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Abstract

Background: Interpreting gene expression profiles obtained from heterogeneous samples can be difficult
because bulk gene expression measures are not resolved to individual cell populations. We have recently devised
Population-Specific Expression Analysis (PSEA), a statistical method that identifies individual cell types expressing
genes of interest and achieves quantitative estimates of cell type-specific expression levels. This procedure
makes use of marker gene expression and circumvents the need for additional experimental information like
tissue composition.

Results: To systematically assess the performance of statistical deconvolution, we applied PSEA to gene expression
profiles from cerebellum tissue samples and compared with parallel, experimental separation methods. Owing to
the particular histological organization of the cerebellum, we could obtain cellular expression data from in situ
hybridization and laser-capture microdissection experiments and successfully validated computational predictions
made with PSEA. Upon statistical deconvolution of whole tissue samples, we identified a set of transcripts showing
age-related expression changes in the astrocyte population.

Conclusions: PSEA can predict cell-type specific expression levels from tissues homogenates on a genome-wide
scale. It thus represents a computational alternative to experimental separation methods and allowed us to identify
age-related expression changes in the astrocytes of the cerebellum. These molecular changes might underlie
important physiological modifications previously observed in the aging brain.
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Background
Over the last decade, genome-wide gene expression pro-
filing has greatly improved upon the functional, molecu-
lar characterization of many tissues. For instance, our
understanding of molecular changes occurring in par-
ticular human diseases has increased dramatically, in
some cases leading to discovery of novel disease sub-
types or more precise prognosis [1,2]. In practice, gene
expression profiling studies are often performed on
samples comprised of several distinct cell populations.
In this case, expression levels of particular transcripts
reflect their total abundance over all cells in the sample.
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Because gene expression measures in tissue homoge-
nates are not resolved to individual cell populations,
it can be difficult to reach conclusions regarding the
cellular physiology of the individual cell populations.
Moreover, heterogeneous samples often display variable
composition. This can be the case for human tissue sam-
ples and typically results in additional variability of mea-
sured expression. For differential gene expression studies
(e.g. disease versus control), this additional variability
can decrease the probability of detecting expression
changes and mask differences between sample groups. It
can even lead to wrong estimates of expression changes
in the case of systematic changes in tissue composition
between test conditions.
Resolving gene expression to individual cell popula-

tions is of great relevance: It could allow the discovery
of novel specific biomarkers or help identify small but
important, cell type-specific expression differences (e.g.
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eQTLs) for instance. Experimental approaches to the
problem of tissue heterogeneity include physically separ-
ating the cell population of interest from other cells in
the sample, for instance using laser capture microdissec-
tion (LCM) or fluorescence-activated cell sorting. How-
ever, the applicability of such solutions greatly varies
with the nature and availability of the tissue of interest:
microdissecting individual cells spread throughout a
tissue section can for instance be very time-consuming.
Cell sorting, on the other hand, can be problematic with
solid tissues. We have recently proposed Population-
Specific Expression Analysis (PSEA), a computational
method to deconvolute gene expression profiles mea-
sured in heterogeneous samples [3]. PSEA makes use
of information on sample composition contained in the
expression of population-specific marker genes and does
not rely on additional experimental information. It can
correct biased estimates of expression changes in the
case of systematic differences in tissue composition
between sample groups. This is important for the
correct identification of changes occurring in the context
of chronic diseases accompanied with specific histo-
logical changes (see [3] for an example of this effect in
the context of neurodegeneration). Even in the absence
of a systematic difference in tissue composition, many
biological samples including brain, blood [4] and tumor
samples [5] can display great variability and PSEA can
improve the detectability of changes in gene expression
when expression is contributed by cell populations
whose abundance vary across samples.
Here, we applied PSEA on expression profiles measured

from human cerebellum samples and deconvoluted the
total expression level of each transcript into the contribu-
tions of several major cell populations, namely granule
cells, Purkinje cells, astrocytes and oligodendrocytes. The
strict spatial organization of cell populations in the cerebel-
lum allowed us to verify deconvoluted gene expression
patterns using the Allen Brain Atlas [6], a genome-wide
atlas of gene expression obtained by colorimetric in situ
hybridization (ISH). We also obtained gene expression
measurements of laser-capture microdissected Purkinje
cells and confirmed population-specific expression signals
obtained with PSEA. We then used PSEA to perform
differential expression analysis in a cell type specific man-
ner and identified a set of genes with robust, age-related
changes in astrocytic expression. These expression changes
may be molecular mediators of important physiological
modifications previously observed in the aging brain.

