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Abstract
Failing to match the supply of resources to the demand for resources in a hospital can cause non-clinical transfers, diversions,
safety risks, and expensive under-utilized resource capacity. Forecasting bed demand helps achieve appropriate safety standards
and cost management by proactively adjusting staffing levels and patient flow protocols. This paper defines the theoretical
bounds on optimal bed demand prediction accuracy and develops a flexible statistical model to approximate the probability
mass function of future bed demand. A case study validates the model using blinded data from a mid-sized Massachusetts
community hospital. This approach expands upon similar work by forecasting multiple days in advance instead of a single day,
providing a probability mass function of demand instead of a point estimate, using the exact surgery schedule instead of assuming
a cyclic schedule, and using patient-level duration-varying length-of-stay distributions instead of assuming patient homogeneity
and exponential length of stay distributions. The primary results of this work are an accurate and lengthy forecast, which provides
managers better information and more time to optimize short-term staffing adaptations to stochastic bed demand, and a derivation
of the minimum mean absolute error of an ideal forecast.
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1 Introduction

1.1 Background

Significant cost and safety issues occur when the demand for
hospital resources is not matched by the supply of these re-
sources [1]. When demand exceeds supply, unsafe conditions
arise due to less availability of resources, which can cause
increased mortality and the rate of medical errors [2, 3].
Conversely, when supply exceeds demand, excess clinician
staffing can produce significant cost with no benefit to patient
care quality. Hospital management must actively manage the
supply of fixed resources, such as beds and specialized

equipment, and variable resources, such as nurses, techni-
cians, and providers, that affect care quality and ensure patient
safety. Matching supply to demand is difficult because the
future patient resource demands are random and unknown,
while the resource supply is often set far in advance and is
difficult to adjust in the short term significantly.

Uncertainty in patient resource demand is caused by sever-
al stochastic processes, including the number and timing of
arrivals and discharges, length of stay (LOS), unit transfers,
health improvement and deterioration, surgical complications,
and same-day cancellations for outpatient and surgical ap-
pointments. Variability arises from disease seasonality, holi-
days, and the numerous types of specialized staff, physical
resources, ailments, procedures, allergies, comorbidities, and
surgical techniques. Additional variability is created when
surgeries are scheduled without anticipating and managing
the aggregate downstream resource requirements, such as
the time needed in a post-anesthesia care unit (PACU) or in-
tensive care unit (ICU). The aggregate patient resource de-
mand several weeks in the future, which is the time period
for which clinician shifts are being scheduled, is often signif-
icantly different from the current demand. Short-term staffing
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adaptations are made to manage the mismatch of resource
supply and demand, such as incorporating on-call and per
diem staff and canceling unnecessary shifts.

Effective proactive adaptive staffing requires high-
confidence forecasts of short-term resource demand to ensure
the appropriate quantity and timing of staffing adjustments.
Proactive is harder than reactive adaptation, in which the mis-
match of supply and demand already exists, which is relative-
ly simple to measure and align. The cost of a staffing adapta-
tion is typically dependent upon its magnitude and timing, and
thus requires a forecast that is both accurate and lengthy to be
cost-effective. Developing and applying an accurate model to
forecast patient resource demand for multiple time periods
into the future improves both the cost and safety of providing
care when coupled with an adaptive staffing strategy.

1.2 Literature review

Predicting and managing the demand for healthcare resources,
such as beds, staff, and specialized equipment, is an extensive
research topic. Settings have included emergency departments
(EDs) [4–9], surgical suites and recovery beds [10–12], med-
ical and surgical inpatient beds [13–16], ICUs [17–25], out-
patient care [26–28] and long-term care [29, 30]. Methods
have forecasted aggregate demand either by applying tools
like regression [14, 18], time series analysis [8, 15, 31, 32],
and neural networks [23, 31], or aggregating individual fore-
casts by applying tools like probability models [16, 29,
33–35], queueing theory [17, 36, 37], simulation [19, 20, 26,
27, 30, 38–46], and expert opinion [7, 47].

The wealth of literature on predicting the demand for hos-
pital resources demonstrates the strong need to make accurate
forecasts. Most models make simplifying assumptions to
manage tractability and fit data availability, including assum-
ing stationary or cyclic demand patterns [16, 17, 36],
exponential-based inter-arrival times and LOS distributions
[17, 36, 48, 49], patient homogeneity [10, 31, 36], single-
day forecasts [47], and point estimates instead of probability
mass functions (PMFs) [14, 31]. The model derived herein
provides a generalized approach to forecasting bed demand
that does not require these simplifying assumptions.

1.3 Objective

The goal of this study is to forecast an accurate approximation for
the multi-period PMF of bed demand using the exact surgical
schedule at the time of the forecast, non-stationary inter-arrival
times, and patient-level duration-varying LOS distributions.
Required to construct this model is an analysis of scheduled
patient LOS distributions, including the probability of being an
inpatient given information known at the time of the forecast.

