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Abstract: Phthalates used as plasticizers have become a part of human life because of their important
role in various industries. Human exposure to these compounds is unavoidable, and therefore
their mechanisms of toxicity should be investigated. Due to their structure and function, human
erythrocytes are increasingly used as a cell model for testing the in vitro toxicity of various xenobiotics.
Therefore, the purpose of our study was to assess the effect of selected phthalates on methemoglobin
(metHb), reactive oxygen species (ROS) including hydroxyl radical levels, as well as the activity
of antioxidative enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione
peroxidase (GSH-Px), in human erythrocytes. Erythrocytes were incubated with di-n-butyl phthalate
(DBP), butylbenzyl phthalate (BBP), and their metabolites, i.e., mono-n-butyl phthalate (MBP) and
monobenzyl phthalate (MBzP), at concentrations ranging from 0.5 to 100 µg/mL for 6 or 24 h.
This study shows that the analyzed phthalates disturbed the redox balance in human erythrocytes.
DBP and BBP, at much lower concentrations than their metabolites, caused a statistically significant
increase of metHb and ROS, including hydroxyl radical levels, and changed the activity of antioxidant
enzymes. The studied phthalates disturbed the redox balance in human erythrocytes, which may
contribute to the accelerated removal of these cells from the circulation.

Keywords: phthalates; methemoglobin; reactive oxygen species; hydroxyl radical; superoxide
dismutase; catalase; glutathione peroxidase

1. Introduction

Nowadays, the list of substances that can have a serious impact on human health and the
environment is systematically growing. The European Chemicals Agency (ECHA) has identified
these harmful chemicals as substances of very high concern (SVHC). This list also includes phthalates
(PAEs), which are the most commonly used plasticizers in the world. Phthalates have been qualified as
endocrine-disrupting chemicals (EDCs), and several of them, including di-n-butyl phthalate (DBP)
and butylbenzyl phthalate (BBP), have been inscribed in the Candidate List of SVHCs [1].

Due to their properties, DBP and BBP are widely used in the production of plastics and cosmetics
and in the pharmaceutical industry [2–4]. Phthalates do not form covalent bonds with the substances
they are being added to and thus they may migrate easily and enter food, water, air, cosmetics,
and various products of everyday use [5–7]. These compounds enter the human body mainly via
the enteral pathway (food, water, drugs) at about 7–10 µg/kg of body weight (BW)/day but also by
inhalation (concentration in the air: BBP 0.058–3.97mg/m3, DBP 1.5–270 ng/m3) or through dermal
contact with cosmetics (DBP max 0.594 ppm and BBP max 186.770 ppm) [7–10]. After entering the
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organism, DBP and BBP are decomposed by lipases and esterases to monoesters, such as mono-n-butyl
phthalate (MBP) and mono-benzyl phthalate (MBzP) (Figure 1) [11,12].
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Figure 1. Chemical structures of the studied phthalates.

Phthalates and their metabolites have been detected in humans around the world. In peripheral
blood and umbilical cord blood, DBP has been detected in the concentration ranges from 0.051 to
7.67 µg/mL and from 0.0197 to 5.71 µg/mL, respectively [13,14]. In blood serum, DBP was found
at a concentration of 0.77–12.50 ng/mL, and BBP at a concentration of 0.82–1.97 ng/mL [15].
DBP (0.25–269 µg/L) and MBzP (7.4–9.5 ng/mL) were determined in the urine of adults and
children [16–22]. DBP and BBP were detected at approx. 2 µg/mL and 4 µg/mL, respectively,
in hair samples [23].

Many epidemiological studies have shown that phthalates, after entering the body, cause disorders
of the endocrine system. They can also contribute to the development of allergies, asthma, obesity,
metabolic syndrome, type 2 diabetes, cardiovascular diseases, and malignant neoplasms, and all these
disorders are associated with oxidative stress induction [24–27].