Results
Gene expression deconvolution using cell
population-specific expression signals
To deconvolute gene expression measured from samples
composed of several cell types, PSEA relies on the
detection of a correlation between the total expression
level of a gene of interest and the expression levels of
marker genes, i.e. genes expressed in a single cell type
only. Briefly, when the relative abundance of a given cell
type varies from sample to sample, measured expression
levels of genes expressed in this cell type co-vary with
the size of this cell population. In particular, a cell type-
specific marker gene thus specifically tracks variations in
the size of an individual cell population since its expres-
sion will co-vary with the size of the corresponding
expressing population and this one only. It follows that
an arbitrary gene expressed in a particular population
will correlate with marker genes expressed in this popu-
lation as well. In practice, we used several marker
genes for each population and average them to create
single population-specific reference signals. We then
identified populations contributing to total expression by
detecting (possibly multiple) correlation between gene
expression and a set of population-specific reference sig-
nals. Hence, the deconvolution problem is framed as a
multiple linear regression problem and can be addressed
with usual statistical methodology. The coefficients of
this particular regression problem approximate (relative)
population-specific expression levels [3]. This has two
important consequences: first, it allows for the quantita-
tive comparison of expression levels for various genes in
a particular cell population. For instance if two genes are
expressed in a given population but one of them is
expressed in a second population as well, we can effect-
ively factor out the expression in the second population
and compare expression levels in the common popula-
tion specifically. Second, this method can be used to test
if the expression of a given gene is changed across differ-
ent conditions within a single population. Notably, such
a cell population-specific differential expression analysis
can show increased sensitivity since it accounts for vari-
ability in sample composition.
Cell population-specific analysis of gene expression
profiles from cerebellum samples
We used PSEA to deconvolute gene expression profiles
obtained from tissue samples dissected from human
cerebellum. The cerebellum is composed of a layer of
neural tissue, the cerebellar cortex, sitting on top of
white matter containing myelinated axonal processes.
A set of nuclei called deep cerebellar nuclei is embedded
in the white matter, away from the cerebellar surface
(histological features of the cerebellum are annotated on
the top-left micrograph in Figure 1). The cerebellar cor-
tex is distinctly divided in three layers: the granule cell
layer is the deepest layer and is comprised of tiny excita-
tory cells called granule cells and various much rarer
inhibitory cell types (including Golgi cells). Granule cells
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are densely packed and actually are the most numerous
neurons in the brain [7]. On top of the granular layer
sits a thin layer of very large, neuronal cells with spher-
ical bodies called Purkinje cells. Finally, the outer most
layer is comprised of neuronal processes including the
axons of granule cells (called parallel fibers) and the
dendritic trees of Purkinje cells, as well as inhibitory
interneurons (stellate and basket cells). Astrocytes are
found in all layers of the cerebellar cortex and are also
abundant in the white matter (fibrous astrocytes) [8].
The Purkinje cell layer contains the cell bodies of specia-
lized radial astrocytic cells called Bergmann glia that
extend their processes into the molecular layer. Oligo-
dendrocytes are abundant in the white matter but are
common in the granule layer and also present in the
other cortical layers [8].
We obtained gene expression profiles from small

tissue fragments split from the cortical surface of larger
frozen cerebellum samples (Additional file 1: Table S1).
The assayed tissue samples were thus comprised of cor-
tex and white matter but not of deep nuclei. These sam-
ples had been collected in the course of a previous study
and were thus not primarily intended to test statistical
deconvolution. Therefore, they allowed us to test the
Figure 1 Micrographs of colorimetric in situ hybridization experimen
specific expression in granule cells (first row), Purkinje cells (second row), as
micrograph shows part of the mouse cerebellum (simple, ansiform and pa
level 1600. Genes significantly associated with a reference signal in the hum
or not detected in ISH experiments were not considered. Histological anno
p: Purkinje cell layer, g: granular layer, w: white matter, d: deep nuclei.
applicability of PSEA to a standard gene expression
dataset from a human tissue-based expression study. We
aimed to deconvolute total expression measured in these
tissue fragments into contributions from the major cell
populations in the sample, i.e. granule cells, Purkinje
cells, astrocytes and oligodendrocytes. For each cell
population, we selected two or three genes previously
known to be specifically expressed in this cell type and
averaged them to obtain population-specific reference
signal (see Methods and Additional file 1: Table S3). For
a given population, individual marker genes strongly
co-varied from sample to sample, suggesting that their
expression level paralleled the fraction of cells from this
population in each sample (Additional file 2: Figure S1).
For each gene assayed on the array (except marker genes
used to construct reference signals), we then asked if the
sample-to-sample variation in expression could be satis-
factorily explained by the variations in the four selected
cell populations and performed multiple regression of
expression on the four population-specific reference sig-
nals. Because of the small number of samples considered
here and to avoid overfitting we used a standard model
selection procedure to select population-specific refer-
ence signals to include in the fit of each gene. Finally,
ts from the Allen Brain Atlas. We show 5 top genes with predicted
trocytes (third row) and oligodendrocytes (fourth row). Each
ramedian lobules, from left to right) on a sagittal section around
an gene expression data but without mouse ortholog, not tested
tation in shown for the top-left micrograph: m: molecular layer,
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the resulting gene expression models were characterized
and genes whose expression variability could not be con-
vincingly explained by the 4 reference signals (or a
subset thereof ) were eliminated (see Methods).
Figure 2 shows selected examples of genes and

their association with population reference signals. The
expression of CAPN7 (Figure 2A) was significantly asso-
ciated with the granule cell reference signal, but not with
any other reference signals. This suggested that CAPN7
was expressed in granule cells. Figure 2B shows that
measured expression variations of LARGE was asso-
ciated with variations in the Purkinje cell reference
signal but not with the granular, astrocytic or oligoden-
drocytic signals. For most genes, total expression was
associated with more than one reference signals. For
example IGSF11 expression was found to be associated
with both glial signals (Figure 2C).
Overall, we obtained statistical gene expression models

for 5,952 probes (from a total of 22,184), with an aver-
age adjusted R2 of 0.69 (Additional file 3: Figure S2).
The four reference signals were found to correlate dif-
ferently to total expression: overall, the granule cell
reference signal more largely accounted for total expres-
sion variability compared to the other 3 reference signals
ðaverage partial correlation coefficients �rG ¼ 0:65; �rO ¼
0:41; �rA ¼ 0:4 and �rP ¼ 0:39 , for granule cell, oligo-
dendrocyte, astrocyte and Purkinje cell reference signals,
respectively; see also Additional file 4: Figure S3). The
expression of most genes (5,645) was associated with the
granule cell signal (Additional file 1: Table S4). Consid-
ering the histology of the cerebellum, we hypothesized
that granule cells comprised the most abundant cell type
in our samples, followed by astrocytes, oligodendrocytes
and Purkinje cells. Although glial cells markedly out-
number Purkinje cells in the cerebellum [8], the latter
have much larger cell bodies and it is difficult to esti-
mate a priori the relative contribution of each cell type
to total expression. We most often detected simultan-
eous contribution to total expression from the two neur-
onal cell populations and astrocytes (1,103 probes,
Additional file 1: Table S4) and from the two neuronal
cell populations alone (977 probes).
Notably, we detected a subset of genes with highly

