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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is the second leading 

cause of cancer-related death worldwide, and accounts 

for around 800,000 deaths yearly [3]. HCC is a 

heterogeneous disease with a number of risk factors 

including hepatitis B virus (HBV) infection, hepatitis C 

virus (HCV) infection, obesity, and alcohol abuse. 
Treatments for HCC include hepatectomy, liver 

transplantation, radiotherapy, transcatheter arterial 

chemoembolization (TACE), and chemotherapy [4]; 

however, the survival of patients with advanced HCC is 

poor. The assessment of prognosis is important for 

patients with HCC, as an adequate assessment can 

prevent low-risk patients from receiving unnecessary 

treatments, and high-risk patients from relapse or 

metastasis due to inadequate treatment. Current well-

known staging strategies such as tumor, node, 

metastasis (TNM) and the Barcelona Clinic Liver 

Cancer (BCLC) system only focus on tumor diameter, 

tumor metastasis, and liver function. However, the 

important role of metabolic subtypes is ignored. Thus, 
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ABSTRACT 
 

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Currently, 
recent risk stratification has only focused on liver function and tumor characteristics. Thus, the purpose of this 
study was to develop a prognostic model based on genes involved in aerobic respiration. Matched tumor and 
normal tissues from TCGA and ICGC cohorts were analyzed to identify 15 overlapping differential expressed 
genes. Cox univariate analysis of the 15 genes in the TCGA cohort revealed they were all associated with 
disease-specific survival (DSS) in HCC patients. Using LASSO estimation and the optimal value for penalization 
coefficient lambda 12 genes were selected for the prognostic model, and then HCC patients in the TCGA cohort 
were dichotomized into low-risk and high-risk groups. Univariate and multivariate Cox analysis demonstrated 
patients in low-risk group had better survival. Validation of the risk score model with the ICGC cohort produces 
results consistent with those of the TCGA cohort. In conclusion, this study developed and validated a prognostic 
model of HCC through a comprehensive analysis of genes involved in aerobic respiration. This model may help 
develop personalized treatments for patients with HCC. 
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the addition of genetic factors to traditional prognostic 

models may improve risk assessment. 

 

Oxidative phosphorylation (OXPHOS) and the 

tricarboxylic acid cycle (TCA) in mitochondria are 

important methods for the production of ATP, and 

OXPHOS accounts for 80% of the ATP production in 

mammalian cells. In the 1920s, Otto Warburg observed 

that cancer cells have high glucose consumption and 

high lactate production, even in the presence of 

abundant oxygen, indicating a switch from OXPHOS to 

glycolysis [1]. The switch may be due to the faster rate 

of ATP production by glycolysis, which supports the 

rapid proliferation of malignant cells [2]. To facilitate 

glycolytic efficiency, the activity of pyruvate 

dehydrogenase (PDH) is usually suppressed which 

prevents pyruvate from being transformed to acetyl 

coenzyme A (acetyl-CoA) for subsequent aerobic 

mitochondrial metabolism [5]. Thus, the TCA cycle in 

cancer cells is bypassed. Defects of OXPHOS might be 

associated with decrease levels of complex I or 

autophagic degradation, which is caused by oncogenic 

K-Ras activation [6, 7]. Lee et al. reported that 

exogenous lactate released by cancer cells can inhibit 

OXPHOS in normal cells by reducing MRPL13 

expression, thus forming a vicious circle [5]. 

 

A number of studies have confirmed the relations 

between OXPHOS, the TCA cycle, and HCC. A study 

showed that inactivation of OXPHOS, rather than 

increased activation of glycolysis, was responsible for 

both inherent and acquired sorafenib resistance of HCC 

cells [8]. Another study showed that citramalic acid in 

tumor tissues of HCC patients who were HBV surface 

(HBsAg) positive was significantly lower than in 

patients who were HBsAg negative, which indicated an 

association of TCA cycle suppression and inflammatory 

status [9]. 

 

The TCA cycle and OXPHOS are tightly controlled by 

the expression levels of associated genes; however, 

studies have not examined the relations of expression 

profiles of these genes and HCC prognosis. Thus, the 

objective of this study was to develop a HCC prognostic 

model based on the expression of genes associated with 

the TCA cycle and OXPHOS. 

