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Abstract

Background: To compare online adaptive radiation therapy (ART) to a clinically implemented plan selection
strategy (PS) with respect to dose to the organs at risk (OAR) for rectal cancer.

Methods: The first 20 patients treated with PS between May–September 2016 were included. This resulted in 10
short (SCRT) and 10 long (LCRT) course radiotherapy treatment schedules with a total of 300 Conebeam CT scans
(CBCT). New dual arc VMAT plans were generated using auto-planning for both the online ART and PS strategy.
For each fraction bowel bag, bladder and mesorectum were delineated on daily Conebeam CTs. The dose
distribution planned was used to calculate daily DVHs. Coverage of the CTV was calculated, as defined by the dose
received by 99% of the CTV volume (D99%). The volume of normal tissue irradiated with 95% of the prescribed
fraction dose was calculated by calculating the volume receiving 95% of the prescribed fraction or more dose
minus the volume of the CTV. For each fraction the difference between the plan selection and online adaptive
strategy of each DVH parameter was calculated, as well as the average difference per patient.

Results: Target coverage remained the same for online ART. The median volume of the normal tissue irradiated
with 95% of the prescribed dose dropped from 642 cm3 (PS) to 237 cm3 (online-ART)(p < 0.001). Online ART
reduced dose to the OARs for all tested dose levels for SCRT and LCRT (p < 0.001). For V15Gy of the bowel bag the
median difference over all fractions of all patients was − 126 cm3 in LCRT, while the average difference per patient
ranged from − 206 cm3 to − 40 cm3. For SCRT the median difference was − 62 cm3, while the range of the average
difference per patient was − 105 cm3 to − 51 cm3.
For V15Gy of the bladder the median difference over all fractions of all patients was 26% in LCRT, while the average
difference per patient ranged from − 34 to 12%. For SCRT the median difference of V95% was − 8%, while the
range of the average difference per patient was − 29 to 0%.

Conclusions: Online ART for rectal cancer reduces dose the OARs significantly compared to a clinically
implemented plan selection strategy, without compromising target coverage.

Trial registration: Medical Research Involving Human Subjects Act (WMO) does not apply to this study and was
retrospectively approved by the Medical Ethics review Committee of the Academic Medical Center (W19_357 #
19.420; Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, The Netherlands).

Keywords: Adaptive radiotherapy, Adaptive treatment, Rectal cancer, Plan selection, Library of plans, Plan of the
day, Normal tissue sparing
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Background
Pre-operative external beam radiotherapy combined with
chemotherapy and followed by surgery is standard of
care for non-metastasized locally advanced rectal cancer
[1]. For any treatment site in the pelvic region, radio-
therapy is associated with toxicity due to the inevitable
dose to the organs at risk (OAR) such as the bladder
and small bowel [2]. Shaping the dose with steep dose
gradients using Intensity Modulated Radiation therapy
(IMRT) or Volumetric Modulated Arc Therapy (VMAT)
has become common practice [3, 4], but to take optimal
advantage of these treatment techniques, adequate PTV
margins and visualization of the target volume prior to
each treatment fraction to avoid misses is essential.
Population-based margins are typically very large in the
pelvic region due to large day-to-day variations of the
target volume [5–9]. Online Conebeam CT (CBCT)
image guidance at the treatment machine is widely ap-
plied and very effective in this patient group for verifica-
tion of patient position and target coverage, while using
the population-based (fixed) margins.
Even with its limited soft-tissue contrast online

CBCT image guidance can also be used for an adap-
tive procedure using plan selection. Plan selection
using more individualized and therefore smaller mar-
gins enables reducing the dose to OARs and has
proven its value in the treatment of bladder and cer-
vix [10–14]. For rectal cancer we analyzed previously
in a simulated study [15, 16] and prospective clinical
study [17] such a plan selection strategy yields only a
small advantage for the average population but has a
benefit for individual patients and has been clinical
practice in our department since 2016. Recent devel-
opments in improved image quality for treatment
guidance, such as MRI-guided radiotherapy and
CBCT guidance, as well as developments in fast and
precise auto-contouring [18] and auto-planning ‘marks
the beginning of a new era’ [19]. Online adaptive
treatment, based on both MRI and CBCT guidance, is
now a real possibility [19–22] and surely promising in
reducing dose to the OARs even further.
Although the first step towards individualized margins

using plan selection has been proven feasible and is clin-
ically implemented for rectal cancer [16, 23], daily online
adaptation is expected to be beneficial. To our know-
ledge the benefit of online adaptation for rectal cancer
has not been reported yet, with a clinically implemented
plan selection as the baseline.
The aim of this study is to assess the added value of

online adaptive radiotherapy (online ART) for rectal
cancer, by comparing the online adaptive treatment to a
clinically implemented plan selection strategy by quanti-
fying the benefit with respect to dose to the OARs and
coverage of the target volume.

