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Abstract: Membrane proteins possess a variety of functions essential to the survival of organisms.
However, due to their inherent hydrophobic nature, it is extremely difficult to probe the structure and
dynamic properties of membrane proteins using traditional biophysical techniques, particularly in
their native environments. Electron paramagnetic resonance (EPR) spectroscopy in combination with
site-directed spin labeling (SDSL) is a very powerful and rapidly growing biophysical technique to
study pertinent structural and dynamic properties of membrane proteins with no size restrictions.
In this review, we will briefly discuss the most commonly used EPR techniques and their recent
applications for answering structure and conformational dynamics related questions of important
membrane protein systems.
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1. Introduction

Membrane Protein

Understanding the basic characteristics of a membrane protein is very important to knowing its
biological significance. Membrane proteins can be categorized into integral (intrinsic) and peripheral
(extrinsic) membrane proteins based on the nature of their interactions with cellular membranes [1].
Integral membrane proteins have one or more segments that are embedded in the phospholipid bilayer
via their hydrophobic sidechain interactions with the acyl chain of the membrane phospholipids.
Integral membrane proteins spanning the width of the lipid bilayer are known as transmembrane
proteins. Membrane-spanning domains of transmembrane proteins are mostly α-helices or multiple β

strands. Peripheral membrane proteins do not interact with the hydrophobic core of the phospholipid
bilayer. Instead, they are bound to the membrane indirectly by interactions with integral membrane
proteins or directly by interactions with polar lipid head groups. Peripheral proteins are usually
localized at or near the cytosolic face of the membrane [1].

Membrane proteins are involved in many important biological functions for the survival of
living organism. In humans, 30% of the genome encodes membrane proteins [2–4]. Genetic mutation
and misfolding of membrane proteins are linked to numerous human dysfunctions, disorders, and
diseases [5,6]. Membrane proteins are targets of more than 50% of total modern food and drug
administration (FDA) approved drugs [7,8]. They also play a very important role in the development
of antiviral and antibacterial agents [9,10]. The knowledge of structural dynamics and functions of
membrane proteins is of high biological importance [11–13]. Membrane proteins contribute less than
2% of the structure in the protein data bank (PDB) [11,14,15]. Despite their abundance and importance,
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very limited information about membrane proteins exists when compared to globular proteins due to
challenges in applying biophysical techniques for studying these protein systems [16,17].

In recent years, several biophysical techniques have been utilized to investigate the structural
and dynamic properties of membrane proteins. The most popular biophysical techniques are X-ray
crystallography, nuclear magnetic resonance (NMR), electron microscopy (Cryo-EM), Förster resonance
energy transfer (FRET), and electron paramagnetic resonance (EPR) spectroscopy [13,18–23]. X-ray
crystallography is used to determine the highly resolved 3D structure of membrane proteins [24].
However, it is difficult for X-ray crystallography to reveal dynamic information of most of the proteins
in a membrane. In addition, membrane proteins are difficult to crystallize as they are solubilized
in detergent/lipids and have high hydrophobicity [18,20]. This introduces challenges for X-ray
crystallographic techniques for studying many membrane proteins [25]. Nuclear magnetic resonance
spectroscopy (NMR) is used to obtain both structural and dynamics information of a variety of
membrane proteins in a non-crystal environment. However, size restriction is a major drawback in
solution NMR spectroscopy (restricted to <50 kDa) [25–28]. Furthermore, NMR requires isotropic
samples to avoid line broadening effects that introduce challenges in studying membrane proteins
in proteoliposomes, which are the closest membrane mimetic of the cellular membrane environment.
Cryo-EM is a very powerful and rapidly growing technique that has been used in recent years to
investigate the structure of biological systems due to technical developments in instrumentation and
sample preparation [29–32]. However, analyzing small proteins is challenging due to low resolution [33].
FRET is a good technique to monitor the conformational changes for individual membrane protein
systems. However, this technique may cause higher structural perturbation due to the presence of
relatively larger probe sizes. Furthermore, the site-specific incorporation of the probe throughout
the sequence is also very challenging [20]. EPR spectroscopy is a powerful biophysical technique
that minimizes these limitations and provides pertinent structural and dynamic information about
membrane proteins.

2. Electron Paramagnetic Resonance

Electron paramagnetic resonance (EPR) spectroscopy is a very important biophysical technique
for investigating paramagnetic species, including organic and inorganic radicals, and paramagnetic
triplet states. The working principle of EPR is similar to the working principle of NMR. The difference
is that EPR focuses on the interaction of an external magnetic field with an unpaired electron spin in a
molecule while NMR focuses on the interaction of an external magnetic field with isotopic nuclei of
the individual atom. EPR measures an absorption of microwave radiation by an unpaired electron
spin in the presence of an external magnetic field. The degeneracy of the unpaired electron is lifted in
the presence of the external magnetic field resulting in two energy states, Ms = +1/2 and Ms = −1/2,
where the lower energy state Ms = −1/2 is aligned parallel to the magnetic field and the upper energy
state Ms = +1/2 is aligned antiparallel to the magnetic field. The energy difference between the lower
and the upper state is given by

∆E = ge βe B0 (1)

where B0 is the magnetic field, ge is the electron’s so-called g-factor, which varies depending on the
electronic configuration of the radical or ion, and βe is the electron Bohr magneton. Equation (1)
implies that the splitting of the energy levels is proportional to the strength of the static magnetic field
strength (B0) as shown in Figure 1 [19]. An unpaired electron spin can flip between the two energy
levels by absorbing microwave radiation of energy hν, obeying the fundamental equation of EPR
spectroscopy [34].