 

RESULTS 
 

Identification of DEGs associated with aerobic 

respiration 

 

We obtained RNA-sequencing data of 50 paired HCC 

tissues and adjacent normal tissues from TCGA. RNA-

sequencing data of 203 HCC tissues and 201 matched 

adjacent normal tissues from ICGC were also included. 

Using a threshold |log2 fold-change| > 1.0 and false 

discovery rate (FDR) adjusted to P < 0.05, 3 up-regulated 

genes (ATP6V1C1, SLC16A3, ME1) and 12 down-

regulated genes (GSTZ1, ETFDH, ACAA1, ACADSB, 

ACAT1, BDH2, PCK1, ACAA2, ALDH6A1, ECHS1, 

OGDHL, PCK2) were identified (Figure 1, Figure 2). 

 

Functional enrichment analysis of the DEGs 

 

To explore the biological function of the 15 genes, we 

conducted functional enrichment analysis via GO 

annotation and KEGG pathway analyses. Top 30 genes 

identified by GO analysis are shown in Figure 3, and 

the results demonstrated that the most frequent 

biological process category was organic acid catabolic 

processes. The top 30 enrichment pathways are 

summarized in Figure 4. The results indicated that the 

most enriched pathway was fatty acid degradation. 

Protein-protein network analysis showed that ACAA1, 

ACAA2, ECHS1, ACAT1 and ALDH6A1 were the core 

genes (Figure 5). 

 

Development of a prognostic model and model 

validation  

 

In the 357 patients from TCGA cohort, univariate Cox 

regression analysis indicated that 15 genes were 

significantly related to DSS. LASSO Cox regression 

analysis indicated that 12 of the genes had maximum 

prognostic value (Figure 6A, 6B). These genes were 

then used to develop a risk score model to predict the 

prognostic of HCC patients. 

 

Riskscore = ACAA1 × (–0.8576835) + ACAT1 × 0.1040123 

+ ATP6V1C1 × (–0.3383703) + BDH2 × (–0.1431161) + 

ECHS1 × 0.1992799 + ETFDH × 0.2083975 + GSTZ1 × 

0.1662454 + ME1 × (–0.8860555) + OGDHL × 0.4802452 

+ PCK1 × 0.2184216 + PCK2 × 0.2346868 + SLC16A3 × 

(–0.2621411). 

 

Using the risk score, patients from TCGA were 

categorized as high-risk and low-risk. The area under 

the receiver operating characteristic (ROC) curve 

(AUC) of the prognostic model for DSS was 0.72 at 1 

year, 0.762 at 3 years, and 0.745 at 5 years (Figure 7). 

Kaplan-Meier analysis showed a significant survival 

difference between the 2 groups (P < 0.001) (Figure 8). 

The riskscore was significantly higher (P < 0.05) in 

patients with higher grade tumors (Figure 9A), more 

advanced T stage (Figure 9B), and more advanced 

American Joint Committee on Cancer (AJCC) stage 

(Figure 9C), but was not associated with HBV status 

(Supplementary Figure 2). 
 

After controlling for the impact of clinical factors such 

as pathological stage and histological grade via 
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Figure 1. Volcano plot showing differentially expressed genes in aerobic respiration between hepatocellular carcinoma and 
normal tissues. Red dots represent significantly up-regulated genes, blue dots represent significantly down-regulated genes, and gray dots 
represent no differences between genes. 

 

 

 
 

Figure 2. Heat map showing differentially expressed genes in aerobic respiration between 50 matched hepatocellular 
carcinoma and normal tissue pairs in the TCGA cohort. 
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Figure 3. GO analysis showing the biological processes and molecular functions associated with the differentially expressed 
genes in aerobic respiration. 
 

 

 
 

Figure 4. KEGG analysis showing the signaling pathway involved in the differentially expressed genes in aerobic respiration. 
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Figure 5. Protein-protein interaction (PPI) network of 15 differentially expressed genes in aerobic respiration. 

 

 

 
 

Figure 6. (A) LASSO coefficient profiles of the 12 genes of high prognostic value. (B) The optimal values of the penalty parameter were 
determined by 10-fold cross-validation. 
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Figure 7. Survival-dependent receiver operating characteristic (ROC) curves showing the prognostic value of the model. 