significant oligodendrocyte-specific expression (much
larger than for any of the other 3 populations, see
Additional file 4: Figure S3). Note the higher variability
of the oligodendrocyte reference signal compared to the
other 3 reference signals (see Additional file 2: Figure S1),
which increased the detectability of oligodendrocyte ex-
pression (because in linear regression the sample variance
of the coefficient is inversely proportional to the variance
of the regressor). This underlines the beneficial role played
by variability in sample composition for the statistical
deconvolution scheme used here.
In situ hybridization experiments support PSEA-predicted
expression patterns
We used the Allen Brain Atlas (ABA) collection of in
situ hybridization (ISH) experiments [6] to verify the cell
type-specific gene expression predictions made with
PSEA. The ABA project performed genome-wide ISH
across the entire mouse brain, including the cerebellum.
We hypothesized that gene expression patterns are
largely conserved between human and mouse, paralleling
the strong conservation of gene function across these
two species [9]. Moreover, we reasoned that if human-
based PSEA predictions showed systematic validation in
mouse, we could rule out that the correspondence arose
by chance. We identified genes predicted to have high
specific expression in a single one of the four cell popu-
lations (see Additional file 5: Table S5, Additional file 6:
Table S6, Additional file 7: Table S7, and Additional file
8: Table S8). We checked the expression of their murine
orthologs (as defined by HomoloGene, NCBI) in the
colorimetric mouse brain ISH experiments of the ABA
project. Each row in Figure 1 shows micrographs of the
cerebellum for ISH corresponding to the 5 first genes
from each of the four lists of candidate genes with
specific expression. Genes whose total expression was
significantly associated with the granule cell signal are
shown in the first row; as suggested by PSEA, they
showed clear expression in the granule cell layer. The
second row displays ISH for genes found to be signifi-
cantly associated with the Purkinje cell signal. For all but
one gene (Pvalb, see below), the staining was restricted
to the thin layer of cells located between the granule cell
and the molecular layers and corresponding to the
Purkinje cell layer. At maximal resolution, typical bead-
on-string patterns of individual Purkinje cells could
be observed, as shown by the corresponding insets in
the bottom right corner of each micrograph. Genes
that showed strong association with the astrocyte signal
(Figure 1, third row) often showed dense staining of the
Purkinje cell layer as well. Closer inspection revealed
microscopic staining patterns suggesting expression in
Bergmann glia, as characterized by the staining of more
numerous and smaller nuclei compared to Purkinje cells.
For some genes, the staining included processes extend-
ing into the molecular layer (see e.g. Dao1) which is
has been previously observed with gene expressed by
Bergmann glia. Moreover, Dao1 and Mlc1 for instance
have been shown previously to be expressed in astro-
cytes [10,11]. Small nuclei present in the granule layer
were also stained by ISH, often but not always in con-
junction with Bergmann glia staining, compatible with
protoplasmic astrocytes. For instance Dao1 showed
expression in both astrocytic subtypes (see Figure 1).
Many genes with highly significant predicted expres-
sion in astrocytes, however, showed strong staining of



Figure 2 Dependence of total gene expression on the population-specific reference signals. For 3 selected genes, we show partial
association with each of the 4 reference signals as a component-plus-residual plot. The slope of the partial regression is the relative
population-specific expression level and the corresponding p-value is shown in the upper-left corner of each panel. A: Expression of CAPN7
is associated with the Purkinje reference signal; B: Expression of LARGE is associated with the Purkinje cell reference signal, C: Expression of
IGSF11 is associated with both the astrocytic and the oligodendrocytic reference signals.
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Bergmann glia, suggesting that these cells accounted for
a major proportion of the total astrocytic expression in
cerebellum. Finally, the fourth row in Figure 1 shows genes
predicted to be specifically expressed in oligodendrocytes:
ISH probes for Anln, Mobp, and Klk6 specifically labeled
numerous cells in the white matter, supporting the pre-
dicted specific oligodendrocyte expression. The majority
of subsequent genes down the list of oligodendrocyte-
specific expression also clearly revealed an oligodendrocyte
staining pattern (not shown). Some genes, however,
showed a very different staining pattern. Hspa2, for
instance, showed faintly stained nuclei in the white mat-
ter but more prevalent staining in the Purkinje cell and
molecular layers; Mylk on the other hand showed stained
cells in every layer (Figure 1). We first checked that the
sequences of the ISH probes (as well as the Illumina
probes) were specific to the annotated gene transcripts.
In line with the ABA experiment, Hspa2 has been
previously reported to be expressed in mouse neurons
and ependymal cells [12], whereas Mylk has been found
to be expressed by smooth muscle cells [13]. This con-
firmed the expression patterns observed in the ABA atlas.
We thus asked if these genes were expressed by cell types
not taken into account in our deconvolution (possibly
causing spurious association with the oliogdendrocyte
reference signal) and tested for association between total
expression and marker genes of additional minor cell
types (see Methods). We did not find any significant asso-
ciation. Given that the transcriptional architecture of
human MYLK appears to be more complex than its
mouse ortholog (6 transcript variants for the human gene
and 1 for mouse), we could not exclude that these genes
might exhibit different cell specific regulation in the two
species.
Based on their genome-wide ISH experiments, the