∆E = hν = geβB0 (2)

where h is Planck’s constant and ν is the frequency of the microwave radiation. Most EPR studies are
conducted at 9 GHz (~3300 G), also known as the ‘X-band’ frequency. Q-Band frequency (~35 GHz)
experiments are also relatively common.
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Figure 1. Energy level diagram of a nitroxide spin label in the presence of a static magnetic field (B0). 

The inset traces show the corresponding electron paramagnetic resonance (EPR) spectrum in the 

absence and presence of a 14N (I = 1) hyperfine interaction [19]. 

2.1. Continuous Wave Electron Paramagnetic Resonance (CW-EPR) Spectroscopy 

In a CW-EPR experiment, CW EPR spectra are collected by placing a sample into a microwave 

field of constant frequency, ν, and varying the external magnetic field, B0, until the resonance 

condition is satisfied. In the experimental setup, the microwave field is built in a resonator, where 

the sample tube is introduced. The resonator is critically coupled, which means that the incident 
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resonance leads to a detuning of the resonator and reflection of microwave power. The measurement 

of this reflected microwave power as a function of the magnetic field yields the corresponding 

CW-EPR spectrum (Figure 1). Amplitude modulation of the magnetic field with a frequency of 

typically 100 kHz increases the signal-to-noise (S/N) ratio considerably and is responsible for the 

derivative shape of the spectra. The excitation bandwidth of the microwave (MW) irradiation is very 

small (approximately 2 MHz) and the MW power is at maximum 200 mW. CW-EPR spectroscopy 

usually suffers from limited spectral and time resolution.  

2.2. Pulse Electron Paramagnetic Resonance Spectroscopy 

In a pulse EPR experiment, the magnetic field is kept fixed and the EPR spectrum is recorded by 

exciting a large frequency range simultaneously with a single high-power MW pulse at a given 
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interactions that contribute to the shape and behavior of a CW spectrum. Since the relaxation times 

are too short for most of the biological systems at room temperature, pulsed EPR measurements 
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molecular biology techniques incorporating stable radicals at specific locations on biological systems 

Figure 1. Energy level diagram of a nitroxide spin label in the presence of a static magnetic field
(B0). The inset traces show the corresponding electron paramagnetic resonance (EPR) spectrum in the
absence and presence of a 14N (I = 1) hyperfine interaction [19].

2.1. Continuous Wave Electron Paramagnetic Resonance (CW-EPR) Spectroscopy

In a CW-EPR experiment, CW EPR spectra are collected by placing a sample into a microwave
field of constant frequency, ν, and varying the external magnetic field, B0, until the resonance condition
is satisfied. In the experimental setup, the microwave field is built in a resonator, where the sample tube
is introduced. The resonator is critically coupled, which means that the incident power is completely
absorbed by the resonator. Additional absorption by the sample during resonance leads to a detuning
of the resonator and reflection of microwave power. The measurement of this reflected microwave
power as a function of the magnetic field yields the corresponding CW-EPR spectrum (Figure 1).
Amplitude modulation of the magnetic field with a frequency of typically 100 kHz increases the
signal-to-noise (S/N) ratio considerably and is responsible for the derivative shape of the spectra.
The excitation bandwidth of the microwave (MW) irradiation is very small (approximately 2 MHz) and
the MW power is at maximum 200 mW. CW-EPR spectroscopy usually suffers from limited spectral
and time resolution.

2.2. Pulse Electron Paramagnetic Resonance Spectroscopy

In a pulse EPR experiment, the magnetic field is kept fixed and the EPR spectrum is recorded
by exciting a large frequency range simultaneously with a single high-power MW pulse at a given
frequency, ν. A pulsed experiment can provide isolation, detection, and measurement of the interactions
that contribute to the shape and behavior of a CW spectrum. Since the relaxation times are too short
for most of the biological systems at room temperature, pulsed EPR measurements usually require
cryogenic temperatures. The most commonly used pulse EPR experiments are echo-detected field
sweeps, double electron electron resonance (DEER), electron–nuclear double resonance (ENDOR),
electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation (HYSCORE).

For details of the theory behind these EPR approaches, we refer to the following excellent
references [35–37]. In the sections below, we will briefly introduce the EPR techniques commonly used
for the study of membrane proteins.