 

 
 

Figure 8. Hepatocellular carcinoma patients from the TCGA cohort in the low-risk group had better disease-specific survival 
(DSS) (P < 0.001). 
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multivariate Cox regression analysis, the prognosis of 

the low-risk group remained better than that of the high-

risk group (hazard ratio [HR] = 0.24; 95% confidence 

interval [CI]: 0.13–0.44; P < 0.001) (Figure 10).  

 

We also constructed a nomogram that integrated risk 

score and clinical data including pathological stage and 

histological grade to predict the prognosis of HCC 

patients in the TCGA cohort more precisely, with a C-

index = 0.768(95% CI: 0.712–0.824). Based on the 

score for each variable on the point scale of this 

nomogram, the probability of survival at 1, 3, and 5 

years can be determined by calculating the total score 

(Figure 11). 

 

To examine whether the riskscore model was accurate 

in different cohorts, the same cut-off values of the 12 

genes were used to calculate the risk scores of the 235 

HCC patients in the ICGC cohort. The patients were 

divided into high-risk and low-risk groups. Consistent 

with the findings of the TCGA cohort, patients in the 

low-risk group had a better overall survival (OS) than 

patients in the high-risk group (P = 0.0048) (Figure 12). 

The difference remained significant after controlling for 

clinical factors (HR = 0.44, 95% CI: 0.23–0.86, P = 

0.016) (Figure 13). 

 

Taken together, the results indicate that the risk score 

can be used as an independent prognostic factor for 

patients with HCC.  

 

DISCUSSION 

In recent years, more research has been devoted to 

examining the relations between energy metabolism and 

human malignancy. Numerous studies have focused on 

the impact of glycolysis on HCC progression, while the 

clinical significance of aerobic respiration has not been 

deeply explored. In this study, we compared gene 

expression from matched tumor and normal tissues in 

TCGA and ICGC cohorts, and identified 15 DEGs. 

After setting optimal cut-off points, univariate Cox 

regression analysis showed that all 15 genes were 

significantly associated with DSS in HCC patients from 

 

 
 

Figure 9. Significant differences of risk score was found between (A) different tumor grades; (B) different T stages; and (C) different AJCC 

stages.  
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Figure 10. Low-risk of HCC patients from the TCGA cohort is an independent prognostic factor for disease-specific survival 
(DSS). 

 

 
 

Figure 11. Nomogram to predict the probability of disease-specific survival (DSS) at 1, 3, and 5 years for HCC patients in the 
TCGA cohort. 
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Figure 12. Validation of the prognostic model in the ICGC cohort by univariate Cox analysis. 

 

 

 
 

Figure 13. Validation of the prognostic model in the ICGC cohort by multivariate Cox analysis. 



 

www.aging-us.com 13327 AGING 

the TCGA cohort. Finally, based on the LASSO 

estimation [10], we chose 12 genes to construct a 

prognostic model. 

 

Many studies have attempted to develop prognostic 

models for HCC patients. Chen et al. developed a 4-

gene signature model to predict the prognosis of HCC 

patients, with a model formula that is more concise than 

ours [11]. However, the AUC or C-index was not 

provided in that study, and thus it is difficult to evaluate 

the quality of the model. A prognostic model for 

patients with HCC undergoing radiofrequency ablation 

(RFA) was recently reported [12]. The model 

incorporated tumor size and number, alpha fetoprotein 

(AFP) level (ng/ml), protein induced by vitamin K 

absence (PIVKA) level (mAU/ml), lymphocyte count 

(/ul), serum albumin level (g/dl), and ascites, and a 

nomogram was developed to predict patient survival. 

However, the C-index of the model (0.759) was a little 

lower than that of our model (0.768). As one of main 

metabolic features of tumor cells, genes involved in 

glycolysis have been screened to establish a six gene 

signature for HCC patients [13]. The diagnostic efficacy 

of the prognostic model was good (AUC = 0.765), but 

the prognostic value was not evaluated. We also tried to 

develop a prognostic model based on both glycolysis 

and aerobic respiration, but the result seemed to be 

unsatisfactory (Supplementary Figure 3), which might 

be mainly explained by the high heterogeneity of 

aerobic respiration and glycolysis pathways. 