ABA project annotated genes with specific expression in
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particular brain structures, including 50 genes specific-
ally expressed in the granule cell layer, 15 genes specific-
ally expressed in Purkinje cells, 30 genes expressed in
Purkinje cells and in interneurons of the granular layer
(Golgi cells), and 5 genes expressed by Bergmann glia.
We asked if the corresponding expression models
obtained with PSEA were in line with the ABA annota-
tion (Figure 3). Genes annotated with granule cell-specific
expression showed much smaller p-values associated with
their expression in granule cells compared to the other
three expression components (Figure 3A). Genes anno-
tated with Purkinje cell expression were predicted by
PSEA to have more significant expression in Purkinje
cells (as well as some less significant expression in granule
cells, Figure 3B). Interestingly, genes found by the ABA
project to be expressed in Purkinje cells and interneurons
of the granular layer showed a more significant predicted
expression in Purkinje and granule cells compared to the
other 2 cell populations (Figure 3C). It is reasonable to
assume that the fraction of interneurons of the granular
layer correlated very well with the general granule cell
fraction. Therefore, gene expression from interneurons
would be expected to be associated with the granule cell
signal, which is what we observed here. Finally, the five
genes annotated with Bergmann glia-specific expression
showed much more significant predicted expression in
astrocytes compared to the other 3 cell types (Figure 3D).
In conclusion, these two-way comparisons with gene
expression patterns inferred from ISH experiments
showed that PSEA can identify cell type specific expres-
sion from bulk measurement of gene expression.

Limitations to the detection of arbitrary co-expression
patterns
The comparison of results from the statistical deconvolu-
tion and from ISH experiments also revealed particular
circumstances in which gene expression was undetected
by PSEA. Pvalb, for instance, was not only expressed in
Figure 3 Significance of PSEA-predicted, population-specific expressio
ABA project. Each panel corresponds to a group of genes found by the A
cells (B), Purkinje cells and interneurons (IN) of the molecular layer (C), and
(−log10) p-values obtained with PSEA and associated with granular-specific
expression levels. Boxplots in a single panel can represent a variable numb
in each gene expression model varies from gene to gene.
Purkinje cells as predicted in our analysis, but it was also
expressed by cells of the molecular layer (Figure 1, second
row). For the lack of appropriate markers, we could
not account for cells of the molecular layer into in our
deconvolution scheme (see Methods). Moreover, we
suggest that the strong association of Pvalb expression
with the Purkinje cell reference signal did not allow us to
detect that another cell type was not accounted for in the
analysis (see Methods). We also observed instances of
failed detection in populations accounted for by corre-
sponding reference signals. Zranb2, for instance, was pre-
dicted to be specifically expressed in granule cells but ISH
revealed expression in Purkinje cells as well (Figure 1, first
row). In general, we observed that the cell population
whose expression was undetected corresponded to a
population with lower average abundance (compared to
the detected population, e.g. Purkinje cells versus granule
cells for Zranb2). Together with the fact that overall PSEA
more efficiently detected contribution from the more
abundant population (i.e. granule cells, see above), we
concluded that expression contribution by cell popula-
tions of lower abundance could effectively be masked by
expression in a more abundant cell population. This
masking effect prevented the systematic detection of arbi-
trary co-expression patterns. Possible reasons for this
masking effect included the potential higher noise level
present in reference signals of lower abundance popula-
tions, in line with the fact that hybridization-based array
techniques have higher noise levels at low intensity signal.
Thus the application of PSEA to gene expression profiles
obtained with experimental methods that perform better
at lower signal intensities (e.g. RNA-seq) might yield
better detection of co-expression patterns.

Comparison of statistical deconvolution and experimental
microdissection
To directly compare statistical deconvolution and expe-
rimental separation, we experimentally isolated a cell
n levels for 4 different groups of genes annotated by the
BA project as specifically expressed in the granular layer (A), Purkinje
Bergmann glia (D). Boxplots in each panel show the distributions of
, Purkinje-specific, astrocyte-specific or oligodendrocyte-specific
er of p-values since the number of reference signals accounted for
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population from human cerebellum samples. We per-
formed laser-capture microdissection (LCM) of Purkinje
cells in a set of 100 samples and subjected them to
gene expression profiling (see Methods). Given their
large cell body size, Purkinje cells are relatively easy to
separate from their surrounding tissue using LCM and
thus allowed us to obtain a reasonably resolved expres-
sion profile. Moreover, they represent a minor cell popu-
lation in our homogenate samples and thus provided an
interesting test case of PSEA’s performance. We rea-
soned that genes correctly predicted to be significantly
expressed in Purkinje cells by PSEA would show high
expression in LCM samples, whereas genes predicted to
be expressed in other cell population but not in Purkinje
cells should show low expression in LCM samples.
Figure 4A shows the expression enrichment obtained
after LCM for four sets of top 30 genes predicted to be
specifically expressed in one of the 4 cell populations
(Additional file 5: Table S5, Additional file 6: Table S6,
Additional file 7: Table S7, and Additional file 8: Table
S8). Genes predicted to have highly specific expression
in Purkinje cells showed high enrichment in LCM samples
(mean enrichment 5.2) whereas genes with predicted
expression in granule cells, astrocytes or oligodendrocytes
(but not in Purkinje cells) showed low enrichment (mean
enrichment 0.2, 1, and 0.4, respectively). The LCM enrich-
ment measured for genes with predicted astrocytic ex-
pression was clearly higher than for genes with predicted
expression in oligodendrocytes and granule cells. We
suggest that this is the result of an experimental artefact
and not a consequence of the deconvolution method:
Purkinje cells and Bergman glia reside in close proximity,
resulting in the potential contamination of LCM samples
with astrocytes. This resulted in higher astrocyte enrich-
ment compared to oligodendrocyte for instance since the
Figure 4 Validation of Purkinje cell-specific expression detection with
experimentally isolated Purkinje cells. A: Ratio of gene expression levels
Each boxplot corresponds to the top 30 genes predicted to be specifically
cell-specific expression levels (x-axis) versus (log2) expression levels measur
latter reside in the white matter and are readily separated
from Purkinje cells during the LCM procedure.
Furthermore, Purkinje cell-specific expression levels