3. Biological EPR

In the past, the application of the biological EPR was restricted to metalloproteins possessing
paramagnetic centers or enzymes with radical cofactors. The absence of unpaired electrons in most
biological systems would appear to minimize the application of EPR methods. The development of
molecular biology techniques incorporating stable radicals at specific locations on biological systems
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extended the application of EPR spectroscopy to nearly any biological system. The site-specific
introduction of unpaired electrons into biomolecules in the form of spin labels is known as site-directed
spin labeling (SDSL) [38,39].

Nitroxide Based Spin Labeling EPR

In nitroxide based site-directed spin-labeling experiments, all native non-disulfide-bonded
cysteines are replaced by another amino acid such as an alanine or serine. Site-directed mutagenesis
is used to introduce a unique cysteine residue into a recombinant protein. The protein containing a
site-specific cysteine is further reacted with a sulfhydryl-specific nitroxide reagent to generate a stable
EPR-active spin-label side-chain [39–41].

Figure 2 shows the chemical structure of some nitroxide-based spin-label probes used for EPR
spectroscopic studies of membrane proteins [13,27,42–50]. The spin-label probes in Figure 2 are
incorporated using site-directed mutagenesis. A resulting side-chain produced by reaction of the most
commonly used spin label, methanethiosulfonate spin label (MTSL), with the cysteine residue (T58C)
of the KCNE1 membrane protein is shown in Figure 3 [13,51].
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Figure 2. Structure of examples of nitroxide spin labels used in the site-directed spin labeling (SDSL)
EPR study of membrane proteins. (A) Methanethiosulfonate spin label (MTSL), (B) Bifunctional spin
label (BSL).
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Figure 3. A cartoon representation of the structure of MTSL (methanethiosulfonate spin label) and
the resulting side-chain produced by reaction with a cysteine residue (T58C) on a KCNE1 membrane
protein. The cartoon structure of the MTSL-labeled KCNE1 (PDB ID:2k21) was rendered using visual
molecular dynamics (VMD) [52,53].

4. Nitroxide Based Site-Directed Spin Labeling EPR for Studying Membrane Proteins

Nitroxide based site-directed spin labeling EPR spectroscopy has been widely used to study
membrane proteins. This is a very broad topic. In the following sections, we will discuss it in an
introductory fashion with recent examples. For more in-depth information, we refer the following
excellent reviews [12,13,42,47,50,54–58].
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4.1. SDSL CW-EPR for Studying Structural Topology and Dynamic Properties of Membrane Proteins

The dynamic information about the spin-labeled side-chain of a biological system can be obtained
by lineshape analysis of the corresponding CW-EPR spectra [12]. The flexibility of the MTSL nitroxide
spin label provides its motion, which is highly dependent on neighboring amino acid side chains
and secondary structure components in its immediate environment. The CW-EPR spectra are highly
sensitive to the spin-label motion. The EPR spectral lineshape reflects the mobility of the spin-label
side-chain and its relation to the structure and environment within the protein. The EPR spectrum for
the spin labels moving rapidly in solution reduces to three isotropic peaks (Figure 4A). The spectrum
is in the rigid limit when the spin-label motion is very slow such that it is close to motionless [59].
In the rigid limit, the sample is frozen and the full orientation-dependent parameters are observed.
When the spin-label motion falls between these two regions, the dynamic properties of the site-specific
spin label can be obtained by determining the rotational correlation time (τc) [59]. The overall mobility
of the spin label attached to the protein is the superposition of various kinds of motion including
the motion of the label relative to the protein backbone, fluctuations of the α-carbon backbone, and
the rotational motion of the entire protein. These motions can be separated from the EPR spectrum
under different experimental conditions. A relative mobility of the spin label can be determined by
calculating the inverse central linewidth of the EPR spectrum [12,51,60,61]. The binding properties
of the protein/peptide and membrane can be investigated by measuring the changes in spin-label
mobility [55,62]. In the aqueous phase, a spin-labeled peptide or a rapidly tumbling small protein
leads to an isotropic spectrum with a rotational correlation time of less than 1 ns. However, in a
membrane environment, the mobility of the spin-labeled protein is reduced, leading to a broader
EPR spectrum with two motional components resulted from the superposition of the signals arising
from a free and bound peptide [51,55,63–66]. The more quantitative information about the spin-label
side-chain dynamics can be obtained with EPR spectral simulation approaches using freely available
simulation programs such as Easyspin and non-linear least squares (NLSL) [59,67,68]. Figure 4 shows
an illustration of CW-EPR spectra for the MTSL nitroxide spin label attached to KCNE1 reconstituted
in different dynamic environments [69].