Methods
In this study we used the same methodology and patient
cohort [17] as in our previous study, a comparison be-
tween a fixed margin and a variable margin technique, e.g.
plan selection, but applied to a clinical cohort of LCRT
(25x2Gy) and SCRT (5x5Gy). For the plan selection distri-
bution there is a brief summary (Supplement 1, 2) as the
results are described in our previous article [17].

Patients
The first twenty consecutive patients that underwent
plan selection between May and September 2016 were
included in this study. This cohort included 20 patients
of which 10 patients were treated with a short course
treatment (5x5Gy)(SCRT) and 10 patients with a long
course treatment (25x2Gy)(LCRT). Boost dose to the
tumor is not part of the treatment regimen. Patient
characteristics can be found in Supplement 3. The
schedule regimen was determined by stage and resect-
ability of the primary tumor. All fractions (N = 300) were
used for analysis. All patients were positioned supine
with a knee support and their arms raised over their
heads (Posirest, CIVCO).

Planning CT and target volume
A planning CT was acquired with a full bladder, patients
were instructed to empty the bladder 1.5 h before CT ac-
quisition and to drink subsequently 0.5 l of fluid. No add-
itional instructions have been given with respect to rectal
filling and thus, spontaneous rectum filling was used.
Structures, based on the delineation guidelines by Roels

et al. [24], were contoured using Advantage SIM (GE) or
Velocity (Velocity, AI 3.2, Varian Medical Systems).
The GTV, defined as tumor and positive lymph nodes,

was delineated. The tumor itself is indicated on the ref-
erence scan but no boost dose is applied to the tumor.
For CTV, the mesorectum, presacral space, internal iliac
lymph node regions and, when applicable, obturator
lymph node regions, were delineated by a radiation on-
cologist. With the transition at the base of the bladder
the mesorectum was divided into an upper and lower
part to be able to differentiate margins between the
upper and lower mesorectum based on the geometrical
uncertainties reported by Nijkamp et al. [6, 7, 9]. Radi-
ation Therapists (RTTs) contoured the OARs (i.e., the
bladder, bowel bag for small bowel and femur heads) ac-
cording to RTOG guidelines [25].

Plan selection margins
PTV margins for the clinically applied plan selection
strategy around the CTV lymph node regions were cre-
ated by expanding the volumes with 8 mm in all direc-
tions. The CTV pre sacral space was expanded with 10
mm in all directions. For the upper and lower
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mesorectum the volume was expanded with 10mm in all
directions, except for the ventral side. The ventral side of
the lower mesorectum had an fixed anterior margin of 15
mm, whereas the ventral side of the upper mesorectum
had variable anterior margins to use for plan selection.
Two sets of margins were defined according to the anat-
omy captured on the planning CT scan: For an empty rec-
tum (Supplement 4(a)) on planning CT we used PTV
margins of 25mm, 15mm, 0mm, as − 15mm was un-
likely to be needed. For a full rectum on planning CT
(Supplement 4(b)), we used 15mm, 0mm and − 15mm,
as 25mm was unlikely to be needed [15, 16].

Clinical procedure – registration, correction and plan
selection
All CBCT scans were registered to the pelvic bony anat-
omy (XVI5.0, Elekta) using translations and rotations. If
the rotation around one of the axes was larger than 4°,
the patient was re-aligned. Remaining setup rotations
under 4° were converted into a table correction (transla-
tions-only) by taken out the rotations using a rotation
point at the center of gravity of the PTV. This means
that rotational errors were still present during treatment
delivery. Based on the anatomy of the day the smallest
plan encompassing the target volume was selected to
treat the patient.

Delineations
A graphic overview of the workflow can be found in
Supplement 5. Each CBCT scan (N = 300) was
resampled to the planning CT including the online table

correction, which represented the anatomy of the patient
at treatment, and exported to Velocity. For this study,
delineations used in our previous study on these CBCT
scans were available of upper and lower mesorectum as
well as bladder and bowel bag. These structures were de-
lineated by a single experienced observer (RdJ). The
elective lymph nodes and pre sacral space were not re-
delineated. Instead, the delineations were propagated
from the planning CT to the CBCT using a bony anat-
omy match. The total CTV volume was uniformly ex-
panded with 3 mm to create the PTV for the online
adaptive strategy. Using the identity transformation,
these structures were then propagated to the planning
CT scan.