Oxidative stress is a disturbance of the balance between the formation and the removal of free
radicals. It arises as a result of increasing reactive oxygen species (ROS) level, reduced amount of
scavengers, and depletion of the activities of antioxidant enzymes [28]. Currently, most studies on
oxidative stress under the influence of SVHCs, such as DBP, BBP, and their metabolites, are being
conducted on plants or animals. In plants, these phthalates have been shown to disturb the activity
of superoxide dismutase, catalase, and glutathione peroxidase, increase ROS level, and induce
lipid peroxidation [29,30]. Similar changes of the same parameters have been observed in animals
(earthworms, Danio rerio, mice, rats). These examples may indicate that these substances produce
oxidative stress in various organisms [31–36].

There are few studies on the effect of phthalates, like DBP, BBP, MBP, and MBzP, on human blood
cells. Literature data have shown that these phthalates cause hemolysis and eryptosis of human red
blood cells (RBCs), may interact with hemoglobin [37,38], and induce apoptosis in human peripheral
blood mononuclear cells (PBMCs) [39]. DBP and its metabolite MBP also exhibit cytotoxic potential
and cause cytokine secretion in human PBMCs [40].

The aim of our study was to compare the effects of phthalates (DBP, BBP) and their metabolites
(MBP, MBzP) on selected markers of oxidative stress (methemoglobin (metHb) and ROS, including
hydroxyl radical (•OH) levels and the activity of antioxidative enzymes, including catalase (CAT),
superoxide dismutase (SOD glutathione peroxidase(GSH-Px)) in human erythrocytes [41,42]. The tested
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compounds were mainly used at the concentrations from 0.5 µg to 10 µg/mL because phthalates
have been found in human blood in concentrations from 0.0197 to 7.67 µg/mL [13,14]. In order to
thoroughly determine the mechanism of action of phthalates, we also conducted studies at slightly
higher phthalates concentrations, i.e., in the range of their pre-hemolytic concentrations, which are
20 µg/mL in the case of the parent compounds (DBP, BBP) and 100 µg/mL in the case of their metabolites
(MBP, MBzP) [37]. Therefore, in this study, human RBC were finally treated with parent phthalates at
concentrations ranging from 0.5 to 20 µg/mL and with their metabolites at concentrations from 0.5 to
100 µg/mL. Erythrocytes, in addition to their primary function of transporting oxygen from the lungs
to tissues and carbon dioxide from tissues to the lungs, are involved in the transport and/or storage of
toxic substances [43]. Hemoglobin (Hb), the main protein present in erythrocytes, can be oxidized
directly by xenobiotics or indirectly by reactive oxygen species produced by xenobiotics transported
by these cells [43,44]. Interactions of xenobiotics with Hb may lead to changes in Hb structure and
loss of its function [45]. In addition, these cells have a very well developed antioxidant system [46].
Therefore, the conduction of vitro tests using human RBC is justified and may become an essential
tool for the assessment of the toxicity of DBP, BBP, and their metabolites (MBP, MBzP) in the human
organism [41,47].

2. Results

2.1. Hemoglobin Oxidation

After 24 h of incubation of the erythrocytes with increasing phthalates concentrations, an increase
in metHb level was observed. DPB caused a statistically significant increase in the parameter studied
starting from the concentration of 2.5 µg/mL, while BBP produced this effect from the concentration of
5 µg/mL (Table 1). A statistically significant increase in metHB level was observed in RBCs treated
with MBP and MBzP only starting from a concentration of 50 µg/mL (Table 1).

Table 1. Changes in methemoglobin level in control erythrocytes and in erythrocytes incubated for
24 h with DBP, BBP, MBP, and MBzP used at concentrations ranging from 0.5 to 100 µg/mL.