Nitroxide-based SDSL EPR power saturation experiments can be used to study the topology of
the protein with respect to the membrane [13,57,64,65,70]. There are several biologically important
protein systems such as Escherichia coli ferric citrate transporter FecA, vimentin, GM2 activator
protein, ABC cassette transporter MsbA, cytochrome C oxidase subunit IV (COX IV), the prokaryotic
potassium channel KcsA, KCNQ1-VSD, Pinholin, KCNE1, lactose permease protein, integrin β1a,
functional amyloid Obr2A, C99 domain of the amyloid precursor protein, bacteriorhodopsin, KvAP
voltage-sensing domain and phospholamban (PLB), and the GTPase domain of HydF that have been
studied using nitroxide-based SDSL CW-EPR spectroscopy to probe the structural, topology, and
dynamic properties [51,60,62,65,66,70–85].

A recent example of using site-directed spin labeling CW-EPR spectroscopy is the study of human
KCNQ1-VSD in proteoliposomes [84]. The human KCNQ1 (Q1) is a voltage-gated potassium channel
expressed in several tissues of the body and is known to regulate various physiological functions. It is
a six-pass transmembrane protein involved in the repolarization phase of cardiac action potentials and
was identified as the gene causing chromosome 11-linked Long QT syndrome [3–6]. Dysfunction of the
channel has also been linked to other disease conditions like Romano–Ward syndrome, sudden infant
death syndrome, congenital deafness, and familial atrial fibrillation [7]. The isolated-VSD domains
can fold even in the absence of the pore domain (PD), suggesting that VSDs can adopt native-like
structure independently of the PD [16–18]. CW-EPR power saturation data obtained on 20 sites of
spin-labeled KCNQ1-VSD were used to determine the topology of KCNQ1-VSD with respect to the
1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG)
lipid bilayers. Also, the data showed that all four transmembrane domains (S1–S4) are buried into the
lipid bilayer, while the helix S0 of KCNQ1-VSD is solvent-exposed with some of the portions partially or
weekly interacting with the membrane surface. Additionally, the CW-EPR lineshape analysis performed
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on 18 sites of spin-labeled KCNQ1-VSD suggested an overall restricted motion of spin-labeled Q1-VSD
in lipid-bilayered vesicles when compared to that in the detergent micelles. This study further put
together a structural topology model of KCNQ1-VSD in lipid bilayers. Figure 5 shows the proposed
topology and the power saturation data on KCNQ1-VSD in lipid bilayers [84]. The CW-EPR power
saturation data were analyzed to obtain peak-to-peak amplitude of the first derivative mI = 0 resonance
line and to plot against the square root of the incident microwave power for three sample conditions:
(1) equilibrated with nitrogen as a control; (2) equilibrated with lipid-soluble paramagnetic reagent 20%
oxygen (air); and (3) equilibrated with nitrogen in the presence of a water-soluble paramagnetic reagent
NiEDDA. Figure 5B,C show that residues Q147C and F222C of Q1-VSD have greater accessibility to
NiEDDA, while F130C and F232C appear to interact more with O2 in the nonpolar lipid environment.
The membrane depth parameter (φ) obtained from CW-EPR power saturation data (using Equation (3))
were plotted as a function of amino acid residue position in Figure 5D. The φ values show an increasing
trend as the amino acid sites move from the surface towards the interior of the membrane and then
decrease on the other side of the helix. This suggested the transmembrane domains (TMDs) of Q1-VSD
span the width of the membrane bilayers. The negative value of φ indicated that the residue under
study was solvent-exposed and hence not interacting with the membrane.

φ = ln

 ∆P1/2(O2)

∆P1/2(NiEDDA)

 (3)

where ∆P1/2(O2) is the difference in P1/2 values of air and nitrogen exposed samples, and ∆P1/2(NiEDDA)
is the difference in the P1/2 values for NiEDDA and nitrogen exposed samples. The P1/2 is the power
where the first derivative amplitude is reduced to half of its unsaturated value.
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Figure 4. An illustrative example of the EPR spectra for a spin-labeled membrane protein in different
membrane environments. (A) A free MTSL spin label in solution, (B) MTSL spin label on a F56
C-KCNE1 membrane protein in a lipid bilayer, (C) MTSL spin label on a F56C-KCNE1 membrane
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Biomolecules 2020, 10, 763 7 of 26