The rest of this paper is organized as follows: first, the
forecasting model is derived for each patient group. These

sub-forecasts are then aggregated, and their aggregate distri-
bution is approximated, producing both a total patient PMF
forecast and an inventory of the necessary parameters to con-
struct the model. The theoretical minimum expected mean
absolute error (MAE) for the forecast is then derived, which
helps assess the quality of the model. A case study using
blinded real hospital data demonstrates the construction and
assessment of the model, followed by a discussion of results,
limitations, and future work.

2 Forecasting model

2.1 Model structure

The forecasting model uses discrete time measured in periods
and is run at period d. All patients currently in the hospital at that
time have their discrete LOS incremented by one period. Let T
represent the length of the complete forecast, and t be the specific
period being forecasted, such that d + 1 ≤ t ≤ d + T. These time
periods could correspond to days, non-overlapping shifts, or
smaller increments of time. The model may be used to forecast
a single unit or collection of hospital units. For instance, a fore-
cast could be created for just an ICU, as well as the complete set
of beds in the hospital. The first forecast would focus on ICU
demand, while the second would provide information about the
capacity of the hospital as a whole.

At any future period t, each patient in a hospital will either
be known at current period d or unknown. At period d, all
known patients existing at period t will either already be in
the hospital or scheduled to arrive on or before period t. All
remaining patients in the hospital at period t that were not
known of at period d are either emergency arrivals, or patients
who have not yet been added to the schedule, but will be
scheduled to arrive on or before period t. Figure 1 shows these
patient groups and their hierarchy.

Let γgroupd tð Þ represent the forecasted random variable of
demand at period t made from period d for a given patient
group, where group ∈ {curr, sch , emer, nysched},
representing current patients, scheduled patients, emergency
patients, and not-yet-scheduled patients, respectively.
Forecasts must be made for each of these patient groups indi-
vidually and then aggregated to produce the overall patient
demand forecast. All patient arrivals and LOS probabilities
are assumed to be independent of one another.

2.2 Current patients

Each current patient i ∈M, whereM represents the number of
current patient types indexed by i, currently in the hospital at
period d, either is or is not still in the hospital at future period t,
and can thus be represented by a Bernoulli random variable

Theoretical bounds and approximation of the probability mass function of future hospital bed demand 21



where success is equal to the probability of having a remain-
ing LOS from strictly greater than t − d. Let fi(h) represent the
probability of patient i staying exactly h periods from d, mean-
ing the PMF of their remaining LOS is fi(h). Let Fi(h) be the
cumulative distribution function (CDF) of fi(h), and Ri(h) = 1
− Fi(h). The probability of patient i still being present at period
t when forecasted from period d is represented by Cd, i(t), as
shown in Eq. 1.

Cd;i tð Þ ¼ 1− ∑
t−d

h¼1
f i hð Þ ¼ 1−Fi t−dð Þ ¼ Ri t−dð Þ ð1Þ

The convolution of all individual patient probabilities shown
in Eq. 1, represented by γcurrd tð Þ, is the random variable
representing the number of current patients at period d still pres-
ent at period t. If these patients all have the same probability of
being present at period t, then γcurrd tð Þ is a Binomial random
variable. However, if these probabilities are non-homogeneous,
then their convolution follows a Poisson Binomial (PB) distribu-
tion [50]. Thus γcurrd tð Þ, which represents the random variable
representing all current patients at period d being present at peri-
od t, follows a PB distribution, with mean and variance as shown
in Eqs. 2 and 3, respectively.

E γcurrd tð Þ� � ¼ ∑
M

i¼1
Cd;i tð Þ ¼ ∑

M

i¼1
Ri t−dð Þ ð2Þ

Var γcurrd tð Þ� � ¼ ∑
M

i¼1
Cd;i tð Þ � 1−Cd;i tð Þ

� �� � ¼ ∑
M

i¼1
Fi t−dð Þ � Ri t−dð Þ½ � ð3Þ

2.3 Scheduled patients

A patient j ∈N, where N represents the number of scheduled
patient types indexed by j, still being present at the hospital at
period t can be represented by a Bernoulli random variable,
similar to current patients. Let sj represent the future period on
which the patient is scheduled to arrive, such that d + 1 ≤ sj ≤ t.
Let fj(h) represent the PMF of staying exactly h periods, Fj(h)
be the CDF of fj(h), and Rj(h) = 1 − Fj(h). Then, as represented

in Eq. 4, the probability of patient j, scheduled for period sj,
being present at period t, when forecasted from period d, is
represented by Sd, j(t). Note that h may equal 0.

Sd; j tð Þ ¼ 1− ∑
t−s j

h¼0
f j hð Þ ¼ 1−F j t−s j

� � ¼ Rj t−s j
� � ð4Þ

Similar to current patients, γschd tð Þ is the convolution of the
individual patient distributions shown in Eq. 4, which is the
sum of non-homogeneous Bernoulli random variables, and
thus PB. The mean and variance of this random variable are
represented by Eqs. 5 and 6, respectively.