Concentration Methemoglobin (%)

(µg/mL) DBP BBP MBP MBzP

0 1.21 ± 0.65 1.21 ± 0.65 1.21 ± 0.65 1.21 ± 0.65
0.5 3.19 ± 1.12 2.71 ± 0.76 2.11 ± 0.46 2.87 ± 0.73
1 3.10 ± 0.85 3.66 ± 0.77 2.45 ± 0.73 3.66 ± 0.43

2.5 6.61 ± 0.83 * 3.73 ± 0.44 2.70 ± 0.96 3.32 ± 0.43
5 8.99 ± 0.94 * 4.83 ± 0.81 * 2.86 ± 0.97 4.08 ± 0.48

10 16.85 ± 1.67 * 13.99 ± 1.10 * 3.66 ± 0.81 4.70 ± 0.97
20 25.15 ± 1.87 * 24.94 ± 2.79 * 5.09 ± 0.65 5.68 ± 0.91
50 - - 7.73 ± 0.80 * 9.74 ± 1.09 *
100 - - 9.90 ± 0.89 * 14.09 ± 2.23 *

Legend: DBP, di-n-butyl phthalate; BBP, butylbenzyl phthalate; MBP, mono-n-butylphthalate; MBzP,
monobenzylphthalate; “-” no data; (*) p < 0.05.

2.2. ROS Levels

After 6 h of incubation of the erythrocytes with phthalates, an increase in ROS level was observed
as compared to the control (100%). DBP and BBP caused a statistically significant increase in ROS
levels starting from a concentration of 1 µg/mL and corresponding to 11.8% and 13.7%, respectively
(Figure 2). For their metabolites, MBP and MBzP, a significant increase in ROS level starting from a
concentration of 5 µg/mL and corresponding to 17.1% and 22.2%, respectively, was noted (Figure 2).



Int. J. Mol. Sci. 2020, 21, 4480 4 of 14

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 14 

 

After 6 h of incubation of the erythrocytes with phthalates, an increase in ROS level was 
observed as compared to the control (100%). DBP and BBP caused a statistically significant increase 
in ROS levels starting from a concentration of 1 µg/mL and corresponding to 11.8% and 13.7%, 
respectively (Figure 2). For their metabolites, MBP and MBzP, a significant increase in ROS level 
starting from a concentration of 5 µg/mL and corresponding to 17.1% and 22.2%, respectively, was 
noted (Figure 2). 

A statistically significant increase in 3′-(p-hydroxyphenyl)-fluorescein (HPF) oxidation (mainly 
•OH formation) with respect to the control (100%) was observed in RBCs incubated with DBP and 
BBP at 2.5 µg/mL, corresponding to 11.7% and 15.2%, respectively. MBP starting from 10 µg/mL and 
MBzP starting from 50 µg/mL caused an increase in HPF fluorescence by 14.2% and 21.9%, 
respectively (Figure 3). 

Figure 2. Changes in reactive oxygen species levels in control erythrocytes and in erythrocytes 
incubated for 6 h with DBP, BBP, MBP, and MBzP used at concentrations ranging from 0.5 to 100 
µg/mL. (*) p < 0.05. 

Figure 3. Changes in hydroxyl radical levels in control erythrocytes and in erythrocytes incubated for 
6 h with DBP, BBP, MBP, and MBzP used at concentrations ranging from 0.5 to 100 µg/mL. (*) p < 
0.05. 

2.3. Superoxide Dismutase Activity 

A statistically significant decrease in SOD activity after 24 h of incubation of the erythrocytes 
with DBP (74.8%) and BBP (66.2%) starting from a concentration of 2.5 µg/mL was observed. A 
similar decrease was observed for MBP and MBzP but starting from a higher concentration 
corresponding to 10 µg/mL (by 60.9% and 63.6%, respectively) (Table 2). 

  

  

Figure 2. Changes in reactive oxygen species levels in control erythrocytes and in erythrocytes
incubated for 6 h with DBP, BBP, MBP, and MBzP used at concentrations ranging from 0.5 to 100 µg/mL.
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A statistically significant increase in 3′-(p-hydroxyphenyl)-fluorescein (HPF) oxidation (mainly
•OH formation) with respect to the control (100%) was observed in RBCs incubated with DBP and
BBP at 2.5 µg/mL, corresponding to 11.7% and 15.2%, respectively. MBP starting from 10 µg/mL and
MBzP starting from 50 µg/mL caused an increase in HPF fluorescence by 14.2% and 21.9%, respectively
(Figure 3).
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Figure 3. Changes in hydroxyl radical levels in control erythrocytes and in erythrocytes incubated for
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2.3. Superoxide Dismutase Activity

A statistically significant decrease in SOD activity after 24 h of incubation of the erythrocytes with
DBP (74.8%) and BBP (66.2%) starting from a concentration of 2.5 µg/mL was observed. A similar
decrease was observed for MBP and MBzP but starting from a higher concentration corresponding to
10 µg/mL (by 60.9% and 63.6%, respectively) (Table 2).
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Table 2. Changes in the activity of SOD, CAT, and GSH-Px in control erythrocytes and in erythrocytes
incubated for 24 h with DBP, BBP, MBP, and MBzP used at concentrations ranging from 0.5 to 100 µg/mL.

