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Hepatoblastoma (HB) is the most common liver tumor in the pediatric population,
with typically poor outcomes for advanced-stage or chemotherapy-refractory HB
patients. The objective of this study was to identify genes involved in HB pathogenesis
via microarray analysis and subsequent experimental validation. We identified 856
differentially expressed genes (DEGs) between HB and normal liver tissue based on two
publicly available microarray datasets (GSE131329 and GSE75271) after data merging
and batch effect correction. Protein–protein interaction (PPI) analysis and weighted gene
co-expression network analysis (WGCNA) were conducted to explore HB-related critical
modules and hub genes. Subsequently, Gene Ontology (GO) analysis was used to reveal
critical biological functions in the initiation and progression of HB. Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis showed that genes involved in cell cycle phase
transition and the PI3K/AKT signaling were associated with HB. The intersection of hub
genes identified by both PPI and WGCNA analyses revealed five potential candidate
genes. Based on receiver operating characteristic (ROC) curve analysis and reports
in the literature, we selected CCNA2, CDK1, and CDC20 as key genes of interest
to validate experimentally. CCNA2, CDK1, or CDC20 small interfering RNA (siRNA)
knockdown inhibited aggressive biological properties of both HepG2 and HuH-6 cell
lines in vitro. In conclusion, we identified CCNA2, CDK1, and CDC20 as new potential
therapeutic biomarkers for HB, providing novel insights into important and viable targets
in future HB treatment.

Keywords: CCNA2, CDC20, CDK1, hepatoblastoma, PPI, WGCNA

INTRODUCTION

Hepatoblastoma (HB) is caused by aberrant proliferation and/or differentiation of hepatic
progenitor cell and represents a rare tumor that nevertheless accounts for most of liver tumors in
infants and children (Allan et al., 2013). The majority of HB patients are diagnosed before 3 years
of age, with a median age at diagnosis of 18 months (Spector and Birch, 2012). Over the past two
decades, the incidence of HB has increased (Linabery and Ross, 2008; Bidwell et al., 2019), and
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HB now accounts for several cases per million per year in the
pediatric population (Tulla et al., 2015). Combined modality
therapy, including complete surgical resection and adjuvant
cisplatin-based chemotherapy, has significantly improved the
prognosis for HB. However, the prognosis of patients with
advanced-stage or chemotherapy-refractory HB remains poor,
with a 3-year event-free survival of less than 50% (Perilongo et al.,
2004; Hiyama, 2014). Therefore, it is vital to identify biomarkers
that may aid the discovery of new therapeutic strategies and
thus improve the clinical management of advanced-stage or
chemotherapy-refractory HB.

As an increasingly popular method to detect genome-
wide gene expression, the combination of expression profile
data and bioinformatics analysis has become an effective
modality for the identification of potential biomarkers and
key pathways in various diseases. In particular, in the context
of tumor research, public databases have been widely used
for the analysis of gene expression data. However, previous
studies have so far focused mainly on the identification of
differentially expressed genes (DEGs) between tumor and
normal tissue, which cannot directly unveil the associations
between genes (Langfelder and Horvath, 2008), rather than
identifying complex relationships between genes. Protein–
protein interaction (PPI) and/or weighted gene co-expression
network analysis (WGCNA) are key methodologies that enable
the identification of interactions between genes (Yuan et al., 2017)
and can thus further our understanding of complex biological
mechanisms (Murakami et al., 2017). It has been demonstrated
that critical genes and pathways of several human tumors can be
identified through PPI and/or WGCNA analyses (Shi et al., 2020;
Wang et al., 2020).

In the context of HB, there have been two studies investigating
gene regulatory networks and interconnectivity of functionally
related genes so far (He et al., 2016; Aghajanzadeh et al., 2020).
He et al. (2016) preliminarily identified genes, microRNAs,
and the associated pathways involved in HB. More recently,
Aghajanzadeh et al. (2020) screened the DEGs using GEO2R
and conducted functional enrichment analyses by the EnrichR.
They constructed PPI network of the up-regulated genes
and then detected the significant modules. However, neither
preprocessing of the raw data nor WGCNA was conducted
in their study. In addition, their study included one dataset
and lacked experimental verification of the results. Based
on two publicly available datasets, the present study aimed
to identify highly related differential genes and hub genes
as potential biomarkers for HB. A variety of R packages
were utilized for a better visualization of the results. We
preprocessed raw data and conducted batch effect correction.
We identified DEGs between HB and normal liver tissue and
subsequently conducted PPI analysis in order to detect densely
connected modules and candidate key genes from PPI network.
Additionally, we conducted WGCNA to detect the module
displaying the highest association with HB as well as key
genes. Based on the intersection of hub modules obtained from
PPI or WGCNA, biological functions and molecular signaling
pathways involved in HB were explored via Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

analyses, respectively. These functional enrichment analyses were
performed using the clusterProfiler R package. Moreover, we
conducted an experimental verification of key genes by in vitro
gene knockdown. Overall, our data may provide novel insights
into important and viable targets for future HB treatment.