Another recent example of using nitroxide spin labeling CW-EPR spectroscopy is the study of
pinholin S2168 [66]. Pinholin S2168 is an essential part of the phage Φ21 lytic protein system that
releases the virus progeny at the end of the infection cycle. TMD1 of active pinholin S2168 externalizes
very quickly to the periplasm resulting in the active dimer. Within seconds of pinholin triggering the
system, it forms heptametric holes by rapid oligomerization and reorientation of TMD2. Ahammad
et al. analyzed CW-EPR spectra collected for spin-labeled active pinholin S2168 to investigate the
dynamic properties of the active form of pinholin S2168 in 1,2-dimyristoyl-sn-glycero-3-phosphocholine
(DMPC) lipid bilayers [66]. The CW-EPR spectral line shape analysis of the R1 side chain for 39 residue
positions of S2168 suggested that the transmembrane domains (TMDs) have more restricted mobility
when compared to the N- and C-termini. CW-EPR power saturation data collected on 31 spin-labeled
sites of active pinholin S2168 in DMPC lipid bilayers suggested that the N-terminal remains in the
periplasm and the TMD1 lies on the surface of the lipid bilayer with some residues pointing out of the
lipid bilayer and others residues buried in the lipid environment. TMD2 remains incorporated in the
lipid bilayer with the C-terminal of the S2168 in the cytoplasm. This study further predicted a tentative
structural topology model of S2168 in lipid bilayers. Figure 6 shows the membrane depth parameter
as a function of the active pinholin S2168 residue position in DMPC lipid-bilayered vesicles at room
temperature and the proposed topology model of the S2168 in DMPC lipid bilayers [66].
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Figure 5. (A) The proposed topology of the Q1VSD sequence in lipid bilayers. The black
arrows show the order of the amino acid residues in the protein sequence. The green and red
circles represent spin-label sites buried inside and outside of the membrane bilayers respectively.
(B) and (C) EPR power saturation curves from Q1VSD in 1-palmitoyl-2-oleoyl-phosphatidylcholine
(POPC)/1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) lipid-bilayered vesicles at 295 K. Mutation
F130C is on helix S1 and is a part of the transmembrane domain, while the Q147C site is at the linker
between helix S1 and helix S2 at a site outside the lipid bilayer. Mutation F232C is on helix S4 and is a
part of the transmembrane domain, while the F222C site is at the linker between helix S3 and helix S4
at a site outside the lipid bilayer. The inset spectra are the corresponding CW-EPR spectra for these
sites. (D) Membrane depth parameter (φ) as a function of Q1VSD residue position in POPC/POPG
lipid-bilayered vesicles at 295 K. (Adapted from [84] with permission).

SDSL CW-EPR spectroscopy at the X-band can also be used to study membrane topology of
membrane proteins/peptides bound to aligned phospholipid bilayers [86–90].
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lipid bilayers. (Adapted from [66] with permission).

4.2. Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy for Investigating the Local Secondary
Structure of Protein/Peptides

ESEEM spectroscopy is a pulsed EPR technique that is sensitive to systems containing weak
dipolar couplings between an electron spin and a NMR-active nuclear spin. It can provide great
insight into the structure and function of many important biological systems [91–106]. This ESEEM
technique can measure a distance between a spin label and a single 2H nucleus up to ~8 Å [107].
Nitroxide-based site-directed spin labeling ESEEM is very useful for probing the local secondary
structure of membrane proteins/peptides in different environments including aqueous and lipid
membranes [96–105]. The local secondary structure of membrane proteins has a great influence in
the assembly, packing, and interaction of membrane proteins with their lipid membrane environment
and hence is useful for understanding the function, dynamics, and interacting mode of membrane
proteins [108,109].

In this ESEEM approach, a cysteine mutated nitroxide spin label is positioned 2 (i+/−2), 3 (i+/−3)
or 4 (i+/−4) residues away from a fully deuterated valine or leucine side-chain (i). The characteristic
periodicity of an α-helix (3.6 residue per turn with a pitch of 5.4 Å) structure gives rise to a unique
pattern in the corresponding ESEEM spectra. At the X-band, a 2H ESEEM peak in the fourier transform
(FT) frequency domain data is observed at ~2.2 MHz for the (i+/−3) or 4 (i+/−4) samples, whereas no 2H
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ESEEM peak is observed for the (i+/−2) sample or the control sample with no 2H [100]. For the (i+/−2)
samples, spin labels are too far away from the 2H labeled valine/leucine to be detected. These unique
patterns provide pertinent local secondary structural information on α-helical structural motifs for
protein/peptides using this ESEEM spectroscopic approach with short data acquisition times (~30 min)
and small sample concentrations (~100 µM). This ESSEM approach has been applied to several
biologically important protein/peptide systems such as the acetylcholine receptor (AChR) M2δ peptide,
ubiquitin peptide, amphipathic model peptide LRL8, intermediate filament protein human vimentin,
and KCNE1 to probe their local secondary structures [96–105]. Figure 7 shows a recent example of the
three-pulse ESEEM frequency domain data of KCNE1 2H labeled Val in DMPC/DHPC bicelles [100].
The i+3 and i+4 samples show a peak at the 2H Larmor frequency at ~2.2 MHz. No peaks are observed
for the control sample without 2H Val or the i+2 sample.
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Figure 7. (A) Cartoon representation of KCNE1 in DMPC/ dodecylphosphocholine (DPC) bicelles.
The probed α-helical region is colored in green and located on the transmembrane domain of the
full-length KCNE1. Residue 50 is side-chain 2H-labeled Val (denoted i), Residues 52, 53, and 54 are
independent Cys mutations (denoted i+2, i+3, and i+4, respectively). (B) Frequency domain spectra
of three-pulse ESEEM data of i+2, i+3, and i+4 samples shown in normalized FT intensity. (Adapted
from [100] with permission).