Compound Concentration (µg/mL) Activity of Antioxidant Enzymes

SOD
(U/g Hb)

CAT
(µmol/min/mg Hb)

GSH-Px
(µmol/min/gHb)

0 1373.9 ± 139.2 161.97 ± 5.6 32.0 ± 3.6

DBP 0.5 1220.1 ± 79.5 159.7 ± 11.8 31.7 ± 2.5
1 1145.1 ± 68.6 168.7 ± 21.5 27.3 ± 3.1

2.5 1028.1 ± 79.6 * 181.3 ± 16.0 23.5 ± 2.2
5 920.5 ± 56.3 * 215.9 ± 12.0 * 21.6 ± 3.2 *
10 754.1 ± 44.6 * 220.7 ± 18.6 * 18.9 ± 5.4 *
20 662.5 ± 82.2 * 238.8 ± 15.5 * 17.9 ± 6.2 *

BBP 0.5 1279.1 ± 89.7 151.5 ± 8.5 30.8 ± 4.9
1 1165.1 ± 64.1 166.0 ± 14.3 30.4 ± 4.4

2.5 904.6 ± 61.5 * 179.2 ± 12.3 28.5 ± 4.2
5 841.9 ± 75.5 * 197.9 ± 13.2 * 22.7 ± 3.8*
10 750.0 ± 95.3 * 207.1 ± 15.4 * 19.2 ± 5.1 *
20 549.7 ± 66.6 * 231.5 ± 14.6 * 18.4 ± 5.6 *

MBP 2.5 1270.2 ± 78.5 154.1 ± 15.9 31.3 ± 5.7
5 1177.7 ± 105.3 158.6 ± 17.1 26.1 ± 5.8
10 837.1 ± 64.0 * 165.1 ±16.8 24.6 ± 5.5
20 759.1 ± 82.9 * 184.6 ± 10.9 23.9 ± 1.7
50 673.2 ± 89.4 * 201.3 ± 22.5 * 21.6 ± 1.9 *

100 436.9 ± 59.7 * 217.2 ± 20.9 * 20.6 ± 1.9 *

MBzP 2.5 1225.7 ± 122.5 156.8 ± 19.4 33.1 ± 4.4
5 1046.1 ± 149.7 160.4 ± 12.8 28.1 ± 6.3
10 861.0 ± 95.2 * 179.8 ± 17.8 27.6 ± 2.8
20 815.1 ± 87.3 * 185.4 ± 13.6 24.9 ± 3.1
50 631.2 ± 98.1 * 216.6 ± 14.5 * 24.8 ± 6.1 *

100 577.8 ± 67.5 * 222.0 ± 19.1 * 23.7 ± 3.6 *

Legend: SOD, superoxide dismutase; CAT, catalase; GSH-Px, glutathione peroxidase; (*) p < 0.05.

2.4. Catalase Activity

DBP and BBP, starting from a concentration of 5 µg/mL, caused a statistically significant increase
in CAT activity by 36% and 24%, respectively. The phthalate metabolites caused statistically significant
changes only starting from a concentration of 50 µg/mL (Table 2).

2.5. Glutathione Peroxidase Activity

A statistically significant decrease in the activity of this enzyme after 24 h of incubation of RBCs
with the parent phthalates (starting from a concentration of 5 µg/mL) was observed, which was
approximately 30%. For MBP and MBzP (starting from a concentration of 50 µg/mL), a statistically
significant decrease of GSH-Px activity was noted, which was estimated to be 32% and 23%, respectively
(Table 2).