MATERIALS AND METHODS

Data Retrieval and Extraction
HB-related data were obtained and downloaded from the Gene
Expression Omnibus (GEO1) database portal using the keyword
“hepatoblastoma.” The inclusion criteria for expression profile
data were as follows: (a) the organism was Homo sapiens,
(b) samples used for gene expression analysis included both
HB tissue and normal liver tissue, (c) data for all samples
were complete, and (d) HB and normal liver tissue samples
could be clearly separated by principal component analysis
(PCA). Only datasets that met all of the above criteria were
included. Two datasets, GSE75271 (Sumazin et al., 2017) and
GSE131329 (Kanawa et al., 2019), were therefore included
for further analysis. GSE75271, consisting of 50 HB samples
and five normal liver samples, was analyzed using GPL570
platform (Affymetrix Human Genome U133 Plus 2.0 Array),
while GSE131329, consisting of 53 HB samples and 14 normal
liver samples, was analyzed via GPL6244 platform (Affymetrix
Human Gene 1.0 ST Array).

Data Preprocessing and DEG Screening
Raw data files (∗.CEL) from GSE75271 and GSE131329 were
downloaded and processed. Data from GPL570 and GPL6244
platforms were imported using R packages affy (Gautier et al.,
2004) and oligo (Carvalho and Irizarry, 2010), respectively.
The gene expression profile probe names were transformed
to gene symbols and Entrez IDs using the hgu133plus2.db
R Bioconductor package and the hugene10sttranscriptcluster.db
R Bioconductor package, respectively. If one gene symbol
corresponded to different probes, combined average levels were
considered for gene expression values (Barrett et al., 2013).
All raw data were processed using data filtering, a base 2 log
transformation, and quantile normalization. The imput.knn
function in the impute R Bioconductor package was used for data
filtering. After data merging, the ComBat function in the sva R
package (Leek et al., 2012) was used for batch effect correction,
and the results were verified by PCA. DEGs between HB and
normal liver tissue samples were detected using the limma R
package (Ritchie et al., 2015), with the following cut-off criteria
for significance: adjusted P < 0.05 and |log2FC| > 1.

Functional Gene and Pathway
Enrichment Analysis
In order to explore the functional annotation of candidate genes,
GO terms and KEGG pathway analyses were performed using
the clusterProfiler R package (Yu et al., 2012). GO terms included
biological process (BP), cellular component (CC), and molecular

1https://www.ncbi.nlm.nih.gov/geo/
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function (MF). Adjusted P values below 0.05 were deemed
significantly enriched.

PPI Network Establishment
We constructed a PPI network using the Search Tool for
the Retrieval of Interacting Genes (STRING) online database
(Szklarczyk et al., 2015), with an interaction score >0.4 set
as the cut-off value. Subsequently, the Cytoscape software was
utilized to visualize the PPI network (Shannon et al., 2003).
The Molecular Complex Detection (MCODE) (Bandettini et al.,
2012) plugin in Cytoscape was applied in order to extract densely
connected modules from PPI network, with degree cut-off = 2,
node score cut-off = 0.2, K-score = 2, and max depth = 100. The
Cytoscape plugin CytoHubba (Chin et al., 2014) was utilized for
the identification of key genes from the PPI analysis. We extracted
the top 20 genes from both approaches, and the intersecting
genes of all four approaches of CytoHubba ranking were deemed
as hub genes. The four approaches of CytoHubba ranking used
here were maximal clique centrality (MCC), edge percolated
component (EPC), maximum neighborhood component (MNC),
and node connect degree.

WGCNA
We constructed an unsigned weighted gene co-expression
network using the WGCNA R package (Langfelder and Horvath,
2008). After data merging, batch effect correction, and exclusion
of outlier samples, the complete gene expression matrix
contained 8,204 genes across 116 samples. An expression
matrix of 2,051 genes with the top 25% highest variance
was used for WGCNA. We conducted hierarchical clustering
of samples to remove outliers with a cut-off value of 80 to
produce two stable clusters. Then, the soft threshold power β

was determined in order to ensure a scale-free network. The
resulting Pearson correlation matrix was converted to adjacency
matrix via the power function, followed by transformation
into a topological overlap matrix (TOM). The TOM was
used to calculate corresponding dissimilarity. We carried out
hierarchical clustering in order to cluster similar genes into the
same module. The dynamic cutting algorithm was then used
to detect the gene modules. Subsequently, we clustered the
eigengenes according to the relationship and merged them into
modules with the association >0.75. Module–trait association
between each module and the phenotype was evaluated based
on Pearson correlation. For each gene, module membership
(MM) was characterized according to the association between
module eigengene (ME) and its expression level. The association
between gene expression and clinical phenotype represented gene
significance (GS). After identifying a module of interest, GS and
MM for each gene were computed in the given module. Finally,
we performed GO and KEGG pathway analyses to illustrate
potential biological functions of the identified module.