obtained with PSEA strongly correlated with the abso-
lute expression measured in LCM samples (Figure 4B
and Additional file 9: Figure S4). Thus, PSEA could
successfully identify genes expressed in a minor cell
population, as well as yield quantitative estimates of
their specific expression levels.
Detection of cell population-specific gene expression
changes in cerebellum tissue samples
An important feature of PSEA is that it allows to test for
differential expression within cell populations [3]. In
contrast to a standard differential expression analysis
performed on total expression levels, PSEA allows to
resolve expression changes to particular cell populations.
It can also yield more precise measures of expression
change since it accounts for the variability (and potential
systematic differences) in sample composition between
experimental groups. We aimed to assess the effect of
age on gene expression in the main cell types of the
cerebellum (see Methods). Aging is accompanied with
decreasing cognitive abilities and is the main risk factor
for many neurodegenerative diseases. It is thus a major
challenge in neuroscience to understand the cellular
and molecular changes underlying normal, as well as
pathological brain aging. We split our samples in two
age groups (using median age 38 as threshold) and
tested for differences in cell-type specific expression. We
first focused on Purkinje cell expression because of the
potential possibility to test candidate genes in our LCM
dataset. We could not detect significant changes asso-
ciated with this cell-type. However, we discovered a set
PSEA by comparison to gene expression measured in
measured in isolated Purkinje cells compared to whole tissue samples.
expressed in one of the 4 cell populations. B: Predicted (log2) Purkinje
ed in experimentally isolated cells (y-axis).
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of candidate genes associated with significant, specific
expression changes in astrocytes (Table 1).
Many of the candidate genes with the most significant

changes were found to play a role in the regulation of
cell proliferation. EDNRB has been shown to have antia-
poptotic effects in rat cerebellum [14] as well as to
specifically mediate astrocyte proliferation [15]. The
expression of FAT1, on the other hand, has been found
to be reduced in astrocytic tumors [16]. Further genes
whose function has been previously associated with the
regulation of cell cycle progression included CABLES1
[17], ITGB5 [18], and MN1 [19]. These candidate
changes might be particularly relevant in the context of
previous observation showing increased relative number
of astrocytes in the aging brain [20]. We also noted two
genes encoding important metabolic enzymes and pre-
dicted to show age-related expression change. BCHE has
been linked to the modulation of Alzheimer’s disease
progression [21]. It encodes an enzyme with cholinester-
ase activity and was predicted here to be downregulated
with age. In line with this prediction, Maetzler et al. have
recently measured the corresponding enzymatic activity
in serum and found that it decreased with age [22].
LCAT, on the other hand, encodes an enzyme with
extracellular cholesterol esterifying activity. Cholesterol
is a critical component of brain physiology and brain
cholesterol level has been associated as a risk factor in
Alzheimer’s disease [23]. Brain cholesterol level actually
decreases with normal aging [24] and the hypothesized
Table 1 Summary statistics for genes predicted to show an ag

Probe ID Expr (A) p (A) DE (dA) p (dA) ME adj. R2

ILMN_1653001 323 6.0 × 10-9 245 2.5 × 10-6 849 0.69

ILMN_1751904 802 6.1 × 10-16 −283 1.1 × 10-5 1009 0.86

ILMN_1813597 1792 7.6 × 10-21 −410 4.7 × 10-5 2333 0.93

ILMN_1796755 229 1.5 × 10-9 −119 7.4 × 10-5 604 0.76

ILMN_1801377 863 6.2 × 10-08 −491 1.4 × 10-4 2077 0.80

ILMN_1757180 67 5.8 × 10-07 41 2.1 × 10-4 303 0.76

ILMN_1732197 276 1.7 × 10-12 −98 2.3 × 10-4 586 0.86

ILMN_1685641 118 4.0 × 10-6 −75 5.4 × 10-4 438 0.79

ILMN_1754795 1459 4.5 × 10-7 −771 9.3 × 10-4 3588 0.76

ILMN_1688868 1296 5.6 × 10-16 −314 1.1 × 10-3 1676 0.90

ILMN_1717636 1735 1.5 × 10-15 −492 1.1 × 10-3 2610 0.79

ILMN_1800317 144 1.4 × 10-11 −48 1.3 × 10-3 364 0.84

ILMN_1738147 449 3.1 × 10-6 −260 1.5 × 10-3 996 0.56

ILMN_1815102 1065 1.0 × 10-9 −416 1.5 × 10-3 1764 0.78

ILMN_1709486 1717 9.5 × 10-19 −321 2.3 × 10-3 2253 0.91

The top 15 genes with the most significant expression changes are listed. Expr (A):
differential expression, ME: mean expression, adj. R2: adjusted R2.
downregulation of LCAT expression predicted here might
thus provide a new candidate mechanism underlying this
metabolic change. In support of this hypothesis, LCAT
has recently been shown to be expressed by astrocytes
and to play a critical role in the maturation of brain high-
density lipoproteins and cholesterol distribution [25].
We asked if these expression changes were robust and

could be identified from another set of samples or using
alternative marker genes for deconvolution. We applied
PSEA on a set of gene expression profiles obtained from
a separate collection of samples (n=57, median age=33,
Additional file 1: Table S2). We used the same marker
genes to construct population reference signals and ap-
plied PSEA on each candidate gene. Using the 50 genes
with the most highly significant expression changes in
the original dataset, we found that 30 showed evidence
of astrocyte-specific, age-related expression changes in
the second dataset (Figure 5A). The direction of change
found in the two datasets was concordant for 28 genes
and discordant for 2 genes, and the predicted fold
change were clearly correlated across the 2 datasets. We
then assessed the influence of the specific selection
of marker genes on these results. We repeated the ori-
ginal analysis of the first sample set using an alternative
astrocytic reference signal generated from 3 different,
well-known astrocytic marker genes (Additional file 1:
Table S3). Out of the top 50 genes originally showing
age-related expression change in astrocytes, 42 sup-
ported an astrocyte-specific expression change based on
e-related, astrocyte-specific change in expression