 

Most of the genes included in our prognostic model 

have been reported to be associated with survival in 

many different malignancies. ACAA1 may be a marker 

for non-small cell lung cancer (NSCLC) diagnosis and 

prognosis, and may provide new insights for NSCLC 

treatment [14]. Up-regulation of ACAT1 expression is 

involved in the progression of colorectal cancer (CRC) 

[15, 16]. Breast cancer growth and bone metastasis are 

prevented by silencing of ATP6V1C1, suggesting a 

potential therapy target [17]. BDH2 is a tumor 

suppressor gene in HCC that regulates apoptosis and 

autophagy [18]. Up-regulation of ECHS1 may promote 

cell proliferation in HCC [19], which is different than 

the results or our study. The difference of results may 

be explained by the sample divergence: ETDFH 

expression level has been found to be associated with 

AFP level, and it may also be an independent prognostic 

factor in HCC patients [20]. GSTZ1 acts as a tumor 

suppressor gene in HCC, and GSTZ1 deficiency might 

accelerate HCC progression [21]. ME1 has been 

reported to be associated with poor survival in gastric 

cancer patients, and it may be an oncogene [22]. Down-
regulation of OGDHL expression is correlated with 

poor prognosis in patients with pancreatic cancer [23]. 

PCK1 suppressed HCC through promoting TCA 

cataplerosis, oxidative stress, and apoptosis in HCC 

cells [24]. Low expression of PCK2 has been observed 

in osteosarcoma patients with metastasis and 

recurrence, and is associated with poorer survival [25]. 

SLC16A3 has been shown to be a possible biomarker 

for prognosis of pancreatic cancer [26]. 

 

In this study, HCC patients identified in TCGA were 

dichotomized into a high-risk group and low-risk group 

by the risk score. Univariate and multivariate Cox 

regression analysis both indicated that the low-risk 

group had better DSS. We also validated the prognostic 

model in an ICGC cohort and obtained similar results. 

Based on the development of the prognostic model, 

low-risk was defined as a risk score < –0.6943, and 

high-risk was defined as a risk score > –0.6943. Overall, 

patients in the low-risk group had a better prognosis 

than patients in high-risk group, and a relatively precise 

survival probability could be calculated for each patient 

using the nomogram developed in the study. As such, 

the prognostic model may be used for the risk 

stratification in HCC patients, and potentially guide 

individualized patient treatments. 

 

Several factors may have potentially influenced the 

outcome of this research. First, batch effects are 

important source of error in research based on RNA-

sequencing data. In this study, we convert the format of 

RNA-sequencing data from fragments per kilobase of 

exon model per million mapped fragments (FPKM) to 

transcripts per kilobase of exon model per million 

mapped reads (TPM), which removed the impact of 

different sequencing depths. Second, and importantly, 

we identified DEGs from paired tumor and normal 

tissues, because we thought tumor and normal tissues 

from the same patient were comparable. Third, we used 

DSS as the prognostic indicator, which removed the 

impact of death from other factors to some extent. In the 

ICGC cohort, only 1 survival indicator was provided, so 

we empirically excluded patients with survival < 30 

days to remove patients who died from other causes. 

 

Some limitations of this study must be pointed out. We 

did not explore the possible mechanisms by which the 

genes identified serve a prognostic role. Besides, there 

is the potential of different sequencing data from 

different sequencing platforms; however, the prognostic 

model exhibited ideal performance based on Illumina 

platform. While the results of this study are promising, 

they need to be validated in other studies with larger 

numbers of patients and different sequencing platform. 

Finally, our study was a retrospective research, so it was 

difficult to prevent some inherent bias. 
 

In conclusion, this study constructed and validated a 

prognostic model of HCC through a comprehensive 
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analysis of genes involved in aerobic respiration. Based 

on risk score, HCC patients could be stratified into high-

risk and low-risk groups, which may assist in developing 

individualized treatments for patients with HCC. 