Identification and Verification of Critical
Genes
Key genes were closely correlated genes in one module with a
MM > 0.8 and a GS > 0.2. For subsequent analysis, intersecting

genes identified from both PPI and the most significant modules
were assessed. Based on GSE75271 and GSE131329 datasets, the
expression values of key genes between HB and normal liver
tissue samples were then compared.

Reagents and Antibodies
FBS (cat. no. 10099141), DMEM (cat. no. 11995065), PBS (cat. no.
10010023), and 0.25% Trypsin-EDTA (cat. no. 25200072) were
purchased from Gibco (Grand Island, NY). Antibodies against
CDK1 (cat. no. ab133327), CCNA2 (cat. no. ab181591), and β-
actin (cat. no. ab8226) were obtained from Abcam (Cambridge,
MA, United States). Antibodies against CDC20 (cat. no. 4823)
and GAPDH (cat. no. 5174S) were procured from CST (Beverly,
MA, United States).

Cell Culture
Human HB cell lines (HepG2 and HuH-6) were purchased from
Shanghai Institutes for Biological Sciences, Chinese Academy of
Sciences. Cells were cultured in DMEM supplemented with 10%
FBS at 37◦C/5% CO2.

Western Blot Assay
Total proteins were extracted from HepG2 or HuH-6 cells
using the RIPA buffer supplemented with a protease inhibitor
cocktail. Lysates were separated using sodium dodecyl sulfate
polyacrylamide gel electrophoresis and transferred onto a
polyvinylidene fluoride membrane. The membrane was then
blocked for 1 h using western blocking buffer and subsequently
incubated using a primary antibody, followed by incubation
for 2 h with IgG HRP-conjugated secondary antibody (Jackson
ImmunoResearch, PA, United States). Proteins were detected
using ChemiDoc-It system (Tanon, Shanghai, China). Band
intensities were assessed using ImageJ. GAPDH or β-actin served
as the loading control.

Small Interfering RNA
Small interfering RNAs (siRNAs) targeting CDK1, CCNA2, or
CDC20, as well as non-targeting control siRNAs, were obtained
from RiboBio (Guangzhou, China). siRNAs were transfected into
HepG2 or HuH-6 cell lines according to the manufacturer’s
guidelines using Lipofectamine 2000. Transfection efficiency was
confirmed via western blot (WB) 2 days after siRNA transfection.

Colony Formation Assay
HB cells were cultured in six-well plates containing media
supplemented with 10% FBS to a density of 3 × 103 cells/well.
The culture media were replaced by media containing 5% FBS
the following day, and cells were cultured for 2 weeks. This
step was followed by paraformaldehyde (PFA) fixing and staining
with crystal violet. Subsequently, photos were taken. Cells were
subsequently fixed using PFA, stained with crystal violet, and
microscopic images were acquired.

Cell Viability Assay
Cell viability was assessed using Cell Counting Kit-8 (CCK-8,
Dojindo, Japan). Briefly, cells were seeded into 96-well plates
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(1 × 103 cells per well) and cultured for 4 h until adherence.
The CCK-8 agent was added in each well at the indicated time-
point, and the optical density at 450 nm was assessed after 1 h
using a plate reader.

Transwell Invasion Assay
The transwell invasion assay was carried out using six-well plates
containing transwell inserts (8-µm pore size; BD Biosciences)
according to the manufacturer’s guidelines. Matrigel purchased
from BD Biosciences was added to serum-free media, transferred
to the top chamber, and incubated for 5 h. Subsequently, cells
were cultured in the top chamber supplemented with serum-
free medium. The lower chamber was supplemented with 10%
FBS, and cells were removed from the top chamber after 36-h
incubation. For quantification of the cells in the lower chamber,
membranes were PFA-fixed, stained with crystal violet, and
invading cells were quantified using microscopy image analysis.

Statistical Analysis
Data analysis was carried out using R (version 3.6.3) and
GraphPad Prism (version 8.0.1). Gene expression levels between
HB and normal liver tissue samples were compared using the
Student’s t-test. To evaluate the predictive value of each hub
gene for the distinction between HB and normal liver tissue,
we applied the receiver operating characteristic (ROC) curve.
An area under curve (AUC) > 0.90 and P < 0.05 indicated
statistical significance.