E γschd tð Þ� � ¼ ∑
N

j¼1
Sd; j tð Þ ¼ ∑

N

j¼1
Rj t−s j
� � ð5Þ

Var γschd tð Þ� � ¼ ∑
N

j¼1
Sd; j tð Þ � 1−Sd; j tð Þ

� �� � ¼ ∑
N

j¼1
F j t−s j
� �� Rj t−s j

� �� �
ð6Þ

2.4 Emergency patients

Emergency patients arrive at the hospital without ever being
scheduled in advance, and are traditionally modeled as Poisson
randomvariables in the literature [51], with a time-varying arrival
rate. The arrival rate should be determined for each period, and
should thus vary across time. Let the expected number of arrivals
on period s, where d+ 1 ≤ s ≤ t, of patient type u ∈U, where U
represents the number of emergency patient types indexed by u,
be represented by λu(s), and the probability of staying exactly h
nights be represented by fu(h), where fu(0) = 0 for all u. Let Fu(h)
be theCDFof fu(h), andRu(h) = 1 −Fu(h). Because both thinning
and summing Poisson random variables produces a Poisson ran-
dom variable, the sum of the expected remaining patients from
each previous period’s arrivals is the expected value of a Poisson-
distributed variable of the total remaining emergency patients.
The number of future emergency patients present at period t,
when forecasted from period d, represented by Poisson random

Fig. 1 Patient groups in the bed
demand forecast
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variable γemerd tð Þ, has a mean equal to its variance, which is
shown in Eq. 7.

E γemerd tð Þ� � ¼ Var γemerd tð Þ� �
¼ ∑

t

s¼1
∑
U

u
λu sð Þ � 1− ∑

t−s

h¼0
f u hð Þ

� �� 	

¼ ∑
t

s¼1
∑
U

u
λu sð Þ � 1−Fu t−sð Þð Þ½ �

¼ ∑
t

s¼1
∑
U

u
λu sð Þ � Ru t−sð Þ½ � ð7Þ

2.5 Not-yet-scheduled patients

Patients booked at period b to arrive on period s, such that d +
1 ≤ b ≤ s ≤ t, are not-yet-scheduled, but may be present at period
t. These patients are unknown, and can thus not be modeled with
Bernoulli random variables. There is little research on this topic,
though linear regression has been shown to reasonably predict
the number of not-yet-scheduled patients [52]. Suppose the num-
ber of patients of type v ∈V, where V represents the number of
emergency patient types indexed by v, scheduled on a given
booking period b for scheduled period s is Poisson distributed
and represented by λv(b, s). The probability of patients of type v
staying exactly h nights is represented by fv(h), where fv(0) = 0 for
all v. Let Fv(h) be the CDF of fv(h), and Rv(h) = 1 −Fv(h). The
random variable representing not-yet-scheduled patients present
at period t, with mean and variance as shown in Eq. 8, is thus

represented by γnyschd tð Þ.

E γnyschd tð Þ
h i

¼ Var γnyschd tð Þ
h i

¼ ∑
t

s¼1
∑
s

b¼1
∑
V

v
λv b; sð Þ � 1− ∑

t−s

h¼0
f v hð Þ

� �� 	

¼ ∑
t

s¼1
∑
s

b¼1
∑
V

v
λv b; sð Þ � 1−Fv t−sð Þð Þ½ �

¼ ∑
t

s¼1
∑
s

b¼1
∑
V

v
λv b; sð Þ � Rv t−sð Þ½ �

ð8Þ

2.6 Total demand

Determining the distribution of total demand at period t from
forecast period d, represented by Γd(t), requires a convolution
of known and unknown patients present at period t. The PMF
of current and scheduled patients are PB distributions, mean-
ing the distribution of known patients is also PB, as the sum of
two sums of heterogeneous Bernoulli random variables is also
a sum of heterogeneous Bernoulli random variables. The PMF
of emergency and not-yet-scheduled patients are Poisson,
meaning the distribution of unknown patients is also Poisson.

Calculating the full convolution of total patient demand
Γd(t), which is the sum of a PB random variable representing

known patients, and a Poisson random variable representing
unknown patients, is computationally expensive to calculate
[53]. This is partly because it has an infinite domain and the
number of unique combinations of the PB distribution is equal
to 2(M + N), where M + N is the number of known patients,
which exceeds one trillion with just 40 known patients.
Instead of calculating the complete convolution of Γd(t), an
approximation using the normal distribution is obtained using
the mean and variance of forecasted patient demand. The
mean, as shown in Eq. 9, is the sum of Eqs. 2, 5, 7, and 8,
and the variance, as shown in Eq. 10, is the sum of Eqs. 3, 6, 7,
and 8. This Normal distribution, as well as the underlying
convolution that includes a Poisson distribution, both have
infinite domains. These distributions represent the demand
for beds, and can thus exceed the hospital unit capacity.
When calculating the bed demand, this Normal distribution
should be truncated at zero, and when predicting the bed oc-
cupancy, this Normal distribution should be truncated at both
zero and the hospital unit capacity.