Dose calculation and comparison between the online
adaptive treatment and plan selection strategy
For the plan selection strategy a new plan library was
created and for the online adaptive strategy a treatment
plan was created for each fraction, in both cases using
automated planning [26] with the same clinical goals
with the same prioritization (Plan Explorer, RaySearch
v6.99). The planning technique was VMAT dual arc with
energy 10 MV using the planning CT for dose calcula-
tion. In order to avoid treatments plans with too much
modulation, for each arc a maximum of 300 MU and
750 MU was allowed for plans with 2 Gy and 5 Gy pre-
scribed fraction dose, respectively. All plans were
checked for clinical acceptability. This resulted in 300
treatment plans for the online adaptive treatment and 60
plans for the plan selection strategy.

Fig. 1 Boxplot showing difference in normal tissue irradiated between Plan selection and Online ART for the total cohort. The boxplot shows the
interquartile range. Whiskers indicate the 5th and 95th percentiles. Outliers (°) are marked
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Evaluation
For both the plan selection strategy and the online adap-
tive strategy the DVHs for each fraction were calculated
using the planned dose distribution on the planning CT
together with the delineated structures from the regis-
tered CBCT. For the plan selection strategy only the se-
lected plan for that fraction was used. Consequently only
the anatomical changes to structures delineated on
CBCT were taken into account. Literature on predictive
dose volume parameters is relatively sparse, therefore a
range of DVH parameters based on the parameters sug-
gested in de QUANTEC papers [27, 28] as well as DVH
parameters suggested by Mouttet-Audouard et al. [29]
and Deville et al. [30, 31] were evaluated (i.e. the volume
receiving at least 15 Gy (V15Gy), 30 Gy (V30Gy), 40 Gy
(V40Gy), 45 Gy (V45Gy)). Deformable registration inev-
itably involves uncertainties [32], especially in the pelvic
region with e.g. appearing and disappearing gas. For the
comparison between the online adaptive and variable
margin technique, e.g. plan selection, we chose to avoid
dose accumulation by deformable registration for asses-
sing the total dose to OARs. Instead the corresponding
fractional dose levels were used and the difference of the
dose to the OARs between the online adaptive treatment
and plan selection strategy was tested per fraction.
The fractional dose levels analyzed for LCRT were

V0.6Gy (equals V15Gy), V1.2Gy (equals V30Gy), V1.6Gy
(equals V40Gy), V1.8Gy (equals V45Gy), V95%. The
fractional dose levels analyzed for SCRT were V3.0Gy
(equals V15Gy), V95%. Dose levels higher than the pre-
scribed dose were skipped from evaluation. The mean
dose (Dmean) for bladder was analyzed for both SCRT
and LCRT.
For each fraction the difference between the plan selec-

tion and online adaptive strategy of each DVH parameter
was calculated, as well as the average difference per patient.
We calculated target coverage as a percentage of the

prescribed dose received by 99% of the CTV volume
(D99%).

Statistical analysis
Wilcoxon signed-rank sum tests were used to test the
difference between online adaptive strategy and plan se-
lection for:

1) Volume of normal tissue irradiated with 95% of the
prescribed fraction dose defined by the volume
receiving 95% of the prescribed dose or more minus
the volume of the CTV.

2) Difference of all DVH parameters for dose to the
OARs per fraction.

Significance was set at p < 0.05. Statistical analysis was
performed using SPSS25.

Results
Target coverage for the total cohort, expressed as D99%,
the percentage of the prescribed dose received by 99% of
the CTV volume, was on average 98.5% for plan selec-
tion and 98.7% for online adaptive strategy.

1) Volume of normal tissue irradiated with 95% of the
prescribed dose
For the total cohort the median volume of the normal
tissue irradiated with 95% of the prescribed dose
dropped from 642 cm3 using plan selection to 237 cm3

using the online adaptive strategy, which was statistically
significant (p < 0.001) (Fig. 1).