RESULTS

DEG Screening and Functional
Annotation
A detailed outline of our study is summarized in Figure 1. For
our analysis, we combined two publicly available microarray gene
expression datasets of HB and normal liver tissue samples. We
carried out PCA to visualize data before and after batch effect
correction, during which four outlier samples (GSM1948577,
GSM1948562, GSM1948566, and GSM3770543) were removed
(Figures 2A–C), resulting in a total of 99 HB samples and 19
normal liver samples after data preprocessing and quality control.
We applied a filtering step (P value < 0.05 and |log2FC| > 1)
for the identification of DEGs, which resulted in a total of 856
DEGs. Among these DEGs, 350 were up-regulated, while 506
were down-regulated, with a volcano plot presented in Figure 2D.
The heatmap of the top 100 genes is shown in Figure 2E.
We conducted GO and KEGG pathway analyses to elucidate
the biological functions and potential signaling pathways these
genes may be involved in. GO analysis suggested that DEGs
predominantly consisted of genes involved in small molecule
catabolic processes, the collagen-containing extracellular matrix,
and coenzyme binding (Figures 3A–C). KEGG analysis identified
enrichment for PI3K-AKT signaling, cell cycle, and FoxO
signaling (Figure 3D). Critical pathways, including the cell cycle,
FoxO pathway, NF-kappa B signaling pathway, amoebiasis, and
carbon metabolism, are presented along with their related genes

in Figure 3E. For the term cell cycle, all enriched DEGs were
up-regulated with the exception of GADD45B and GADD45D.
It should be noted that we observed two genes concurrently
enriched in three critical pathways: TGFB2 was enriched in
the cell cycle, FoxO signaling, and amoebiasis pathways, while
GADD45B was enriched in the cell cycle, FoxO signaling, and
NF-kappa B signaling pathways.

PPI Network Establishment and Module
Analyses
A PPI network containing 791 nodes and 9,054 edges was
conducted using the Cytoscape software based on results of the
STRING online database (Figure 4A). All four methods within
the CytoHubba plugin were adopted, and the top 20 genes of
each method were listed (Table 1). The intersecting genes that
were concurrently listed in the four methods were regarded
as hub genes (AURKA, AURKB, CDK1, CCNA2, CDC20, and
PLK1) for PPI analysis. Nineteen clusters were obtained after
module analysis using the MCODE plugin of Cytoscape, and we
selected the top three modules as hub modules based on MCODE
scores (Figures 4B–D). Notably, all six hub genes were found in
module 1, which played an essential role in the constructed PPI
network. Specifically, module 1 contained 59 nodes and 1,600
edges and had the highest MCODE score (55.172) of all modules.
Another notable observation from module analysis was that all
genes from module 1 exhibited up-regulation. Subsequently, we
conducted GO and KEGG analyses of genes in module 1 using
the R clusterProfiler package. For BP within the GO analysis, we
found that genes in module 1 played a critical role in nuclear
division, organelle fission, cell cycle transition, mitotic cell cycle
transition, as well as chromosome segregation (Figure 5A).
For CC within the GO analysis, we found that up-regulated
genes were significantly enriched in the chromosomal region,
condensed chromosome, and spindle (Figure 5B). The MF of GO
analysis showed that genes were associated with ATPase activity,
catalytic activity, action on DNA, protein serine/threonine kinase
activity, and single-stranded DNA binding (Figure 5C). KEGG
analysis showed that genes from module 1 were enriched for
the cell cycle, DNA replication, as well as oocyte meiosis
pathways (Figure 5D).

WGCNA and Hub Module Identification
During sample clustering, two samples were regarded as
outliers and thus excluded (GSM1948574 and GSM3770517;
Supplementary Figure 1A). Besides, we identified β = 10
and R2 = 0.88 as the optimal soft threshold parameters to
guarantee a scale-free network (Supplementary Figures 1B,C).
We set clustering height cut-off to 0.25 in order to merge
similar modules, which resulted in seven modules (Figure 6A).
Specifically, blue, black, brown, pink, green, and magenta
modules were identified as significant modules (Figure 6B). The
blue module containing 259 genes appeared to be the most
relevant module involved in HB. The top 100 genes of the blue
module, ranked by gene significance for cancer, are listed in
Supplementary Table 1. Subsequently, the module eigengenes
and associations between eigengenes and sample types were
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FIGURE 1 | Flowchart illustrating the study design. DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;
PPI, protein–protein interaction; WGCNA, weighted gene co-expression network analysis; ROC, receiver operating characteristic.

computed. The module eigengene dendrogram was plotted, and
the seven modules were divided into two clusters. Similar results
were obtained from eigengene network heatmap (Figure 6C).
Interestingly, the blue module was not only located close to
cancer but also had a markedly positive association with cancer,
meaning that genes in the blue module may be essential for
tumor progression. Moreover, module–trait relationship analysis
confirmed the highly positive correlation between the blue
module and cancer (r = 0.64, P = 1e-14) (Figure 6D). When
focusing on the blue module (Figure 6E), we substantiated a
significantly positive association between MM and GS (r = 0.64,
P = 6e-38). Consequently, the blue module was chosen for
functional enrichment analysis, during which we aimed to
elucidate potential biological processes involved in HB.