4.3. SDSL EPR for Distance Measurement of Membrane Proteins

Double site-directed spin labeling of biological systems coupled with EPR spectroscopy is a very
powerful and rapidly growing structural biology tool to measure distances between two spin labels for
studying secondary, tertiary, and quaternary structures of macromolecules [20,50,110]. The magnetic
dipolar interaction between two spin labels is inversely proportional to the cube of the distance (r3)
and hence can be utilized for distance measurements [20]. This method can also be used to determine
the relative orientations between interacting spin labels [111].

4.3.1. CW-Dipolar Line Broadening SDSL EPR for Distance Measurement

Electron–electron dipolar interactions significantly broaden the CW-EPR spectral lineshape if
the distance between the two unpaired electron spins is less than 20 Å. The strength of the dipolar
interaction is estimated qualitatively from the degree of line broadening using a variety of lineshape
analysis techniques to obtain distance information [110–115]. An intermediate distance range of
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8–20 Å can be measured from the CW dipolar broadening EPR spectra and reveal important structural
and dynamic information about membrane proteins [113]. SDSL CW dipolar broadening EPR has
been applied to several important biological systems such as bacteriorhodopsin, sensory rhodopsin
II (NpSRII)/transducer NpHtrII from natronobacterium pharaonis, erythroid β spectrin, AchR M2δ
peptide, magainin 2 peptide, WALP peptide, bacterial K+-translocating protein KtrB, E. coli integral
membrane sulfurtransferase (YgaP), proteorhodopsin oligomers, S-component ThiT from energy
coupling factor (ECF) transporters, and KCNE1 [87,115–127].

4.3.2. Double Electron Electron Resonance (DEER) Techniques for Distance Measurements

DEER is also known as pulsed electron double resonance (PELDOR). DEER has been a widely used
biophysical technique for measuring distances between two spin labels on membrane proteins in the
range of 18–60 Å [128–130]. In DEER spectroscopy, a dipolar coupling between two spins is measured
by monitoring one set of spins while exciting another set of spins with a second microwave frequency,
leading to the measurement of the distance between them [36,128,131]. Nitroxide spin labeling based
DEER spectroscopy is very popular for investigating the secondary, tertiary, and quaternary structures
and conformational dynamics of a wide variety of macromolecules [19,44,57,61,120–130,132–137].
In addition to nitroxide spin labels, other spin labels such as functionalized chelators of paramagnetic
lanthanides (GdIII), carbon-based radicals (trityl), and metals such as copper (CuII) have been recently
utilized for DEER measurements on membrane proteins [56,138–141]. There is also a disadvantage
to using non-nitroxide spin labels. The Gd-based and trityl labels are bulkier than nitrixide spin
labels, which can cause perturbation in protein structure and function [56]. Hence, care must be taken
while choosing spin-labeling sites to avoid these perturbations. Figure 8 shows the DEER distance
measurement method used for studying membrane proteins. The dipolar coupling frequency (ν12)
is inversely related to the third power of the distance between two spin labels (ν12 ∝ 1/d3) [36,142].
The most commonly used four pulse DEER sequence is shown in Figure 8B. In the four pulse DEER
sequence, an echo is generated by applying three microwave pulses with specific positions to the
one set of spins S1 at the probe frequency ν1. Another set of spins, S2, is flipped by applying a 4th
pump microwave pulse at varying positions between the last two probe pulses at the frequency ν2.
Consequently, the sign of the dipolar interaction and the amplitude of spin echo change result in the
modulation of the echo amplitude as a function of the position of the pump pulse. The forward five-pulse
and the reverse five-pulse DEER sequences are shown in Figure 8C,D, respectively. In the five-pulse
DEER sequence (Figure 8C,D), similar lengths of the inter-pulse delays are applied. This minimizes the
effect of the spin diffusion on relaxation, leading to the increase in the refocused echo intensity when
compared to that of the four-pulse DEER sequence. The additional pump pulse also helps extend the
dipolar evolution window [143–145]. A seven-pulse Carr-Purcell PELDOR sequence with multiple
pump pulses (see Figure 8E) also leads to improved sensitivity in the measurement of long-range
distances. [143,144,146]. These multipulse DEER experiments introduce echo crossing artifacts in
DEER traces [143,144,146]. These artifacts can be minimized by using eight to thirty two-step phase
cycling schemes [143].
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Figure 8. Double electron electron resonance DEER spectroscopic method used to measure distances
between nitroxide spin labels. (A) Distance vector (d) between spin S1 and S2 on KCNE1 membrane
protein (PDB ID: 2k21) at an angle θ with the magnetic field B0. (B) Four-pulse DEER sequence.
(C) Forward five-pulse DEER sequence. (D) Reverse five-pulse DEER sequence. (E) Seven-pulse
CP-PELDOR sequence [143,144].
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Challenges and Methodological Development in DEER Measurements for Membrane Proteins