E Γd tð Þ½ � ¼ E γcurrd tð Þ� �þ E γschd tð Þ� �þ E γemerd tð Þ� �
þ E γnyschd tð Þ

h i

¼ ∑
M

i¼1
Ri t−dð Þ þ ∑

N

j¼1
Rj t−s j
� �

þ ∑
t

s¼1
∑
U

u
λu sð Þ � Ru t−sð Þ½ �

þ ∑
t

s¼1
∑
s

b¼1
∑
V

v
λv b; sð Þ � Rv t−sð Þ½ � ð9Þ

Var Γd tð Þ½ � ¼ Var γcurrd tð Þ� �þ Var γschd tð Þ� �
þ Var γemerd tð Þ� �þ Var γnyschd tð Þ

h i

¼ ∑
M

i¼1
Fi t−dð Þ � Ri t−dð Þ½ �

þ ∑
N

j¼1
F j t−s j
� �� Rj t−s j

� �� �

þ ∑
t

s¼1
∑
U

u
λu sð Þ � Ru t−sð Þ½ �

þ ∑
t

s¼1
∑
s

b¼1
∑
V

v
λv b; sð Þ � Rv t−sð Þ½ � ð10Þ

2.7 Error calculations

Let the error of the forecast for period t made from period d be
represented by ed, t. If At is the actual census for period t, then
Eq. 11 shows the calculation for ed, t. The Z-score of the error,
represented in Eq. 12 by Zd, t, equals the number of standard
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deviations away from the forecasted mean and the standard de-
viation is equal to the square root of the forecast variance.

ed;t ¼ At−E Γd tð Þ½ � ð11Þ
Zd;t ¼ ed:tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Γd tð Þ½ �p ð12Þ

The case where all LOS distributions are deterministic,
meaning no uncertainty in LOS, such that all variance comes
from unknown future patients, is the theoretical lowest-
variance forecast. In this case, the mean and variance of the
PB random variable would become an integer constant and
zero, respectively. Thus, the distribution of the forecasted
PMF with the lowest variance is a translated Poisson random
variable that is translated by the amount equal to the expected
value of the PB random variable. If a forecast is made equal to
the mean of this translated Poisson random variable, then the
expected MAE of the forecasted PMF with the lowest vari-
ance can be obtained as shown in Eq. 13, where λ + c and λ
represent the mean and variance of the translated Poisson (TP)
random variable, respectively. The proof is shown in the
appendix. Note that ⌊λ⌋ represents the largest integer less than
or equal to λ. Translating the Poisson random variable does
not affect the expected MAE, and the result in Eq. 13 can be
further reduced, as shown in Eq. 14, where fP represents the
PMF of a standard Poisson random variable with a mean of λ.
To calculate the theoretical best expected value of a multi-
period forecast with non-homogenous Poisson random vari-
ables, the value in Eq. 14 must be averaged for all periods,
using the actual number of arrivals to estimate λ. Figure 2
shows the expected MAE for a single Poisson random vari-
able as a function of λ.

E MAETP½ � ¼ ∑
λb cþc

k¼c

e−λλ k−cð Þ

k−cð Þ!

 !
λþ c−kð Þ

þ ∑
∞

k¼ λb cþcþ1

e−λλ k−cð Þ

k−cð Þ!

 !
k−λ−cð Þ ¼ 2e−λλ λb cþ1

λb c!

ð13Þ

E MAEP½ � ¼ 2e−λλ λb cþ1

λb c! ¼ 2λ
e−λλ λb c

λb c! ¼ 2λ f P λb cð Þ ð14Þ

2.8 Parameterization

Populating all the necessary parameters for a forecast of T total
periods requires significant parameterization and calculation.
Table 1 shows the six groups of parameters that must be de-
veloped, along with their corresponding indices. These param-
eters can either be determined from the empirical distribution
of the dataset or produced using more powerful methods, such
as machine learning. For instance, historical data could popu-
late a logistic regression or decision tree model to estimate the
probability of staying any number of nights. Several other
works have thoroughly analyzed LOS predictions, and are
good resources for this important aspect of forecasting bed
demand [13, 49, 37]. Unlike for the other patient groups,
fj(0) for scheduled patients must be determined.

3 Case study

Blinded de-identified data were obtained for all patients
scheduled to arrive or having stayed between 10/31/2015
and 9/16/2016 at a mid-sized Massachusetts community hos-
pital. The next three subsections describe the raw data, devel-
op the model parameters, and produce and analyze the fore-
cast results. This particular application of the model used days
as periods to determine the midnight census, and combined all
hospital units into a single entity. To assess the performance of
the proposed model, a 7-period moving average (MA) model
was also developed.

3.1 Descriptive analytics

Included in the hospital dataset were about 10,000 patients,
36% of whom were scheduled to arrive, versus 64% of whom
were never scheduled. Of the scheduled patients, 26% had a
LOS of at least one night, meaning the dataset included about
1000 scheduled inpatient surgeries. The dataset included
fields for arrival date, departure date, if the patient was sched-
uled or not, and for all scheduled patients, fields for booking

Fig. 2 Theoretical minimum
expected mean absolute deviation
of a Poisson random variable
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date, surgeon, and procedure. The mean LOS for scheduled
inpatients and emergency patients were 2.5 and 4.1 days,
respectfully.