GO and KEGG Functional Enrichment
Analyses of the Blue Module
In order to explore potential genes and pathways associated with
HB growth, we conducted GO and KEGG analyses on the blue
module identified by WGCNA. KEGG analysis indicated that

genes in the blue module were markedly enriched for the cell
cycle, oocyte meiosis, and DNA replication pathways (Figure 6F).
Key pathways and their associated genes are shown in the
heatmap (Figure 6G). Additionally, GO analysis demonstrated
that genes in the blue module were primarily associated with
organelle fission, nuclear division, chromosomal region, tubulin
binding, and ATPase activity (Figures 7A–C). For the description
of functionally enriched GO clusters, we utilized cnetplots to
highlight the relationships between genes and critical pathways
(Figures 7D–F).

Selection and Verification of Key Genes
Several key genes identified using PPI analysis were also included
in the WGCNA blue module, with the intersecting genes being
AURKA, AURKB, CDK1, CCNA2, and CDC20. The scoring of
each hub gene in PPI and WGCNA is summarized in Table 2.
For further validation of these potential key genes, we compared
their expression values between HB and normal liver samples
in the GSE75271 and GSE131329 datasets. Expression levels of
these five key genes were markedly elevated in HB samples
compared with normal liver samples (Figure 8A). ROC curve
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FIGURE 2 | Data preprocessing and DEG analysis of the GSE75271 and GSE131329 datasets. Principal component analysis indicating the overall profiles of two
datasets (A) before and (B) after batch effect correction and data merging. (C) Principal component analysis after removal of outlier samples. (D) Volcano plots
visualizing DEGs between HB and normal liver tissue samples from the two datasets. Red points represent up-regulation, while blue points indicate down-regulation;
gray points represent normal expression. (E) Heatmap of the top 50 up-regulated and top 50 down-regulated DEGs with P value <0.05 and logFC > 1. Red points
represent up-regulation; blue points indicate down-regulation. DEG, differentially expressed gene.

was utilized to evaluate the predictive value of each hub gene
for the distinction between HB and normal liver tissue. The
AUC of expression levels for four of the genes exceeded 0.90 in
the ROC analysis (Figure 8B). Specifically, the AUC was 0.918
(95% CI, 0.865–0.970) for AURKA, 0.964 (95% CI, 0.933–0.994)
for CDK1, 0.952 (95% CI, 0.915–0.990) for CCNA2, and 0.928
(95% CI, 0.882–0.973) for CDC20. A literature search revealed
AURKA as a previously reported oncogenic gene in HB, and
elevated expression levels of AURKA have been associated with
an advanced COG stage as well as metastasis (Zhang et al., 2018;
Tan et al., 2020). However, the role of CDK1, CCNA2, or CDC20

in HB growth has not been reported to date, and thus, we selected
these three genes for subsequent experimental validation.

CDK1, CCNA2, or CDC20 Knockdown
Inhibits Proliferative, Migrative, and
Invasive Capacities of HB Cell Lines
In order to investigate the influence of CDK1, CCNA2, or
CDC20 expression in HB cells, we knocked down CDK1,
CCNA2, or CDC20 in HepG2 and HuH-6 cells via siRNAs. The
knockdown efficiency of each hub gene was validated by WB
analysis (Figure 9A). After transfection of CDK1-siRNA into
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FIGURE 3 | Functional enrichment analyses of the DEGs. GO analysis containing (A) BP terms, (B) CC terms, and (C) MF terms. (D) KEGG pathway analysis of the
DEGs. (E) The cnetplot of KEGG pathways showing genes enriched in different pathways. The symbol adjacent to nodes represents the specific gene. The color bar
represents the fold change of genes in the respective pathways. DEGs, differentially expressed gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; BP, biological process; CC, cellular component; MF, molecular function.

HepG2 and HuH-6 cell lines, the effect of CDK1 knockdown
on cell proliferation was explored using both a CCK-8 assay
(Figure 9B) and a colony formation assay (Figures 9C,D). These
assays indicated a significantly lower proliferative ability of the
CDK1-siRNA group compared to the control siRNA group.