Despite the wide application of pulse DEER EPR techniques in structure biology, accurate and
precise distance measurements are limited due to difficulties in integral membrane protein sample
preparation in their functional environment. The heterogeneous distribution of spin-labeled proteins
within the membrane creates local inhomogeneous pockets of high spin concentration leading to much
shorter transverse relaxation/phase memory times and poor DEER modulation in more biologically
relevant proteoliposomes when compared to water soluble proteins or membrane proteins in detergent
micelles [44,147]. The proton spin diffusion further causes a decrease in the phase memory time.
The proton spin diffusion arises due to the presence of hydrogens in the acyl chains of the lipid in
addition to those in the solvent and in the protein [56]. The requirement of a high effective protein
concentration in the liposome samples further introduces a strong background contribution that
reduces sensitivity, distance range, and experimental throughput [148]. Additionally, the spin-labeled
rotameric motions and protein backbone dynamics also contribute significantly to the width of the
DEER distance distribution.

Excellent work has been done in recent years to minimize these limitations. Sample preparations
for the reconstitution of membrane proteins have been optimized in the presence of unlabeled proteins,
bicelles, nanodics, lipodisq nanoparticles, a low protein/lipid molar ratio, and restricted spin label
probes [44,136,147,149–156]. Using deuterated protein and solvents can also enhance the phase memory
times that contribute towards the improvement of data quality [56]. DEER measurements are also
conducted at Q-band to increase sensitivity [44,147,153]. The introduction of an arbitrary waveform
generator (AWG) to EPR has opened new possibilities to improve the pulse sequences in DEER
experiments [143]. The increased excitation band width of the linear chirp pump pulses enhances the
modulation depth. This increases the sensitivity of the DEER experiment [56,143,146]. The use of 5-pulse
and 7-pulse sequences also help to increase the dipolar evolution window [56,143]. Computational
approaches using molecular dynamics simulations using DEER distance restraints have also been widely
used to refine the structural properties of membrane proteins [60,136,157–159]. These methodological
developments have made nitroxide based DEER spectroscopy a rapidly expanding structural biology
tool to study complicated integral membrane protein systems.

Nitroxide based SDSL DEER spectroscopy has been applied to investigate a variety of membrane
protein systems such as E. coli integral membrane sulfurtransferase (YgaP), pentameric ligand-gated
channel, homodimer protein, bacteriorhodopsin, KCNE1, KCNE3, C99 amyloid precursor protein,
KvAP voltage-sensing domain, human dihydroorotate dehydrogenase enzyme (HsDHODH), influenza
A M2 protein, outer membrane cobalamin transporter BtuB in intact E. coli, cardiac Na+/Ca2+ exchange
(NCX1.1) protein, Na+/Proline transporter PutP Escherichia coli, tetrameric potassium ion channel KcsA,
α-synuclein, membrane-fusion K/E peptides, ABC transporter MsbA, HCN channels, YetJ membrane
protein, ectodomain of gp41, and multidrug transporter LmrP [60,118,136,149–151,155,157,160–173].
SDSL DEER spectroscopy has been recently used to study the oligomerization states of several
membrane proteins such as NhaA Na+/H+ antiporter of E-coli, KcsA, M2 transmembrane domain,
LptA, proteorhodopsin, and Bax oligomers [64,134,158,161,174–179].

A recent application of nitroxide-based spin labeling DEER spectroscopy is the study of a YetJ
membrane protein [155]. YetJ is a member of the widely distributed transmembrane Bax inhibitor
motive (TMBIM) family found to be important for the uptake of calcium into bacteria and in mediating
a pH-dependent Ca2+ flux in proteoliposomes. YetJ has seven transmembrane helices with 214 amino
acid residues. Li et al. carried out DEER distance measurements on the dual spin-labeled YetJ mutant
44R1/152R1 reconstituted into nanodiscs (NDs) [155]. This experiment revealed a bimodel-like distance
distribution displaying two major peaks centered at 2.7 and 4.1 nm suggesting two conformations of YetJ
in NDs [155]. This study further revealed that the use of the nanodiscs (NDs) provided improvement
in the overall signal-to-noise ratio (S/R) of DEER signals and hence increased the resolution in the
distance distribution [155].
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DEER spectroscopy was recently applied to study conformational changes in the extracellular
loops of the outer membrane cobalamin transporter BtuB in intact E. coli [179]. BtuB is a 22-stranded
β-barrel protein consisting of a 130 residue N-terminal plug or hatch domain in the center. It is a
member of the TonB-dependent transporter (TBDT) family. It requires a proton motive force (pmf)
and the inner membrane ExbB-ExbD-TonB complex for cyanocobalamin (CN-Cbl) transport. Josesh et
al. performed DEER distance measurements on the 188R1-399R1 mutant in E. coli cells [179]. DEER
distance measurements on 188R1-399R1 cells showed a shorter distance in the apo-state (no Ca2+ or
CN-Cbl) in E. coli when compared to that in the presence of Ca2+ or CN-Cbl, suggesting conformation
changes induced by ligand binding [179].