The nightly midnight census is set equal to the sum of new
arrivals that day and the current patients that morning, minus
the departed patients. Figure 3 shows the mean arrivals, cur-
rent patients, and departures byDOWinwaterfall form, where
the bottom of the third bar represents the mean midnight cen-
sus for that particular DOW. About one-third of all inpatient

surgeries occur on Mondays, and taper across the week, with
the highest mean of surgical census occurring on Wednesday.
Mean emergency patient arrivals also peak on Monday, with
the census peaking on Wednesday. Few scheduled inpatient
surgeries occur on weekends, whereas the mean number of
emergency arrivals is roughly constant by DOW.

3.2 Model parameterization

Construction of the forecasting model required calculation of
the flow probabilities and arrival rates in Table 1. In this case
study, seven primary patient types were differentiated: emer-
gency patients and six surgical patients grouped by orthope-
dic, general surgery, urology, gynecology, neurosurgery, and
all other specialties combined.

The LOS distribution for emergency patients was set equal
to the empirical LOS distribution for all emergency patients.
Patients not spending a night in the hospital were excluded
from the analysis due to not being part of the midnight

Table 1 Parameters
requiring calculation for
a forecast of length T
from period d

Parameters Indices

fi(h) ∀i and h ≥ 1
fj(h) ∀j and h ≥ 0
fu(h) ∀u and h ≥ 1
fv(h) ∀v and h ≥ 1
λu(s) ∀u and d + 1 ≤ s ≤ d + T
λv(b, s) ∀v and d + 1 ≤ b ≤ s ≤ d + T

Fig. 3 Average inpatient arrivals
and current inpatients and
inpatient departures by DOWand
split by scheduled and emergency
and all patients combined
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inpatient bed census. The LOS distributions for each surgical
group were calculated assuming an inpatient stay of at least
one night. The probability of a scheduled surgery becoming
an inpatient stay was based on the proportion of patients hav-
ing that particular procedure being an inpatient to the number
scheduled. Hence, the LOS distribution was conditioned on
staying at least one night, based purely on the procedure, then
determined based on the surgical group. Figure 4 shows a bar
chart containing the LOS distributions for each patient type,
conditioned on staying at least one night, and truncated after
seven nights. Due to data availability, the LOS distributions
were not updated at each subsequent time period for each
patient.

The arrival rates for emergency patients were set equal to
the mean number of daily arrivals by DOW. Figure 5 contains
box plots showing the arrival distributions by DOW. The bot-
tom and top whiskers represent the minimum and maximum
values, respectively, the centerlines represent the medians, and
the bottom and top of the boxes represent the 25th and 75th

percentiles. Arrival rates for not-yet-scheduled patients were
set to the empirical distribution of scheduled patients by sur-
gical group, appointment DOW, and the number of days be-
tween the booking date and the appointment date.

3.3 Forecast results

From each date between 10/31/2015 and 8/26/2016, the pa-
tient volume was forecasted 14 days into the future,
representing 301 forecasts for each of the 14 lengths.
Figure 6a shows the forecasted 1-day PMF of demand from
11/4/2015 to 11/5/2015, based on the discrete Normal approx-
imation using the mean and variance of demand. Figure 6b
shows an example of a single 14-day forecast starting from 11/
4/2015 versus the actual values, and Fig. 6c shows fourteen
consecutive 1-day forecasts starting from 11/4/2015 versus the
actual values. The lower control limits (LCL) and upper con-
trol limits (UCL) are drawn two standard deviations below
and above the means in both figures, respectively, where the

Fig. 4 LOS distributions
conditioned on staying at least
one night and truncated after
seven nights

Fig. 5 Arrival distributions for
emergency patients
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standard deviation is set to the square root of the forecasted
variance.

From each day d, forecasts were made with a total length of
14 days, meaning T = 14. For each of the forecasted lengths,
the MAE was calculated, as well as the mean and standard
deviation of the Z-scores of the errors. These results are shown
in Table 2, in addition to the theoretical minimum expected
MAE as determined by Eq. 14. The theoretical MAE is cal-
culated by setting λ equal to the actual number of unknown
daily arrivals and taking the mean of the daily expectedMAE.
The simple 7-period MA model had a MAE of 6.0 for a 1-
period forecast, representing a 17% increase in error compared
to the proposed model.

Two-sided Z-tests were applied to each forecast length to
compare the means of the forecast error Z-scores to zero. They
all passed with α = .05, meaning none of the means of the Z-
score errors were statistically different than zero. Also using
two-sided Z-tests, the means of the squared values of the Z-
scores were compared to one for each forecast length. The
difference between these values and one were not found to
be statistically significant for any of the forecasted lengths.
Given that the standard deviation of a random variable is equal

to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E X 2
� �

−E X½ �2
q

, with E[X2] not statistically different from

one, and E[X] not statistically different from zero, it is reason-
able to conclude that the standard deviations of the forecasts

Fig. 6 A 1-day forecasted PMF
followed by a comparison of a
single 14-day forecast to fourteen
consecutive 1-day forecasts for
the same period
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 a – PMF of a 1-day forecast from 11/4/2015 

b – A single 14-day forecast starting from 11/4/2015

 c – Fourteen consecutive 1-day forecasts starting from 11/4/2015
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were not statistically different from one. This finding supports
the assumption of patient bed demand following a normal
distribution.