 

METHODS 
 

Data acquisition and processing 

 

RNA-sequencing and clinical data were downloaded 

from the LIHC project of The Cancer Genome Atlas 

(TCGA) data portal (https://portal.gdc.cancer.gov/), and 

the LIRI-JP project of International Cancer 

Genome Consortium (ICGC) data portal 

(https://dcc.icgc.org/releases/current/Projects/LIRI-JP). 

 

A total of 285 genes were obtained for the citric acid 

cycle (TCA) and for respiratory electron transport 

(R-HSA-1428517) in Reactome 

(https://reactome.org/PathwayBrowser/#/R-HSA-

1428517&PATH=R-HSA-1430728&DTAB=MT). 

Oxidative phosphorylation hallmark gene sets and 

KEGG_CITRATE_CYCLE_TCA_CYCLE of KEGG 

gene sets were obtained from the molecular signatures 

database (https://www.gsea-

msigdb.org/gsea/msigdb/collections.jsp#C5). 

 

For calculations, the format of RNA-sequencing data 

was converted from fragments per kilobase of exon 

model per million mapped fragments (FPKM) to 

transcripts per kilobase of exon model per million 

mapped reads (TPM). 

 

Differential and functional analysis 

 

The “edgR” package in R software was used to analyze 

the raw RNA-sequencing data counts from TCGA and 

the ICGC with the criteria of: |log2 fold-change| > 1.0, 

and false discovery rate (FDR) adjusted to P < 0.05. A 

total of 15 overlapping differentially expressed genes 

(DEGs) associated with aerobic respiration were 

identified. Volcano plots and heat maps of the DEGs 

were generated to visualize the results using the “ggpubr” 

package and the “pheatmap” package. To understand the 

biological processes of the DEGs, functional enrichment 

analysis of the DEGs was performed with the 

“clusterProfile” package [27]. Gene Ontology (GO) and 

Kyoto Gene and Genomic Encyclopedia (KEGG) 

analyses were conducted to assess relevant functional 

categories based on the threshold of P < 0.05. 

 

Construction of the prognostic model and model 

validation 

 

To eliminate patients who might die of non-cancer-

related diseases, we included 357 patients from TCGA 

who were followed-up for more than 1 day with clear 

disease-specific survival (DSS) data, and 235 patients 

from the ICGC who were followed-up for more than 30 

days with clear survival status data. The optimum cut-

off point of DEG expression was determined using the 

“surv_cutpoint” function of the “survminer” package in 

R. Ideal DEGs with a significance level of P < 0.05 

were selected through univariate Cox regression 

analysis using the “survival” package in R. The LASSO 

function of the “glmnet” package in R was used to 

select the most useful prognostic genes among the 

DEGs. The most useful prognosis-related DEGs were 

selected based on LASSO estimation, and the optimal 

value for penalization coefficient lambda was chosen 

after running cross-validation likelihood (cvl) 1,000 

times [10]. Subsequently, the Cox coefficients and 

expression values of the DEGs were extracted to 

calculate the risk score. The expression value of a gene 

which was considered highly expressed was defined as 

0, and the expression value of a gene which was 

considered to have low expression was defined as 1. 

 

A formula for the prognostic model was established to 

predict patient survival based on the formula: 

 

Risk score = ∑Cox coefficient of gene Xi × expression 

value of gene Xi. The sensitivity and specificity of 

survival prediction based on the risk score was 

calculated, and receiver operating characteristic (ROC) 

curve analysis was performed using the “survivalROC” 

package in R. We also used multivariate Cox regression 

analysis to control for the impact of potential 

confounding factors, and Forest plots and a nomogram 

were constructed using the “rms” package and 

“ggforest” functions in the “survminer” package of R. 

The C-index of the prognostic model was calculated 

using the “rcorrcens” function. The prognostic model 

was validated using the ICGC cohort and the same cut-

off points. 

 

Overall, we developed a flow chart to help readers 

understand the steps of our manuscript (Supplementary 

Figure 1). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 
 

Supplementary Figure 1. Flow chart of establishing a prognostic model based on 12 genes for HCC. 
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Supplementary Figure 2. No significant differences of risk score was found between HBV-related HCC and non-HBV HCC. 

 

 

 
 

Supplementary Figure 3. Survival-dependent receiver operating characteristic (ROC) curves showed the prognostic value of 
the prognostic model based on genes of aerobic respiration and glycolysis. 