3. Discussion

Many xenobiotics are able to generate ROS, increase redox reactions, and reduce the activity of
the antioxidant system [41,48,49], therefore contributing to the generation of oxidative stress in cells,
which often accompanies numerous diseases [25,50]. For this reason, we have evaluated the effect of
phthalates, i.e., DBP and BBP and their metabolites like MBP and MBzP, on selected parameters of
oxidative stress in human erythrocytes.

Phthalates have relatively high logarithmic values of the octanol–water partition coefficient (Kow)
and demonstrate a good solubility in lipids, easily penetrating the erythrocyte membrane and thus
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entering cells by in vivo transport and diffusion processes [51,52]. Hemoglobin is the main component
of RBCs and their only nonmembrane protein [45,46]. Therefore, phthalates entering RBCs may
easily interact with Hb, altering its structure and function [45,52]. The administration of DBP and
BBP to rats showed a decreased in the level of RBCs, Hb, and hematocrit [44]. A similar correlation
was observed by Zhu et al. examining the blood from a group of pregnant women. The authors
showed that an increase in the concentration of phthalate metabolites in the urine (including MBP
and MBzP) correlated with a decrease in the amount of Hb in the blood and an increase of anemia in
the women studied [52]. In vitro studies on the effects of DBP, BBP, and their metabolites on human
erythrocytes have shown that these phthalates decreased erythrocyte viability (hemolysis) and induced
eryptosis [37]. Hemolysis leads to a release of Hb from erythrocytes. This phenomenon can contribute
to metHb3+ formation, which is incapable of oxygen transport as it binds to oxygen very tightly and
does not release it in tissues, even when the partial pressure of oxygen is low [38,53–55].

Our study showed an increase in metHb level along with increasing phthalates concentrations,
and DBP showed the strongest methemoglobinogenic activity (Table 1). The increase in metHb level
could be due to a significant decrease of the activity of metHb reductase in erythrocytes incubated
with the studied phthalates. Hemoglobin oxidation may also be the result of damage to the RBC
membrane or excessive ROS production or may be associated with the direct interaction of the analyzed
compounds with hemoglobin [49]. The experiments with bovine hemoglobin (BHb) reported by Chi
et al. demonstrated that DBP could interact with BHb to form BHb–PAE complexes through one
binding site in the central cavity of BHb and the creation of hydrophobic forces. The binding of PAEs
to BHb could change the secondary structure of BHb, which may affect function of this protein [45].
Other studies on human hemoglobin (hHb) showed that the aromatic ring present in PAE significantly
increased the binding strength between hHb and PAE but reduced the depth of the binding position
in the hydrophobic space of hHb center. PAEs with a higher number of carbon atoms (which means
higher hydrophobicity) have been shown to move deeper into the hydrophobic space of the hHb center
and bind this protein at different sites [38]. MetHb formation suggests that phthalates target Hb and its
heme groups. Heme degradation usually leads to an increase in the level of free iron ions, which are
active in redox reactions and can react with H2O2 to form highly reactive hydroxyl radicals [56–60].
Therefore, we determined the level of ROS, including that of hydroxyl radical.

Some studies have shown that phthalates in young men induced ROS production, contributing
to oxidative stress in Sertoli and Leydig cells, resulting in the inhibition of the spermatogenesis
process and in the reduction of spermatozoid count [61,62]. Our study showed that DBP and BBP at a
concentration as low as 1 µg/mL caused an increase in ROS formation (Figure 2). A similar tendency
was observed by Yin et al., in mouse embryonic stem cells exposed to DBP [34]. Phthalates metabolites
also caused an increase in ROS level but starting from a concentration of 5 µg/mL (Figure 2). In another
study, MBP (DBP metabolite) at the level of 10−3 M caused an increase of ROS level and impaired the
developmental competency of preimplantation embryos [63]. In this study, a statistically significant
increase in the hydroxyl radical level in RBCs treated with the parent phthalates at a concentration
of 2.5 µg/mL was observed. However, in the case of their metabolites, such changes were observed
at a higher concentration, corresponding to 10 µg/mL (Figure 3). Some researchers have suggested
that, when present in adequate amounts, ROS act as signaling molecules by participating in signal
transduction pathways and can induce changes in enzyme activity, apoptosis, and necrosis. Finally, this
leads to pathological changes and organ dysfunction [35,64,65].

