thickness has moreover increased by less than
or equal to 0.14 mm until a percentage mix ratio of 60% and continues with a thickness equal to the
sample r00 until the mix ratio is 90% (sample r90). This shows that the presence of PDMS-b-PEO has
less effect on the thickness than when PEDOT:PSS alone (sample r00) was utilized. This could have a
positive contribution to the flexibility of the fabric.
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3.1.3. Bending Length Analysis

In Table 3, we presented the measured values of bending length and respective calculated flexural
rigidity according to Equation (3). The fabric became stiffer when treated with a water-repelling agent,
as evidenced by an increase in bending length of 29%. The fabric became again stiffer when the CPC
was applied, with double the bending length of the r00 sample over the S0 sample (base cotton fabric).
Moreover, this increase in bending length was more intensive when PEDOT:PSS alone was used. For
instance, the bending length of the PEDOT:PSS-treated fabric decreased on an average by 11% when r
was 50% (sample r50) and the flexural rigidity reduced by 13%.

Table 3. Bending length and flexural rigidly results.

Fabric
Weight (g/m2) Bending Length (cm) Flexural Rigidity (mg cm)

Wale Direction Course Direction Average Wale Direction Course Direction Average

Face Back Face Back Face Back Face Back

S0 140.0 1.3 1.2 1.3 1.7 1.4 27.3 24.2 27.3 71.2 34.8
S1 146.0 1.8 1.7 1.7 1.9 1.8 78.2 65.6 71.7 100.1 78.2
r00 176.0 3.0 2.9 2.9 2.5 2.8 475.2 407.4 407.4 262.0 382.2
r10 191.0 2.9 2.8 2.8 2.4 2.7 456.3 397.2 428.3 247.9 375.9
r20 199.0 2.9 2.7 2.7 2.3 2.7 460.7 396.1 409.4 245.3 371.4
r30 205.0 2.8 2.7 2.7 2.2 2.6 454.9 394.6 408.0 230.4 364.5
r40 209.0 2.8 2.7 2.6 2.2 2.6 453.9 388.9 371.6 219.5 350.6
r50 213.0 2.7 2.6 2.6 2.1 2.5 433.4 383.1 353.2 200.1 333.8
r60 216.0 2.7 2.6 2.5 2.1 2.5 415.8 370.9 341.6 191.6 321.6
r70 221.0 2.6 2.5 2.5 2.0 2.4 392.9 349.5 341.2 179.5 307.4
r80 224.0 2.5 2.5 2.5 1.9 2.3 362.8 337.6 333.5 153.6 287.0
r90 228.0 2.5 2.5 2.4 1.9 2.3 356.3 335.3 315.2 149.1 279.2

3.1.4. Tensile Strength

From the load-elongation curve in Figure 8, both the tensile strength and strain at break of the
fabric reduced from 72.2 to 68.1 N and 115.3 to 112.3% because of the water repellent treatment. This
could be due to the effect of the water repellent that might cause a very slight degradation during
drying and curing, but is overall a minor influence on the textile properties.
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The application of only PEDOT:PSS (r00) increased the tensile strength in line with a stiffer fabric
as found in the bending testing, but the strain was greatly decreased. This indicates that the PEDOT:PSS
on the surface adds to the strength of the fabric making it stiffer, but reduces the stretch. The addition
of PDMS-PEO to the fabric gives again higher tensile strength and allows again higher strain. Further
increase of PDMS-PEO ratio has little influence on the strength, but does further increase the strain.
For instance, a shift of tensile strength from 78.2 to 115.8 N and a strain 69.7 to 77 % at break was
observed when r shifts from 0% to 50%. In general, the tensile strength becomes constant at around
118 N. Therefore, it is rational to say the new conductive polymer composite gives smaller Young’s
modulus which is important for the e-textile application.

3.1.5. SEM Characteristics of the Conductive Polymer Composite

The SEM results (Figure 9) showed that the yarn loop interstices in the fabric were coved by the
addition of PEDOT:PSS/PDMS-b-PEO conductive polymer composite. Protruding loops were also
observed in the base fabric but not after the printing. As a result, the coated fabrics are smoother than
uncoated fabrics. The presence of PDMS-PEO further improved the smoothness and the coverage
of the yarn loop interstices. The surface of the PEDOT:PSS-treated fabric looks more glassy when
PDMS-b-PEO was added.
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3.2. Electrical Characteristics Analysis

3.2.1. Effect of PDMS-b-PEO to PEDOT:PSS Ratio on Resistance

For all the samples, the resistance increases with increase in the surface area when the length was
increased by keeping the width constant. Therefore, it is obvious that resistance drops with increasing
concentration of the non-conductive polymer and the surface area. The effect of the PDMS-b-PEO to
PEDOT:PSS ratio on the surface resistance is shown in Figure 10.

In all the samples, it was observed that the reproducibility was fairly good but still needs
improvement. This could arise from the homogeneity of the polymer blend, uneven distribution of the
conductive polymer composite during screen printing, and the uneven property of the textile fabric at
its different portions.