Another recent example of using SDSL DEER spectroscopy is the study of multimeric membrane
transport proteins such as sodium and aspartate symporter from Pyrococcus horikoshii, Gltph [180,181].
Gltph is a homologue of the mammalian glutamate transporters. It is a homo-trimeric integral membrane
protein that controls the neurotransmitter levels in brain synapses [181]. GltPh transports aspartate
together with three Na+ ions into the cytoplasm accompanied by stoichiometrically uncoupled Cl−

conductance [180]. Each subunit of Gltph has a complex topology with eight transmembrane and two
reentrant hairpin segments. Georgieva et al. carried out extensive DEER distance measurements on
eight transport domain mutants in detergent and lipid membranes either in the apo state or bound to
Na+ and asp or to DL-threo-β-bezyloxyaspartate (TBOA) [181]. These results suggested that the GltPh
protomers are distributed between the outward and inward facing conformations in detergent solutions
and in lipid bilayers both in the bound and unbound states [181]. Riederer et al. further utilized DEER
distance measurements to evaluate the intra-subunit structural changes in Gltph [180]. The DEER
measurements on the homomeric V216C/I294C mutants in the presence of Na+ ions and Asp revealed
broad, weakly-structured distance distributions, spanning from 40 to 70 Å, whereas, the heteromeric
protein exhibited a single narrow peak at 52 Å [180]. These distance distributions suggested that the
V216C/I294C mutant subunit populates the inward facing state. The corresponding distance in the
outward facing state is 34 Å [180]. These results allowed for straightforward determination of the
conformational state of the labeled promoter.

Another recent example of DEER spectroscopy in the literature is an investigation into the active
oligomeric Bax proteins [177,182]. Bax is a Bcl-2 protein that plays a crucial role in apoptosis regulation
and execution. Cytosolic Bax monomers oligomerize, when activated, on the surface of mitochondria
and change their conformation to form holes into the outer membrane. These proteins are interesting
targets for drug development for treatment of chronic lymphocytic leukemia. Bleicken et al. utilized
SDSL DEER spectroscopic measurements to obtain 42 distances between 12 different spin-labeled
positions of full-length Bax in lipid bilayers mimicking the mitochondrial outer membrane (MOM) [182].
These distance constraints were used to calculate a three-dimensional structural model of full length
active Bax in the membrane. These results suggested that active Bax is organized as assemblies of
dimers at the membrane. Additionally, each monomer contains a more flexible domain involved
in interdimer interactions and pore formation. Teucher et al. further utilized a combination of
spectroscopically distinguishable nitroxide and gadolinium spin labels for DEER measurements
to investigate the quaternary structure of active and membrane-embedded Bax oligomers [177].
DEER distance measurements on the mixture of the BaxC87Gd with BaxWTR1 forming a complex protein
homo-oligomer detected NO-NO, NO-Gd, and Gd-Gd distances independently. When BaxWTR1 was
mixed with a three-fold excess of BaxC87Gd, a Gd-Gd distance of 6 nm suggested interactions between the
two BaxC87Gd monomers within a dimer unit, and NO-Gd distances in the range of 2.5–5 nm confirmed
that the Bax oligomers containing BaxC87Gd and BaxWTR1 monomers are formed [177]. Figure 9 shows
DEER distance measurements on the Bax oligomers [177]. The background was subtracted from the
raw DEER time domain data as shown by the dotted lines in the left panel and the distance distribution
(right panel) was obtained using Tikhonov regularization with DeerAnalysis2018 [177]. This study
also highlights the usefulness of the orthogonal spin-labeling-based DEER spectroscopy to monitor the
membrane-embedded homo- and hetero-oligomers of Bcl-2 proteins.
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Figure 9. DEER distance measurements on oligomeric Bax with orthogonal spin labels. (A) Schematic of
the expected distances. (B,C) Primary data with background function (left) and time distribution (right).
The shaded areas represent corresponding distance simulations based on the structures. (B) Active
BaxWTR1 mixed with 3-fold excess unlabeled BaxWT (black) compared to the undiluted BaxWTR1 (grey).
(C) Upper panel, NO-NO DEER on active BaxWT with 3-fold excess of BaxC87Gd compared to the BaxWT

alone (grey). Central panel, NO-Gd DEER on the samples. The asterisk highlights a possible channel
cross-talk signal. Bottom panel, Gd-Gd DEER on the sample (green) compared to BaxC87Gd alone
(Grey). (Adapted from [177] with permission).
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5. Conclusions

In this review, we discussed some recent applications of nitroxide-based SDSL EPR spectroscopic
techniques to study biologically important membrane protein systems. With recent methodological
developments, SDSL EPR spectroscopy has become a very popular and rapidly growing structure
biology technique used to answer pertinent structural and dynamic questions related to biological
systems. It can provide important information on complicated biological systems that is very difficult
or impossible to discover by using other conventional biophysical techniques.
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