2) Dose to the organs at risk
Overall, compared to the plan selection strategy, the on-
line adaptive strategy reduced dose to the bowel bag
(p < 0.001) (Fig. 2) and bladder (p < 0.001) (Fig. 3) for all
dose levels.
For V15Gy of the bowel bag the median difference

over all fractions of all patients was − 126 cm3 in LCRT,
while the average difference per patient ranged from −
206 cm3 to − 40 cm3. For SCRT the median difference
was − 62 cm3, while the range of the average difference
per patient was − 105 cm3 to − 51 cm3. Boxplots of the
differences of all DVH parameters are shown in Fig. 4,
while the range of the average differences per patient
can be found in Table 1.
For V15Gy of the bladder the median difference over

all fractions of all patients was 26% in LCRT, while the
average difference per patient ranged from − 34 to 12%.
For SCRT the median difference of V95% was − 8%,
while the range of the average difference per patient was
− 29 to 0%. Boxplots of the differences of all DVH pa-
rameters are shown in Fig. 5, while the range of the
average differences per patient can be found in Table 1.

Discussion
This study is the next step in our research to improve
radiotherapy treatment for rectal cancer. After reporting
on the possible benefit with a simulated plan selection
strategy for SCRT [15, 16] and a prospective comparison
for both SCRT and LCRT [17] we now present the re-
sults of the comparison between a simulated online
adaptive treatment to a clinically implemented CBCT-
based plan selection strategy for SCRT and LCRT. The
results when comparing plan selection to the online
strategy show large and significant reductions for both
bowel bag and bladder for all DVH parameters analyzed.
The online strategy results in much less dose to the

normal tissue because of smaller margins used. It is
likely that this translates into a clinically relevant reduc-
tion of toxicity. Toxicity has been mostly reported in
prostate patients that are treated with higher doses than
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rectal cancer. Holyoake et al. [33] conducted a meta-
analysis looking at the mean difference in volume for
small bowel for different dose levels between grades 0–2
and grade 3 toxicity and a toxicity risk for V10Gy and
V40Gy received by normal fractionated radiotherapy. In
all included studies the patients were treated with
chemotherapy concomitantly. They found evidence for a
significant dose-volume-toxicity response effect for a
wide range of clinically-relevant doses in the treatment
of rectal cancer. Comparison with our results is ham-
pered by the different delineation of small bowel (bowel
loops versus bowel bag). For late toxicity for bladder the
significance of reduced dose is much less evident. Fiorini
et al. [34] summarizes that only high doses (> 60-65Gy)
to small volumes and 50-60Gy to whole bladder in-
creases the risk of moderate to high toxicity, analyzed
for different treatment sites. These dose-volume-toxicity
response fall outside of the clinically-relevant doses for
rectal cancer. Harsolia et al. [35] however suggest to
limit the bladder wall V30Gy to < 30 cm3 (if wall infor-
mation is not available to use solid V30Gy) based on a
large prospective study on prostate patients assessing

predictors for grade 2 and 3 chronic urinary toxicity. For
acute toxicity for bladder in rectal patients Appelt et al.
[36] report a dose-cut-off model of V35Gy and later sug-
gest constraints [37] for bladder of V21Gy < 15% and
V25Gy < 5% (SCRT) and V35GY < 22% and V50Gy < 7%
(LCRT) in early stage rectal cancer.
This study used a 3mm margin around the entire CTV

volume for the online adaptive treatment. This 3mm mar-
gin is often suggested in the literature for different sites
[38–41] when using online MRI image guidance. Even
though in principle all shape variations and rotations are
corrected with the online strategy, some uncertainties will
remain [42, 43]. Intra fraction motion, i.e. shape change of
the rectum during treatment, is not accounted for. This
has been assessed by Kleijnen et al. [44]. They observed
that 90% of the time motion is below 3.6mm for the CTV
when looking at 1min time intervals. Their results cannot
be translated into margins but they state “plan of the day’
approaches [are] only meaningful if imaging, planning,
and delivery can be done in under 18min. Also, delinea-
tion uncertainty has always been a prominent factor con-
tributing to the margin [43, 45, 46]. Conventionally, when

Fig. 2 Boxplot showing the volume of small bowel receiving x Gy for different DVH parameters for both Plan selection and online ART. The
boxplot shows the interquartile range. Whiskers indicate the 5th and 95th percentiles. Outliers (°) are marked
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Fig. 3 Boxplot showing the volume of bladder receiving x Gy for different DVH parameters for both Plan selection and online ART. The boxplot
shows the interquartile range. Whiskers indicate the 5th and 95th percentiles. Outliers (°) are marked

Fig. 4 Boxplot showing the difference in volume of small bowel receiving x Gy for different DVH parameters. The boxplot shows the interquartile
range. Whiskers indicate the 5th and 95th percentiles. Outliers (°) are marked
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designing a plan on a single pre-treatment CT scan this
uncertainty is systematic in nature. However, for an adap-
tive procedure with multiple fractions, with a daily (re-)
delineation is repeated (or adjustment), that error can be
characterized as random [42]. Data on this random uncer-
tainty, obtained under realistic clinical time constraints, is
currently lacking and should be quantified. Previously
there have been reports on overestimating accuracy with
detrimental effects on local control [47].