In addition to testing the means and standard deviations of
the Z-scores of the error, each of the 14 forecast lengths was
tested for normality using the Kolmogorov-Smirnov test, in
which the null hypothesis was that the forecast distribution
was from a normal distribution with mean and variance equal
to the forecasted mean and variance. If the test statistic ex-
ceeds the critical value, then the null hypothesis is rejected.
Otherwise, if the null hypothesis is embraced, then statistical
support exists for a normal distribution being a good fit for the
true distribution. For all fourteen forecasts lengths, the null
hypothesis was embraced at the 5% significance level, which
supports the use of normal approximations for future bed
demand.

To visually assess the overall fit of the normal approxima-
tion, Q-Q plots were created to identify outliers. Q-Q plots are
used to compare the empirical distribution percentiles to the
theoretical distribution percentiles, as shown in Fig. 7. The x-
axis in each plot corresponds to the theoretical normal distri-
bution percentiles, and the y-axis in each plot corresponds to
the empirical distribution of the Z-scores of the forecast errors.
A 45-degree line is drawn in each chart to show the ideal fit of
the two sets of quantiles.

This forecasting model assumes that all arrival rates and
LOS distributions are independent, and thus does not take into
account system effects like congestion and negative feedback
loops. A chi-squared test for independence was prepared to
test if the 1-day forecast errors were independent of the census
at the time of the forecast. Five bins were created for both the
error and the census at the time of the forecast, centered on
their respective means, creating a total of 25 bins in the joint

distribution. The middle bins represented the mean plus or
minus half the standard deviation. The next bin on each side
also had a width of a single standard deviation. Values more
than 1.5 standard deviations above or below the mean were
placed in the highest and lowest bins, respectively. The chi-
squared test statistic was equal to 16.4, which with 16 degrees
of freedom and α = .05, was not found to be statistically sig-
nificant, and hence, there was insufficient evidence to demon-
strate non-independence. The forecast residuals versus the
census at the forecast times are shown in Fig. 8, the distribu-
tion of observed values is shown in Table 3, and the distribu-
tion of expected values is shown in Table 4.

The total population of patients is a combination of known
and unknown patients, represented by a PB and Poisson ran-
dom variable, respectively. Figure 9 shows the average ratio of
known patients to all patients from each forecast length,
representing the proportion of the forecast that could theoret-
ically be known with close to certainty if LOS distribution
predictions improve and approach a smaller variance. As
t→∞, when all known patients will have departed, and only
unknown patients remain, the forecast converges to a Poisson
random variable. On the first day of the forecast, nearly 80%
of the mean of bed demand was from known patients, com-
pared to just 20% on the seventh day.

4 Discussion

This paper demonstrates a novel and accurate method to pro-
duce a multi-day forecast of the PMF of hospital bed demand.
The case study results are promising, including anMAE close
to the theoretical minimum expected MAE, means of error Z-
scores close to zero, standard deviations of error Z-scores

Table 2 Experimental results of
the 14 forecast lengths with 301
forecasts each

Forecast Length MAE of daily expected value Mean of Z-scores SD of Z-scores

Observed Theoretical Difference

1 5.1 3.7 1.4 −0.01 1.02

2 6.5 5.0 1.5 −0.02 1.02

3 6.9 5.7 1.2 −0.02 0.98

4 7.1 6.2 0.9 −0.03 0.96

5 7.3 6.5 0.8 −0.04 0.99

6 7.5 6.7 0.8 −0.05 1.00

7 7.6 6.8 0.7 −0.05 1.02

8 7.7 7.0 0.7 −0.06 1.03

9 7.7 7.0 0.7 −0.06 1.04

10 7.8 7.1 0.7 −0.08 1.05

11 7.8 7.1 0.7 −0.08 1.05

12 7.8 7.2 0.6 −0.08 1.06

13 7.8 7.2 0.6 −0.09 1.06

14 7.8 7.3 0.6 −0.09 1.06
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close to one, and successful Kolmogorov-Smirnov tests for all
forecasted lengths. In addition, the chi-squared test for inde-
pendence demonstrated that forecast residuals were indepen-
dent of the bed demand at the time of the forecasting,
confirming that the assumption of independent patient flow
variables was reasonable.