The main antioxidant enzyme that defends cells against ROS, including hydroxyl radical precursors,
is SOD [56,66–68]. Our study showed that incubation of the erythrocytes with the selected phthalates
caused a statistically significant decrease in SOD activity (inhibition of SOD activity increased along
with increasing phthalates concentrations) (Table 2). Molecular docking studies conducted by Prasanth
et al. also demonstrated that DBP and MBP had a concentration-dependent inhibitory effect on
SOD [69]. The authors showed that DBP and MBP could bind the active site of SOD and create
hydrogen bonds with the active site residue R143. This residue is crucial for the binding of ROS during
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their conversion to hydrogen peroxide and molecular oxygen. This may perhaps explain the inhibitory
effect of DBP and MBP on SOD. The fact that MBP inhibited SOD activity at a concentration several
times higher than the DBP concentration (Table 2) required to inhibit the same amount of enzyme,
may be attributed to the smaller dimensions of the MBP molecule compared to DBP. Hence, MBP may
occupy different positions with comparable binding energies, and in some of them, the ligand may not
interact with R143 [69].

SOD-mediated reaction leads to the formation of H2O2, that is subsequently decomposed by CAT
or GSH-Px to water and oxygen [56,68,70]. Therefore, we determined the activity of CAT and GSH-Px.
Our analysis showed that by reducing the phthalates concentration, there was a slight decrease in CAT
activity. However, the decrease was not statistically significant. Higher concentrations of phthalates
caused a statistically significant increase in the activity of this enzyme (Table 2). The same variations
in CAT activity were observed in earthworms after treatment with different doses of DBP and BBP.
In in vivo systems, the increase in CAT activity is due to the increased expression of the enzyme under
the influence of xenobiotics [36,71,72]. In contrast, in human erythrocytes, which do not possess a
nucleus, the increase in CAT activity under the influence of the analyzed phthalates could be caused
by oxidation of hemoglobin to metHb, because metHb shows catalase-like activity [73]. In our study,
a statistically significant increase in CAT activity was observed at phthalates concentrations that caused
a statistically significant increase in metHb level (Tables 1 and 2). González-Sánchez et al. suggested
that the catalase-like activity of methemoglobin must predominantly be a biocatalytic reaction that
protects the protein against H2O2-induced suicide inactivation [74].

By releasing reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), catalase in
erythrocytes affects the system of glutathione-dependent enzymes (glutathione peroxidase/glutathione
reductase), regulating their activity [75]. Under conditions of excessive ROS formation and metHb
levels in erythrocytes, there may be a significant decrease in the level of NADPH, which plays a crucial
role for the proper function of GSH-Px [76]. In this study, DBP and BBP caused a statistically significant
decrease in GSH-Px activity at a concentration five times lower than that of their metabolites. We also
observed that a reduction in the activity of this enzyme increased along with increasing concentrations
of the analyzed phthalates (Table 2). A similar correlation was observed by Zhou et al. in an in vivo
study on the epididymis of adult rats. GSH-Px is susceptible to inactivation by its own substrates
(hydrogen peroxide, organic peroxides) [77]. The enzymatic performance of GSH-Px in RBCs drops (or
comes to a complete halt) with exposure to high concentrations of H2O2. The reason for this is the slow
regeneration rate of this enzyme by GSH reductase and thioredoxin [78–80].

Our study showed that phthalates such as DBP and BBP and their metabolites MBP and MBzP
caused an increase in free radical production, which most likely led to the oxidation of Hb and a
decrease in the activity of antioxidant enzymes. DBP and BBP caused statistically significant changes at
lower concentrations (from 1 µg/mL) than their metabolites (5 µg/mL). This may be associated with the
high lipophilicity of DBP and BBP and a high bio-accumulation potential, that we observe for chemical
compounds with a value of log P > 3 (log P for DBP, BBP, MBP, and MBzP was 4.83, 5.00, 2.72, and 2.90,
respectively) [81].