A limitation of our study is the use of the original de-
lineation of the lymph node region. An online adaptive
workflow will be a balance between complexity and
speed. Keeping the original lymph node delineation will
speed up the adaptive process. Gwynne reports in a re-
view that pelvic vessels have a relatively stable position
in relation to the bony pelvis and a 3 mm margin would
be sufficient [48–50]. Although the vessels and with that
the lymph nodes are stable Nijkamp et al. [6, 7, 9] sug-
gest to use non uniform margins of a 5–13 mm for pre-
sacral space for an offline adaptive workflow. This is not
due to variety in lymph node position but because of
bowel loops moving in and out of the pre sacral volume.
Adapting the lymph node region as well might be neces-
sary when using a 3 mm margin, ands need further
research.
A limitation of this study is the moderate number of

patients [20] and fractions (300) used for analyses. The
significance and large difference between the online
strategy and plan selection for all dose levels and for
both SCRT and LCRT is, however, convincing. The
quantification of the added value of online adaptation
could benefit from larger patient numbers.
In our study the initially planned dose was used to

evaluate coverage of the target volume and dose to the
OARs per fraction instead of dose accumulation. Prefer-
ably the dose would be accumulated but deformable
image registration, especially in the presence or absence
of air, has large limitations [32]. By analyzing the dose
per fraction we avoided additional uncertainties that
would be introduced by deformable image registration
and subsequent dose accumulation. However, an

Fig. 5 Boxplot showing the difference in volume of bladder receiving x Gy for different DVH parameters. The boxplot shows the interquartile
range. Whiskers indicate the 5th and 95th percentiles. Outliers (°) are marked

Table 1 Average and range of the average differences per DVH
parameter per patient

AVG min max

Bowel bag LCRT V15 (cm3) −127 −206 −40

LCRT V30 (cm3) −64 − 117 −19

LCRT V40 (cm3) −58 −102 −25

LCRT V45 (cm3) −60 −101 −30

LCRT V95% (cm3) −62 −101 −34

SCRT V15 (cm3) −69 −105 −51

SCRT V95% (cm3) −57 −86 −42

Bladder LCRT V15 (%) −24 −34 12

LCRT V30 (%) −18 −39 −3

LCRT V40 (%) −14 − 39 −4

LCRT V45 (%) −12 −36 − 3

LCRT V95% (%) −10 −32 −2

LCRT Dmean Gy −8 −15 0

SCRT V15 (%) −11 −29 0

SCRT V95% (%) −4 −12 0

SCRT Dmean Gy −3 −8 0
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accurate deformable image registration algorithm, taking
the complexities of the pelvic region into account,
should be preferred whenever that becomes available.
To compare de DVHs per fraction a different option

could have been to deform the planning CT to the
CBCT and thus account for difference in densities due
to anatomical changes (for example, air in rectum).
However this method introduces an uncertainty as well.
If anything, dose calculation on CBCT would favor the
online adaptive treatment, because density changes
would be accounted for with daily plan creation. For
both approaches the uncertainty applies to both the plan
selection and online adaptive treatment with the same
magnitude and therefore does not affect our results.
Nevertheless, we expect that the effect will be small as
compared to the dosimetric effect of using much smaller
PTV margins.
Online adaptive strategies require not only accurate

and fast contouring and treatment planning but also a
reconfiguration of workflows and responsibilities. It may
very well result in the need of the presence of radiation
oncologist, medical physicist and/or dosimetrist at the
treatment machines. Also, timeslots may need to be ad-
justed as adaptation will take additional time [51, 52].
The margin choice (3mm) is important for the conclu-

sion of this paper. Moving towards online adaptive treat-
ment for rectal cancer the practicality, accuracy and quality
needs to be investigated to be able to calculate appropriate
margins. This paper however, gives a first estimate of the
potential benefit of online adaptation for rectum and helps
in the process of prioritizing treatment sites.

Conclusion
Radiotherapy with online adaptive re-planning of locally
advanced rectal cancer reduces dose to the bladder and
small bowel significantly, compared to a clinically imple-
mented plan selection strategy.
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Additional file 3. Patient characteristics.

Additional file 4. Margin sets based on anatomy as captured on
planning CT. (1a) shows an empty rectum with a set of 25 mm, 15 mm,
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