Similar effects were observed for CCNA2 or CDC20 knockdown
in HB cells (Figures 9B–D). Next, we evaluated the effect of
CDK1, CCNA2, or CDC20 knockdown on the invasive ability
of HB cells using a transwell invasion assay (Figures 9C,D),
which revealed a significantly decreased rate of the relative
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FIGURE 4 | PPI network construction and module analyses. (A) PPI network of DEGs was constructed in Cytoscape. Red points represent up-regulated genes,
while blue points represent down-regulated genes. The node size depends on the degree of node connectivity; edges indicate straight associations. (B) Module 1
contains 59 nodes and 1,600 edges. (C) Module 2 contains 46 nodes and 492 edges. (D) Module 3 includes 31 nodes and 174 edges. Red nodes represent
up-regulated genes; blue nodes represent down-regulated genes. DEG, differentially expressed gene; PPI, protein–protein interaction.

invasive cells relative to controls for all three knockdown models.
Lastly, wound-healing assays revealed that CDK1, CCNA2, or
CDC20 siRNA knockdown groups exhibited a markedly lower
relative migration distance than the control did (Figures 9E,F).
Taken together, these results demonstrated that knockdown of
CDK1, CCNA2, or CDC20 inhibited proliferative, migratory, and
invasive capabilities in both HepG2 and HuH-6 cell lines.

DISCUSSION

HB is the most common liver tumor in the pediatric population,
and its incidence has been consistently increasing in the last years.
Surgical resection and adjuvant cisplatin-based chemotherapy
may severely affect the health-related quality of life of HB patients

and their families, and the therapeutic efficacy in patients with
advanced-stage or chemotherapy-refractory HB is unsatisfactory.
Therefore, further exploring the molecular mechanisms of HB is
essential for early diagnosis and better treatment strategy.

The results of our study showed that DEGs between HB
and normal liver tissue samples were primarily associated with
PI3K-AKT signaling, cell cycle, and FoxO signaling. Forty DEGs
were associated with PI3K-AKT signaling, indicating that these
genes may be critical for HB growth. Indeed, a previous study
reported that inhibition of the PI3K/AKT signaling pathway
resulted in suppressed proliferation and increased apoptosis of
HB cells (Hartmann et al., 2009). Moreover, FoxO signaling has
been reported as a key signaling pathway closely associated with
PI3K/AKT signaling in many human tumors (Farhan et al., 2017),
and inhibition of FoxO signaling has been shown to lead to cell
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TABLE 1 | Hub genes identified using the Cytohubba plugin (Cytoscape).

Category Ranking methods in the CytoHubba plugin

MCC EPC MNC Degree

1 KIF11 KIF11 AURKA AURKA

2 RRM2 RRM2 AURKB AURKB

3 AURKA AURKA FOXM1 TLR4

4 TTK AURKB CDK1 FOXM1

5 AURKB MAD2L1 CCNA2 DECR1

6 MAD2L1 FOXM1 EZH2 CDK1

7 DLGAP5 TOP2A TYMS CCNA2

8 TOP2A CDK1 CDC20 EZH2

9 CDK1 CCNA2 PLK1 TYMS

10 CCNA2 TYMS BRCA1 KNG1

11 CCNB2 CCNB2 TLR4 IGF1

12 UBE2C UBE2C DECR1 CDC20

13 CDC20 CDC20 KNG1 FOS

14 BIRC5 PLK1 IGF1 PLK1

15 PLK1 MCM7 FOS EGFR

16 MELK CDC6 EGFR STAT3

17 KIF23 TPX2 STAT3 ESR1

18 CDC6 RFC4 ESR1 CXCL8

19 TPX2 BRCA1 CXCL8 CAT

20 BUB1 CHEK1 CAT BRCA1

MCC, maximal clique centrality; EPC, edge percolated component; MNC, maximum neighborhood component; Degree, node connect degree. The bold values represent
the genes that appear in all four ranking methods used here.

cycle arrest, apoptosis, and the suppression of PI3K/AKT/mTOR
signaling in liver tumor (Carbajo-Pescador et al., 2014).

During WGCNA analysis, the blue module appeared to be the
most relevant module involved in HB. The molecular function
analysis revealed that genes in the blue module were enriched
for the tubulin binding, microtubule binding, and microtubule
motor activity pathways. Disrupted microtubule dynamics have
previously been reported to modulate cell proliferation in
several human tumors, including hepatocellular carcinoma
(HCC) (Zhang et al., 2016; Aboubakr et al., 2017). The cellular
component analysis revealed that genes in the blue module were
predominantly associated with spindle, kinetochore, and mitotic
spindle cellular components, which serve essential functions
during mitosis (Sharp et al., 2000). Collectively, GO analysis
showed that genes in the blue module were enriched for pathways
such as organelle fission, cell cycle phase transition, chromosomal
region, ATPase activity, catalytic activity, and acting on DNA.
KEGG analysis indicated that genes in the blue module were
enriched in the cell cycle, oocyte meiosis, and DNA replication
pathways. Notably, the results from WGCNA GO/KEGG analysis
were similar to the functional annotations of genes in the most
significant module of PPI network.