Predictably, the forecasts increase in MAE as their lengths
increase, though the difference between the prediction and the
theoretical minimum expected MAE decreases. This suggests
that although there is room for improvement in predicting the
arrival rates for emergency patients and not-yet-scheduled pa-
tients, the more significant forecast improvement opportunity

Fig. 7 Q-Q plots of case study
forecasts for 1–14 day lengths
where the x-axes represent the
theoretical quantiles and the y-
axes represent the empirical
quantiles
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a – 1-day forecast  b – 2-day forecast c – 3-day forecast 

d – 4-day forecast e – 5-day forecast f – 6-day forecast 

g – 7-day forecast h – 8-day forecast i – 9-day forecast 

j – 10-day forecast k – 11-day forecast l – 12-day forecast 

m – 13-day forecast n – 14-day forecast 
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lies in predicting (i.e., reducing the variance of the PMF of)
the LOS distributions for current and scheduled patients.
Improving LOS distributions could be accomplished via
real-time updating from electronic medical records, including
data on age, gender, medical history, and list of orders, to drive
personalized classification and regression models.
Furthermore, as natural language processing improves, valu-
able information from clinician notes may become available
for predictive models to improve personalization.

Only 13% of the inpatient stays at this hospital were sched-
uled, representing only 8% of total nights spent. This relative-
ly low proportion of scheduled patients significantly increases
the variance of the theoretical best quality forecast due to the
dominance of the Poisson random variable for unknown pa-
tients relative to the PB random variable for known patients.
Applying the forecasting model to a hospital that predomi-
nantly sees scheduled patients relative to emergency patients
could significantly reduce the MAE of the predictions. In ad-
dition, because the curve in Fig. 2 is concave down, the rate of
expected MAE increase is slower than the rate of the increase
of the mean of unknown patients, meaning this forecasting
model should produce a smaller ratio of MAE to mean census
at larger hospitals with similar LOS distributions.

The Q-Q plots in Fig. 7 demonstrate that a normal distri-
bution with the forecasted mean and variance is a suitable
estimation of the full probability convolution. The estimations
hold well within the range of about two standard deviations,

indicated by little deviation from the 45-degree line. However,
the 1-day high outliers are above the 45-degree line, indicating
that the upper tail of the normal distribution estimate may be
too thin to fit the real data. This makes sense given that
Poisson distributions have positive skew and most of the fore-
cast is driven by the underlying Poisson random variable for
unknown patients. The Q-Q plots for other forecast lengths
tend to have high outliers below the 45-degree line, suggesting
that consistent multi-day volume increases may be mitigated
over several days via reduced LOS or fewer scheduled surger-
ies. A prominent outlier occurs on the night of June 4th, 2016,
when the 1-day forecast from the previous day had an error Z-
score of −3.8, and a 2-day forecast Z-score of −4.2. The fol-
lowing day, June 5th, 2016, also clearly shows up on the 3-day
Q-Q plot. Although an explanation for this outlier likely ex-
ists, tracing its root-cause was beyond the scope of the study.

A potential limitation of this work is the assumption that all
random variables are independent of each other, as it is possi-
ble that some processes adjust when the census is extreme. For
instance, a full hospital may prohibit non-critical short-term
scheduling, or demonstrate a greater urgency to discharge cur-
rent patients to make room for new ones. Although the chi-
squared test demonstrated independence between the census
at the time of the forecast and the next day’s forecast residual,
incorporating system-level adjustments in future forecast
model expansion work may enhance the quality of the predic-
tions in extreme cases.

Fig. 8 1-day forecast residuals
versus census at forecast time

Table 3 Observed distribution 2-
way table showing the joint
distribution of 1-day residuals and
census at forecast times

{Min, Max} Residual = Actual - Observed

< −9.5 −9.5, −3.2 −3.2, 3.1 3.1, 9.4 > 9.4 Total

Census at Forecast Time < 76.7 1 3 8 3 0 15

76.7, 87.6 7 19 27 22 6 81

87.6, 98.4 5 40 36 24 7 112

98.4, 109.3 4 15 25 23 4 71

> 109.3 1 6 5 10 0 22

Total 18 83 101 82 17 301
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Another limitation is that the parameterization could bene-
fit from the application of machine learning algorithms and
additional data, especially data that is updated during the pa-
tient visit. For instance, learning that a patient has moved to
the ICU or is on a ventilator would significantly increase the
expected remaining LOS. Incorporating natural language pro-
cessing to read the clinician notes would further improve the
accuracy of the patient-level parameters. The difference in
accuracy between the case study accuracy and theoretical best
accuracy demonstrates the value in improving these parame-
ters. As these parameter errors compound, the gap between the
theoretical best accuracy and the model accuracy widens.
Furthermore, error can exist within the input parameters them-
selves, in addition to the inherent error of any probability not
equaling zero or one. This model assumes that probabilistic
input parameters have been accurately determined, and an
opportunity for future work would be to analyze the effect of
poor parameter estimation on the aggregate demand
prediction.

Future work could improve this model by incorporating
unit-level flows and a joint distribution of demand across
these units by addressing unit-level transfers, as well as in-
cluding resource demand ratios to produce a PMF of resource
demand. For instance, beyond predicting the demand for beds,
which is a one-to-one relationship to patients, the model could
be expanded to predict the need for nurses and technicians in

specific units, who can cover multiple patients based on se-
verity and needs. The ultimate intent is to apply a stochastic
optimization model that sets base level staffing and adjusts it
based on a pool of shared resources based on a joint probabil-
ity distribution of demand across all units. In addition to
expanding the detail of the model structure and parameters,
the full convolution of demand could be integrated to improve
the predicted PMF accuracy.