In summary, this study indicated that DBP, BBP, and their metabolites (MBP and MBzP) disturbed
the redox balance in erythrocytes at concentrations that have been found in the human blood [13,14].
In addition, it is probable that oxidative stress induced by the studied phthalates in RBCs may
contribute to accelerated eryptosis [37] and thus to the removal of the erythrocytes from the circulation.
This, in turn, can lead to health complications in the form of anemia [82].
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4. Materials and Methods

4.1. Chemicals

Phthalates: di-n-butyl phthalate (DBP), butylbenzyl phthalate (BBP); phthalate metabolites:
mono-n-butylphthalate (MBP), monobenzylphthalate (MBzP) (99–99.5% purity) were purchased from
Sigma-Aldrich (USA).

4.2. Isolation and Treatment of Human Erythrocytes

Erythrocytes were isolated from the leucocyte buffy coat separated from blood bought in the
Regional Centre of Blood Donation and Blood Treatment in Łódź, Poland. Blood was taken from
25 anonymous healthy volunteers (aged 20–45). All procedures related to blood donation were executed
at the Regional Centre of Blood Donation and Blood Treatment in Łódź, Poland. The blood donors
recruitment was at the Centre, according to national legal procedures and European Union regulations
(incl. the regulation (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of
27 April 2016 on the protection of natural persons with regard to the processing of personal data and
on the free movement of such data). The research studies were approved by the Bioethics Committee
of the University of Lodz No. 16/KBBN-UŁ/III/2014. As agreed by the Bioethics Committee of the
University of Lodz, no informed consent is needed for studies on bought anonymous human blood
samples. All methods were performed in accordance with the relevant guidelines and regulations.

Leukocyte buffy coat was diluted using Ringer buffer and centrifuged at 3000 rpm for 10 min
at 4 ◦C. The pellet was washed two times using Ringer buffer (5 mM KCl, 125 mM NaCl, 1 mM
CaCl2, 1 mM MgCl2, 32 mM HEPES, 25 mM Tris 10 mM glucose, pH 7.4). RBC of 5% hematocrit
were suspended in Ringer buffer, treated with DBP, BBP, and their metabolites (0.5–100 µg/mL) and
incubated at 37 ◦C for 6 h or 24 h in total darkness. Control samples consisted of RBCs, which were
incubated with Ringer buffer and ethanol (final concentration of ethanol, 0.2%) [37].

4.3. Hemoglobin Oxidation

After incubation, the samples were treated with deionized water and centrifuged (2400 rpm, 10 min,
4 ◦C). Absorbance of oxidized hemoglobin (MetHb) was measured at two wavelengths, i.e., 630 nm
and 700 nm. Then, a solution containing potassium ferricyanide (1 M Fe 2+: 3 M K4[Fe(CN)6]) was
added to the hemolysate containing methemoglobin, and the samples were re-assayed for absorbance
at the same wavelengths (positive control) [83].

The percent of methemoglobin was calculated by the following Equation (1):

MetHb [%] =
(A630 − A700)

(A100%metHb 630 − A100%metHb 700)
× 100% (1)

where:
MetHb [%], percentage of hemoglobin
A630, absorbance of Hb in the sample tested at 630 nm
A700, absorbance of Hb in the sample tested at 700 nm
A100%metHb 630, absorbance of Hb at 630 nm after treatment with potassium ferricyanide
A100%metHb 700, absorbance of Hb at 700 nm after treatment with potassium ferricyanide

4.4. Oxidation of H2DCFDA and HPF

After 6 h of incubation with DBP, BBP, MBP, or MBzP, the cells were centrifuged (600 g for 10 min
at 4 ◦C) and diluted with PBS (final density 1 × 106 cells/mL). Then, the cells were incubated with
the fluorescent probe 6-carboxy 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) (at a final
concentration of 5 µM) or 3′-(p-hydroxyphenyl)-fluorescein (HPF) (at a final concentration of 4 µM)
for 20 min at 37 ◦C in total darkness. In order to measure the production of ROS, the increase in
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fluorescence of dichlorofluorescein (DCF) (a marker of H2DCFDA oxidation) was measured by a
flow cytometer (LSR II. Becton Dickinson) at excitation/emission wavelengths of 488 nm and 530 nm,
respectively. The increase in fluorescence of HPF (highly reactive oxygen species detection) was
measured at excitation/emission wavelengths of 490 nm and 515 nm, respectively. The analysis of
10,000 cells was performed [84].