As the obtained resistance covers a big range from 6 to 468.4 kΩ (Figure 10b) depending on
the concentration of PDMS-b-PEO and the surface area of the treated fabric, they can be used as
a textile-based electrode for different sensors such as strain, moisture, biopotential (EEG, ECG),
interconnection, energy storage, and other applications. For instance, in the strain and moisture sensor
electrode demonstration of sample r60, it showed a linear increase in resistance during the stretch to its
infliction point. The resistance also dropped up to 132.5% moisture regain, while above 132.5%, the
resistance rapidly increased, which may be due to swelling of the PEDOT:PSS at higher moisture regain.
Moreover, the ECG and EEG electrodes constructed from the PEDOT:PSS/PDMS-b-PEO (4:1) coated
cotton fabric (332.5 Ω) at an add-on of 0.013g/cm2, showed good qualities of collected ECG and EEG
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waveforms. The strain, moisture, ECG and EEG responses from the PEDOT:PSS/PDMS-b-PEO-coated
cotton fabric electrodes are shown in Figure 11.
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Figure 10. Effect of PDMS-b-PEO concentration on resistance: (a) effect of PEDOT:PSS to PDMS-b-PEO
ratio on resistance at different surface area, width kept constant; (b) effect of PDMS-b-PEO on
surface resistance.
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Figure 11. PEDOT:PSS/PDMS-b-PEO coated cotton electrodes for: (a) strain dynamic response at
0.67 cm/s rate of stretching for six seconds; (b) moisture dynamic response at1 ml/s rate of water spray
for six seconds; (c) electrocardiography (ECG) signal using PC-80B; (d) electroencephalography (EEG)
signal using OpenBCI board.

The surface resistance increased from 24.8 kΩ/sq to 96.7 kΩ/sq as the PDMS-b-PEO to PEDOT:PSS
ratio increases from 0 to 90% (Figure 10b). Thus, the ratio determines the application area, as each
requires specific surface resistance value. When high resistance is required, one can select a higher
concentration of PEDOT-b-PEO and when lower resistance is required a lower ratio. Instead of the
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high resistance values obtained in this paper, one can also obtain lower resistance as mentioned in the
case of an add-on of 0.013 g/cm2, where we obtained 300 Ω/sq on the same fabric.

3.2.2. Effect of Stretching on Sensing Stability

Figure 12a shows that the stretching of the PEDOT:PSS/PDMS-b-PEO has a complex effect on the
surface resistance in all samples for up to 35% elongation. In all cases, the resistance increased over the
0% elongation. This could be due to a decrease in the density of conductive components during stretch.
It was observed that the change in resistance due to stretching increases at the beginning of stretching
and then decreases with increasing amount of PDMS-b-PEO, with the inflection point depending
on the ratio r. Whereas, when r is zero (sample r00), the percentage change in resistance increases
with stretching. Moreover, the change in resistance is smaller when PDMS-b-PEO was employed.
For instance, the change in resistance of sampler00 was 0.74% which is smaller than sample r60 i.e.,
16% when the change in elongation was 5%. But, when the change in elongation reached 35%, the
change in resistance of r60 i.e., 4% was smaller than that of r00 i.e., 131%. In addition, increasing the
ratio of PDMS-b-PEO to PEDOT:PSS showed a better surface resistance recovery after stretching and
better stability when re-stretched up to eight cycles. The surface resistance of sample r00 reached an
infinite value at three cycles. Whereas, the most stable sample, sample r90, stayed conductive up to
eight stretching cycles to its infliction point. The surface resistance of the samples after recovering
from each stretch and 5 s rest is shown in Figure 12b. Though the sensing stability is not bad, it needs
further improvement. A specific sample with PDMS-b-PEO can only be used to sense stretch up to
the infliction point of that sample, as afterward the strain to resistivity change is unstable. Further
refinement in the way of making the composite or coating technique may solve this problem.Sensors 2020, 20, x FOR PEER REVIEW 12 of 14 
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Figure 12. Effect of stretching on surface resistance and sensing stability: (a) Change in resistance due
to stretching; (b) surface resistance at different stretching cycles.

3.2.3. Effect of Washing on Surface Resistance

Figure 13 shows that the resistance increases after a single wash. But, the increase in surface
resistance due to washing decreased from ~470% to ~30% with increasing r ratio from 0 to 90. Thus,
the washing fastness improved with the increase in the amount of PDMS-b-PEO. This property of the
fabric with CPC should be improved further if it is going to be used for frequently washed products.
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Figure 13. Effect of washing on the surface resistance at different PDMS-b-PEO to PEDOT:PSS ratios: (a)
surface resistance before and after washing; (b) percentage change in surface resistance due to washing.

4. Conclusions

In this work we have successfully developed a stretchy and flex conductive textile fabric with
improved sensing stability of stretch and better washing fastness via screen printing of PEDOT:PSS and
PDMS-b-PEO polymers. It was observed that the increase in the proportion of PDMS-b-PEO increases
the tensile strength at break. The bending length analysis proved that the flexural rigidity drops at higher
PDMS-b-PEO to PEDOT:PSS ratio which shows as the PDMS-b-PEO imparts flexibility over the pure
PEDOT:PSS sample. SEM results showed that the presence of the conductive polymer composite brought
smoothness and better coverage of yarn loops interstices. Samples with PEDOT:PSS/PDMS-b-PEO
conductive polymer composite showed less protruding yarn loops than PEDOT:PSS alone. We found
different electrical characteristics that range from 24.8 to 190.8 kΩ/sq before washing when the ratio of
PDMS-b-PEO to PEDOT:PSS varies from 0 to 90%. The conductive character remained after washing,
but was decreased, though much less so if PDMS-b-PEO is present. Moreover, the presence of
PDMS-b-PEO improved the surface resistance recovery after release from stretching and remained
conductive for more numbers of stretching cycles than sample r00.We have also realized that the surface
resistance can be dropped further by increasing the add-on of the conductive polymer composite.
These different electrical resistance characteristics could be chosen based on the application required to
use them for sensors, interconnections, antenna, storages, and others. For instance, the conductive
fabrics with higher resistance can be used to develop a textile-based humidity sensor, the middle ones
can be used for the strain sensor and the lower ones can be for dry ECG, EMG, and EEG electrodes.
A deep study on the electrical and physical characteristics of the developed samples is necessary to
exactly indicate the correlation between the produced samples and end-use.
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