5 Conclusion

An accurate forecasting model has been derived and imple-
mented that generalizes previous models in the literature by
allowing multi-period forecasts, PMFs of demand instead of
point estimates, non-cyclic surgery schedules, time-varying
LOS distributions, and patient heterogeneity. In a case study,
the forecasts held up to statistical tests of independence and
normality. This forecasting method allows bed managers sig-
nificantly more information, both in accuracy and timeliness,
to adapt staffing levels to stochastic demand, potentially lead-
ing to cost reduction and safety improvements. Most signifi-
cantly, this work demonstrates a theoretical minimum error in
a single-unit bed demand forecast, which can be used to assess
the accuracy of future work in this domain.

Fig. 9 Percent of the mean from
known patients for each forecast
length

Table 4 Expected distribution 2-
way table showing the joint
distribution of 1-day residuals and
census at forecast times

{Min, Max} Residual = Actual - Observed

< −9.5 −9.5, −3.2 −3.2, 3.1 3.1, 9.4 > 9.4 Total

Census at Forecast Time < 76.7 0.9 4.1 5.0 4.1 0.8 15

76.7, 87.6 4.8 22.3 27.2 22.1 4.6 81

87.6, 98.4 6.7 30.9 37.6 30.5 6.3 112

98.4, 109.3 4.2 19.6 23.8 19.3 4.0 71

> 109.3 1.3 6.1 7.4 6.0 1.2 22

Total 18 83 101 82 17 301
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Appendix

Calculation of expected MAE of a translated Poisson random
variable given its mean (λ + c) and variance (λ).

E MAETP½ � ¼ ∑
λb cþc

k¼c

e−λλ k−cð Þ

k−cð Þ!

 !
λþ c−kð Þ

þ ∑
∞

k¼ λb cþcþ1

e−λλ k−cð Þ

k−cð Þ!

 !
k−λ−cð Þ

Split the sums along λ + c and k.

¼ λþ cð Þ ∑
λb cþc

k¼c

e−λλ k−cð Þ

k−cð Þ!

 !
− λþ cð Þ ∑

∞

k¼ λb cþcþ1

e−λλ k−cð Þ

k−cð Þ!

 !

− ∑
λb cþc

k¼c
k

e−λλ k−cð Þ

k−cð Þ!

 !
þ ∑

∞

k¼ λb cþcþ1
k

e−λλ k−cð Þ

k−cð Þ!

 !

Combine the sums without the extra k in the sum.

¼ − λþ cð Þ þ 2 λþ cð Þ ∑
λb cþc

k¼c

e−λλ k−cð Þ

k−cð Þ!

 !
− ∑

λb cþc

k¼c
k

e−λλ k−cð Þ

k−cð Þ!

 !

þ ∑
∞

k¼ λb cþcþ1
k

e−λλ k−cð Þ

k−cð Þ!

 !

Add and subtract identical sums to get (k − c) in the sums
that used to have just k.

¼ − λþ cð Þ þ 2 λþ cð Þ ∑
λb cþc

k¼c

e−λλ k−cð Þ

k−cð Þ!

 !
− ∑

λb cþc

k¼c
k−cð Þ e−λλ k−cð Þ

k−cð Þ!

 !

þ ∑
∞

k¼ λb cþcþ1
k−cð Þ e−λλ k−cð Þ

k−cð Þ!

 !
−c ∑

λb cþc

k¼c

e−λλ k−cð Þ

k−cð Þ!

 !

þ c ∑
∞

k¼ λb cþcþ1

e−λλ k−cð Þ

k−cð Þ!

 !

Adjust sums by c.

¼ − λþ cð Þ þ 2 λþ cð Þ ∑
λb c

k¼0

e−λλk

k!

� �
− ∑

λb c

k¼0
k

e−λλk

k!

� �

þ ∑
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e−λλk

k!
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λb c
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e−λλk

k!

� �

þ c ∑
∞

k¼ λb cþ1

e−λλk

k!

� �

Combine terms.

¼ − λþ cð Þ þ 2 λþ cð Þ ∑
λb c

k¼0

e−λλk

k!

� �

þ λ 1−2 ∑
λb c

k¼0

e−λλk

k!

� �� 	
þ c 1−2 ∑

λb c

k¼0

e−λλk

k!
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Simplify.

¼ 2λ ∑
λb c

k¼0

e−λλk

k!

� �
− ∑

λb c−1

k¼0

e−λλk

k!

� �� 	

Simplify.

¼ 2λ
e−λλ λb c

λb c!

 !

Simplify.

¼ 2e−λλ λb cþ1

λb c!

To calculate the expected value of the daily expected MAE
across multiple days, sum this value across all days and divide
by n.

E E MAE½ �½ � ¼ 1

n
∑
n

d¼1

2e−λdλd
λdb cþ1

λdb c!

 !
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