Gene symb. Gene title, transcript variant

CABLES1 Cdk5 and Abl enzyme substrate 1

EDNRB endothelin receptor type B (EDNRB), transcript variant 2

C4orf18 chromosome 4 open reading frame 18 (C4orf18),
transcript variant 1

ITGB5 integrin, beta 5 (ITGB5)

SLC29A4 solute carrier family 29 (nucleoside transporters),
member 4 (SLC29A4)

WDR49 WD repeat domain 49 (WDR49)

MN1 meningioma (disrupted in balanced translocation)
1 (MN1)

BCHE butyrylcholinesterase (BCHE)

FAT FAT tumor suppressor homolog 1 (Drosophila) (FAT)

PPAP2B phosphatidic acid phosphatase type 2B (PPAP2B),
transcript variant 1

RGMA RGM domain family, member A (RGMA)

WNT5A wingless-type MMTV integration site family, member
5A (WNT5A)

NES nestin (NES)

LCAT lecithin-cholesterol acyltransferase (LCAT)

SRPX sushi-repeat-containing protein, X-linked (SRPX)

astrocyte-specific expression level, p: p-value, DE (dA): astrocyte-specific



Figure 5 Validation of age-related, astrocyte-specific expression changes in an independent dataset (A) and using an alternative
astrocyte reference signal (B). A: Out of 50 genes with astrocyte-specific expression change selected from our first dataset, 30 were found
to show expression changes in a second, independent dataset. The plot shows astrocyte-specific fold change in expression detected in the
first dataset (x-axis) and second dataset (y-axis). Black and gray open circles code for the significance of the p-values for the expression
change detected in the second dataset (black: p<0.05, 18 genes; gray: p>0.05, 12 genes). Even though the corresponding p-values were not all
nominally significant, all 30 genes supported gene expression changes upon statistical model selection. B: Out of 50 genes with astrocyte-specific
expression change selected from our first analysis, 42 were found to show expression changes using an alternative, independent reference signal.
Even though the corresponding p-values were not all nominally significant, all 42 genes supported gene expression changes upon statistical
model selection.
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the alternative reference signal. Furthermore, the pre-
dicted change estimated using either of the 2 alternative
reference signals strongly correlated (Figure 5B).
Importantly, standard differential expression analysis

did not highlight the particular gene set identified with
PSEA. We tested the mean gene expression differences
across sample groups and ordered all genes by decreas-
ing evidence of differential expression. The top 50 genes
predicted by PSEA to show astrocyte-specific changes
had a median rank of 964.5 (mean rank: 4501) in the list
obtained by standard analysis. The top 5 genes identified
by PSEA showed a median rank of 573 (mean rank:
1134) in the list obtained by standard analysis. Thus,
most genes identified here would have been missed
using a standard differential analysis of bulk gene
expression. In conclusion, statistical deconvolution iden-
tified a set of genes predicted to be expressed in astro-
cytes and showing robust, age-related changes in
expression. These genes provide insights into potential
molecular mechanisms underlying important physio-
logical changes in the aging brain.

Discussion
We applied a simple method to computationally decon-
volute gene expression profiles from composite samples,
based on the signal provided by marker genes. In con-
trast with previous methods, this analysis does not rely
on additional external information like a separate assess-
ment of sample composition [4,26-28] or the measure of
gene expression profiles in isolated, homogeneous cell
populations [29-33] (see also Venet et al. [34]). We
performed deconvolution of gene expression measured
from histologically complex, solid tissue samples and
assessed the specificity of the predictions by comparing
with in situ hybridization and laser-capture microdissec-
tion experiments. We showed that PSEA could correctly
identify gene expression in specific cell types, including
cell populations representing a minor fraction of the
samples. Importantly, PSEA yields estimates of relative
cell type-specific expression levels. It can be used to per-
form differential expression analysis and it is useful to
assign gene expression changes to specific cell-types.
Several conditions are necessary for the application of

PSEA. The method makes use of marker gene expres-
sion to build single population reference signals and
track sample-to-sample variations in sample compos-
ition. To identify cell populations expressing a gene of
interest, PSEA relies on the detection of statistical asso-
ciations between variations in total gene expression and
variations in population reference signals. As a first con-
dition to the application of PSEA, we need to avail
of marker genes for the cell types contributing to total
expression. To date, marker genes have been identified
for many cell types in numerous tissues (e.g. for the
brain [35] and blood [36]). Indeed, they are invaluable
research tools, allowing the identification of particular
cells of interest via immunohistochemistry or used for
driving cell-type specific transexpression for instance.
Thus, the availability of marker genes should not be a
limiting factor for the applicability of PSEA in general.
If candidate markers are not available, their identifica-
tion can be pursued experimentally, for instance by gene
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expression profiling of purified cell populations. Homo-
geneous cell populations can be isolated from tissues by
histochemical stainings followed by microdissection or
tissue dissociation and subsequent cell separation. Prior
knowledge of cell surface markers or availability of a
transgenic mouse line expressing a fluorescent reporter
gene under the control of a cell-type specific promoter
can facilitate the identification of further marker genes.
Candidate marker genes must be specific for a single