The cell cycle is a set of organized and monitored stages
through which a cell passes between cell divisions. Cells pass
through the G0/G1, S, and G2 phases of interphase and
subsequently directly enter the M phase, in which nuclear
and cell division takes place (Norbury and Nurse, 1992). The
progression from one stage of the cell cycle to another is
controlled at checkpoints, which are regulated by interactions

between cyclin-dependent kinases (CDKs) and their cyclin
partners. Deregulation of the cell cycle may result in unscheduled
proliferation, chromosome segregation defects, and ultimately
the development of tumor (Bannon and Mc Gee, 2009). Indeed,
cell cycle proteins are frequently overactive in tumor cells, and
blocking cell cycle progression through inhibiting cell cycle
proteins can lead to cell proliferation arrest in many tumor
types. For instance, the retinoblastoma (Rb) gene encodes a
tumor suppressor protein that is responsive to mitogenic signals
to integrate the control of cell cycle (Hanahan and Weinberg,
2011). In tumor cells, defects in the Rb pathway give rise
to the deregulation of the G1/S-phase cell cycle checkpoint,
which in turn can lead to uncontrolled cell proliferation
(Dyson, 1998). Using an approach combining bioinformatics
analysis and subsequent experimental verification, we identified
CDK1, CCNA2, and CDC20 as pivotal genes and potential
biomarkers for future HB therapy. Interestingly, we found
that all of these three key genes were involved in cell cycle
(Figures 3E, 5D, 6F,G).

CCNA2 has previously been reported to be associated
with chromosomal instability, epithelial–mesenchymal transition
(EMT), and metastasis in tumors (Cheung et al., 2015).
Specifically, CCNA2 binds to and activates CDK1 and CDK2,
resulting in the formation of CDK/CCNA2 complex. It has been
demonstrated that the CDK/CCNA2 complex drives S-phase
progression (Girard et al., 1991; Yam et al., 2002), persists through
the S and G2 phases, and is degraded upon entry into mitosis
(den Elzen and Pines, 2001). Conversely, a decreased proliferative
capacity of tumor cells has been observed after inhibition of the
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FIGURE 5 | Functional enrichment analyses of genes from module 1. GO analysis containing (A) BP, (B) CC, and (C) MF terms. (D) KEGG analysis of significantly
enriched pathways of genes in module 1. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular component;
MF, molecular function.

CDK/CCNA2 complex (Chen et al., 2004). Animal experiments
indicated that a CCNA2 deficiency in hepatocytes may lead to
the delayed formation of liver tumors (Gopinathan et al., 2014).
At the cellular level, argininosuccinate lyase may promote HCC
progression in association with CCNA2 (Hung et al., 2017).
Our integrated microarray analysis revealed an upregulation of
CCNA2 in HB tissues (Figure 8A), which is in line with results
from a previous study (Shin et al., 2011). Moreover, in vitro
experiments from our current study demonstrated, for the
first time, that CCNA2 knockdown suppresses the proliferative,
migrative, and invasive capacities of two HB cell lines.

In addition to regulation by CCNA2, the cell cycle is also
modulated by CDKs via catalyzing phosphorylation of specific
proteins (Ubersax et al., 2003). CDK1, one member of CDK
family, is essential for mitosis, and inhibition of CDK1 has been
shown to promote apoptosis in lymphomas and liver tumors

in mice expressing MYC: in MYC-expressing HB transgenic
mouse models, administration of a CDK1 inhibitor resulted
in reduced tumor growth as well as extended survival (Goga
et al., 2007). Taken together, these findings illustrate that CDK1
inhibition might specifically suppress the proliferative capacity
of tumor cells. Similar to previous studies, in the present study,
we demonstrate a significantly higher expression of CDK1 in HB
tissue relative to normal liver tissue. Additionally, our functional
assays indicated that CDK1 knockdown suppressed proliferative,
migrative, and invasive properties of two HB cell lines.

In addition to CCNA2 and CDK1, our study also identified
CDC20 as a key hub gene involved in HB growth, and
subsequent experiments further demonstrated that aggressive
biological behaviors of HB cell lines were inhibited after CDC20
knockdown. Previous studies have reported aberrantly high
expression levels of CDC20 in oral squamous cell carcinoma
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FIGURE 6 | Co-expression network analysis based on WGCNA. (A) Clustering of module eigengenes with a threshold of 0.25 height to identify similar modules.
(B) Identification of HB-specific modules. Each branch represents an expression module of a highly interconnected groups of genes; each color indicates a
corresponding co-expression module. (C) Heatmap of the eigengene network indicates correlations between different modules; tightly connected modules are
clustered together. (D) Heatmap of associations among module eigengenes in normal liver and HB samples. (E) Scatter plots highlighting the association between
GS and MM based on genes from the blue module. (F) KEGG analysis of significantly enriched pathways based on genes from blue module. (G) Heatmap of specific
genes associated with each enriched key pathway. WGCNA, weighted gene co-expression network analysis; HB, hepatoblastoma; GS, gene significance; MM,
module membership; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 7 | GO analysis of genes from blue module. The significant GO BP (A), CC (B), and MF (C) terms after enrichment analysis of genes from the WGCNA blue
module. Cnetplot indicating specific genes associated with enriched GO BP (D), CC (E), or MF (F) terms; the symbol adjacent to the node represents the specific
gene. GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function.