4.5. Superoxide Dismutase Activity

The analysis of SOD (EC 1.15.1.1) activity is based on the ability of SOD to inhibit the process of
epinephrine self-oxidation in an alkaline medium according to the method of Misra and Firidovich [85].
In the reaction of colored adrenochrome formation, the superoxide anion radical is formed as an
intermediate product. SOD activity was measured by monitoring the increase of absorbance at 480 nm
and calculated in U/g hemoglobin (Hb) [83].

4.6. Catalase Activity

CAT activity analysis is based on the direct measurement of the rate of decomposition of hydrogen
peroxide by catalase and hemoglobin present in a hemolysate, at a wavelength of 240 nm. The amount
of enzyme that decomposes 1 µmol of hydrogen peroxide during 1 min corresponds to a unit of CAT
activity. CAT activity was calculated in µmol/min/mg Hb [83].

4.7. Glutathione Peroxidase Activity

GSH-Px (E.C.1.11.1.9) activity was analyzed using tert-butyl peroxide as a substrate according to
the method of Rice-Evans et al. [86]. Potassium azide was added to inhibit catalase activity, whereas
potassium ferricyanide was added in order to inhibit the pseudoperoxidase activity of hemoglobin.
The conversion of NADPH to NADP+ was determined at 340 nm at 25 ◦C for 3 min and calculated
in µmol/min/g Hb [83].

4.8. Statistical Analysis

The results are shown as mean ± SD, achieved from 5 individual experiments (5 blood donors).
Multiple comparisons among the group mean differences were analyzed by one-way analysis of
variance (ANOVA) followed by Tukey’s post-hoc test. When the p value was lower than 0.05,
the differences were considered to be statistically significant (*). The “sample size” and the “power of
test” for all the data were checked. Statistical analysis was conducted using STATISTICA software
ver.13 (StatSoft Inc., Tulsa, OK USA) [39].

5. Conclusions

1. Our study for the first time illustrates the mechanism of the oxidative action of DBP and BBP
and their metabolites in non-nucleated human mature erythrocytes.

2. The compounds studied increased ROS (including •OH) levels and altered the activities of the
antioxidative enzymes SOD, CAT, and GSH-Px.

3. A comparison of the actions of phthalates and their metabolites showed that the parent
compounds exhibited a stronger oxidative potential in red blood cells.

4. Changes in the parameters studied occurred at phthalates concentrations that may affect the
human organism during environmental exposure [13,14].

5. The studied phthalates disturbed the redox balance in human erythrocytes, which may affect
eryptosis [37] and thus results in accelerated removal of these cells from the circulation.
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Abbreviations

BBP Butylbenzyl phthalate
BHb Bovine hemoglobin
CAT Catalase
DBP Di-n-butyl phthalate
DCF Dichlorofluorescein
ECHA European Chemicals Agency
EDCs Endocrine-Disrupting Chemicals
EU European Union
GSH- Px Glutathione peroxidase
H2DCFDA 6-carboxy 2′,7′-dichlorodihydrofluorescein diacetate
Hb Hemoglobin
hHb Human hemoglobin
HPF 3′-(p-hydroxyphenyl)-fluorescein
HTC Hematocrit
Kow Octanol–water partition coefficient
MBP Mono-n-butylphthalate
MBzP Monobenzylphthalate
metHb Methemoglobin
NADPH Reduced form of Nicotinamide Adenine Dinucleotide Phosphate
PAEs Phthalates
PBMCs Peripheral Blood Mononuclear Cells
RBCs Red Blood Cells
ROS Reactive Oxygen Species
SOD Superoxide dismutase
SVHC Substances of Very High Concern
•OH Hydroxyl radical
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