cell type among all cells present in the samples. Expres-
sion in other cells absent from the samples of interest is
of course allowable, extending the pool of genes that can
be used as useful markers with PSEA. The suitability of
candidate marker genes should be assessed thoroughly,
including their specific expression in the cell population
of interest and their expression range (see “Marker genes
and population-specific reference signals” in Methods).
Finally, prior knowledge of the histological composition
of the tissue to be deconvoluted is important. Indeed,
if the expression model obtained with PSEA does not
account for a population that is actually contributing
expression, estimates of population-specific expression
levels for the populations that are accounted for in the
model might be wrong (i.e. statistical “model misspecifi-
cation”). Here we addressed this issue by taking into
account all potential major contributors to gene expres-
sion in our samples. We also treated this problem
a posteriori by filtering out genes whose statistical fit
indicated that they might be expressed by another,
unaccounted cell type (see Methods).
As a second general condition, heterogeneous samples

should show variable composition. In fact, the more
variable the abundance of a particular cell population,
the larger the variability in the corresponding reference
signal and the more precise the estimation of gene
expression level. Here, we found that estimates of
oligodendrocyte-specific expression levels had smaller
standard error compared to other cell types. We suggest
that this is due to larger variations in oligodendrocyte
abundance, as reflected in the larger variability of
the oligodendrocyte signal compared to other reference
signals (Additional file 2: Figure S1). Gene expression
profiles used for the present analysis were obtained fol-
lowing standard brain sample collection procedures. Our
results indicate that, in this case, sample heterogeneity
was sufficient to reliably estimate population-specific
expression levels. However, the variations for several
different cell populations should not show too much
covariation. Correlation between independent regression
variables results in the inflation of estimation errors and
the impossibility to statistically separate contributions
from individual populations (“collinearity”). In practice,
this only occurs when regression variables show strong
correlation (e.g. [37]) which is not what we observed
between the four main neural populations in our cere-
bellum samples.
PSEA makes the important assumption that gene

expression is proportional to the size of the correspond-
ing population. This linear relationship between total
expression and population size in collections of hetero-
geneous tissue samples has been verified in previous
studies [29]. In the case of PSEA, it is particularly
important that marker genes closely approximate this
condition. In practice, we found that it was best met by
selecting marker genes expressed in the medium range
of the intensity scale. In principle, marker genes with
high expression should yield better approximation of
this assumption because their signal is relatively larger
than the background of their expression measure. How-
ever, highly expressed genes could show saturated
expression signals as measured by microarrays (e.g. GFAP,
see Methods), which distorted the proportional relation-
ship between expression and population abundance. Fur-
thermore, the noise in marker gene expression measure
decreased the sensitivity of PSEA (see Methods). Assum-
ing that the noise was uncorrelated across different genes,
we improved the quality of reference signals by averaging
several marker genes. Nevertheless, we propose that the
number of deconvoluted genes could be increased by
using population reference signals with higher signal-to-
noise ratios (see Methods). Although hybridization-based
gene expression profiling has undergone spectacular
improvements since its inception, it is not devoid of sub-
stantial measurement noise, particularly at low intensity
signal. We hypothesize that the deconvolution of quanti-
tatively more accurate expression profiles (such as those
obtained from sequencing-based methods) might yield
improved results.

Conclusions
PSEA is widely applicable to studies dealing with hetero-
geneous samples, only relies on information contained
in gene expression profiles and provides quantitative
measures of cell population-specific expression levels. By
direct comparison to in situ hybridization data and par-
allel laser-capture microdissection experiments, we have
shown that PSEA can represent an efficient computa-
tional alternative to experimental separation methods. It
has allowed us to identify expression changes in astro-
cytes that might underlie important physiological modi-
fications previously observed in the aging brain.

Methods
Human cerebellum gene expression profiles and sample
quality control
We have previously obtained gene expression profiles of
human cerebellum samples from 150 individuals (NCBI
GEO GSE15745) [38]. Gene expression profiling was
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performed in 3 batches. The first two batches were com-
prised of samples originating from a single collection site
whereas the third batch was comprised of samples from
several collection sites. We focused on the first two
batches to ensure minimal technical variability between
samples. We also thoroughfully assessed the quality of
raw expression profiles and stringently filtered out sam-
ples deemed to be affected by technical variations in the
two remaining batches: we first compared the values of
each type of Illumina control probes across samples
within each batch. One sample in the first batch had
values for the standard Illumina “housekeeping” probes
that were clearly different from the rest and it was elimi-
nated. In the second batch, 4 samples were discarded
because they had values for the standard Illumina “nega-
tive” and “labeling” control probes that differed from the
rest, suggesting that a technical problem occurred dur-
ing the preparation of labeled RNA for these samples.
We then compared the raw distributions of gene expres-
sion values for each sample. In particular, we spotted
outliers by comparing the sample median and standard
deviation within each batch. Two samples of batch 2
were found to have outlying values for these two statis-
tics and were eliminated. Finally, we looked at reference
signals and spotted samples with outlying values for any
of the reference signals. PSEA does not make any as-
sumption on the distribution of population reference
signals. In fact the larger the variability of the reference
signal, the more precise the estimation of population-
specific expression level. However, to avoid any single
sample to have a large influence on the results of the
regression, we eliminated samples with unusually high
values for any of the reference signals. Two samples in
batch 1 and 1 sample in batch 2 displayed large values
for the oligodendrocyte reference signals and they were
eliminated. A posteriori, we checked for the systematic
influence of any single sample on the results of PSEA by
inspecting the distributions of Cook’s distance [39] for
all genes whose expression could be successfully decon-
voluted (see below). In batch 2, 1 sample was found to
have a median Cook’s distance that was clearly higher
than all others. This suggested that this sample was
influential for the fit of the majority of genes and it was
discarded. In summary, we were left with 43 samples in
batch 1 (Additional file 1: Table S1) and 57 in batch 2
(Additional file 1: Table S2). We applied PSEA in batch
1 and batch 2 separately and used batch 2 to assess the
robustness our results obtained with batch 1.
To make full use of cell population variability and