TABLE 2 | Scores of five intersecting hub genes using different ranking methods in PPI. and WGCNA.

Entrez ID Gene Symbol PPI WGCNA

MCC EPC MNC Degree GS p.GS MM p.MM

6790 AURKA 9.22E + 13 96.26 83 84 0.549 1.64E-10 0.850 1.37E-33

9212 AURKB 9.22E + 13 93.997 80 80 0.415 3.54E-06 0.806 1.00E-27

983 CDK1 9.22E + 13 98.24 101 102 0.644 6.22E-15 0.950 1.52E-59

890 CCNA2 9.22E + 13 97.444 85 86 0.612 2.75E-13 0.934 4.36E-53

991 CDC20 9.22E + 13 97.548 82 82 0.559 6.80E-11 0.851 1.06E-33

PPI, protein–protein interaction; MCC, maximal clique centrality; EPC, edge percolated component; MNC, maximum neighborhood component; Degree, node connect
degree; GS, gene significance with cancer; MM, module membership; p.GS, p value of gene significance with cancer; p.MM, p value of module membership.

(Mondal et al., 2007), gastric cancer (Kim et al., 2005), and
lung adenocarcinoma (Liu et al., 2018). CDC20 knockdown has
been shown to contribute to G2/M arrest, inhibiting tumor cell
cycle progression (Kidokoro et al., 2008). Collectively, exploring
therapeutic agents targeting the cell cycle via inhibition or
modulation of CDK1, CCNA2, or CDC20 may be considered
a promising therapeutic strategy for HB. In a recent study,
Aghajanzadeh et al. (2020) identified 15 hub genes involved
in HB based on bioinformatics analysis of GSE131329. CDK1
and CCNA2 were identified as hub genes in their study while
CDC20 was not. This discrepancy could be due to the fact that
different analytic methods were used and distinct datasets were
assessed between their study and ours. Interestingly, using gene
set enrichment and pathway analysis of the hub genes, the authors
also identified cell cycle events as essential processes for HB
development, which is in line with our findings.

The current study has some limitations. Experimental
verification was only conducted in vitro at cellular level. In
addition, the sample sizes for HB and normal liver tissue samples
were asymmetrical, which may have potentially introduced bias
in our analysis.

In conclusion, we conducted an integrative analysis of
large-scale microarray gene expression profiling followed by
experimental validation to investigate potential biomarkers and
key genes involved in HB pathogenesis. By utilizing both PPI
and WGCNA analyses, we identified CCNA2, CDK1, and CDC20
as hub genes in human HB. Subsequent in vitro experiments
validated a potential oncogenic role for these three hub genes
in two HB cell lines. Collectively, CCNA2, CDK1, and CDC20
may serve as promising biomarkers for HB and provide prospects
for designing targeted therapies using synthetic inhibitors as
anti-tumor agents.
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FIGURE 8 | Verification of hub gene expression levels and ROC curve analysis. (A) The expression levels of AURKA, AURKB, CDK1, CCNA2, and CDC20 mRNAs
were markedly up-regulated in HB samples relative to normal liver samples. (B) ROC curve analysis of AURKA, AURKB, CDK1, CCNA2, and CDC20. ROC, receiver
operating characteristic; AUC, area under the curve. ***P < 0.001.
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FIGURE 9 | Knockdown of CDK1, CCNA2, or CDC20 inhibits proliferative, migrative, and invasive capacities of HB cells in vitro. (A) WB analysis confirm the
knockdown efficiency of CDK1, CCNA2, or CDC20 2 days after transfection with siRNAs for CDK1, CCNA2, or CDC20. (B) The CCK-8 assay illustrates the
proliferative capacity of HB cells after siRNA transfection. After siRNA transfection of HepG2 (C) or HuH-6 (D) cells, the proliferative and invasive capacities of the
respective cell lines were evaluated by colony formation assays (scale bars, 8 mm) and transwell invasion assays (scale bars, 200 µm), respectively. (E,F) Wound
healing assay (scale bars, 500 µm) results that indicate the migrative capacities of HepG2 (E) or HuH-6 (F) cells after transfection with siRNA. *P < 0.05, **P < 0.01.
ROC, receiver operating characteristic; HB, hepatoblastoma; WB, western blot; siRNAs, small interfering RNAs; CCK-8, Cell Counting Kit-8.
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