achieve better deconvolution, we performed population-
specific expression (PSEA) within batches without prior
normalization. This is not a prerequisite for the applica-
tion of PSEA [3] but it improved the results obtained
here because a single cell population (i.e. granule cells)
was on average much more abundant that any other
population. When this is the case (and this population
contributes to the expression of a large number of
genes), any normalization procedure will actually result
in decreased gene expression variability (from this popu-
lation). In other words, the variability in gene expression
contributed by variations in the predominant population
is confounded with sample to sample variation of tech-
nical origin and it is squelched by the normalization pro-
cedure since any normalization procedure is aimed at
eliminating overall, sample to sample variability. However,
with PSEA the larger the variability in the abundance of a
particular population, the greater the sensitivity of specific
expression detection in this population. Normalization will
thus result in decreased sensitivity of gene expression
detection for this population. In our cerebellum samples,
most genes correlated with variations of the granule cell
reference signal, suggesting that the expression variability
of most genes was indeed dominated by variation in this
population across samples. This variability was truly
brought about by variability in sample composition and
was greater than the variability of technical origin. This is
demonstrated by the fact that reference signals for other
cell populations did not co-vary with the granule cell
signal (see Additional file 2: Figure S1), which would have
been the case if expression variability was dominated by
technical, array-to-array variability that would affect all
genes similarly. Note finally that expression data should
not be log transformed before PSEA (as opposed to a
common practice in standard differential expression ana-
lysis) as the deconvolution method assumes a linear
expression model where cell populations contributing
expression add up, resulting in the “bulk” gene expression
measured on the microarray [3].

Marker genes and population-specific reference signals
We chose two to three well-known marker genes for
each of the four cell populations that were expected to
yield significant contributions to gene expression be-
cause of their abundance (granule cells, astrocytes and
oligodendrocytes) or cellular size (Purkinje cells). We
verified that the expression of marker genes from the
same cell population were well correlated, indicating
that their variability reflected the variable abundance of
the corresponding cell type across samples. The marker
genes and corresponding probes selected for our analysis
are shown in Additional file 1: Table S3. Some well-
known marker genes were dismissed because of their
suspected saturated expression values (ZIC2 for granule
cells, GFAP for astrocytes, FABP7 for Bergmann glia),
which would violate the assumption of linearity between
marker gene expression and population size. We also
additionally checked the expression specificity of the
selected marker genes in the Allen Brain Atlas and
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discarded GAD1 (Purkinje cell marker) because it
showed strong expression in Golgi cells (in addition to
Purkinje cells, see also Schilling et al. [40]). If the marker
gene expression was measured by more than one probe
on the array, we eliminated the probes whose signal was
not clearly above background (e.g. AQP4).
Cell population reference signals were constructed as

follows: First, each probe was given an equal weight by
normalizing it to an average value of 1. When several
probes reported expression of the same marker gene (i.e.
for MBP) we averaged them to obtain a single marker
gene expression measure. Finally, we averaged all marker
gene expression measures within each cell population to
obtain population-specific reference signals. We checked
that the correlation between reference signals was mod-
erate to avoid the problem of collinearity when perform-
ing regression. All pairwise correlations between the
four reference signals were modest.
To test if we could improve deconvolution and separ-

ate known neuronal subpopulations further, we investi-
gated the expression of genes recently found to be
specifically expressed in interneurons of the molecular
layer (ACCN1, GALNTL4, LYPD6, see Schilling et al.
[40]). The resulting reference signal, however, highly cor-
related with the granule cell signal, preventing statistical
separation of these two populations (because of collin-
earity). By inspection of ISH in the ABA, we noticed that
GABRA6, a well-known granule cell markers might
actually be weakly expressed in interneurons of the
molecular layer as well. This suggested that the correl-
ation of granule cell and interneuron reference signals
was a consequence of the lack of gene markers with
better specificity rather than co-abundance of the two
cell populations across samples. Similarly, we also tried
to separate radial glia (Bergmann glia) from other astro-
cytes (protoplasmic and fibrous). However, PPAP2B, a
Bergmann glia marker, was highly correlated with AQP4
and GJA1 preventing us from statistically separating
expression contributions from the different astrocyte
subtypes. Since AQP4 and GJA1 are expressed by all
astrocytes including Bergmann glia whereas PPAP2B is
expressed specifically by Bergmann glia, this suggested
that the astrocytic expression in our sample mostly
originated from Bergmann glia.
Statistical model building, fit characterization and
implementation
Because of the limited number of samples in each batch
and to avoid overfitting, we applied a variable selection
method to find population reference signals that contrib-
uted to gene expression variability. To determine which
reference signals to include in each gene expression
model, we used a classical stepwise selection method
based on Akaike’s AIC criterion [41]. We tested differen-
tial expression in specific cell populations by using
the same variable selection strategy but allowing for an
additional single interaction regressor (in addition to the
4 reference signals). Simultaneous detection of several
population-specific changes was theoretically possible
but we avoided it here because of the small sample size
and high correlation between interaction regressors.
PSEA was implemented with R [42]. We used the func-
tion step AIC (MASS package [43]) to perform statistical
variable selection. The source code and data used for
PSEA are provided as additional files (Additional file 10,
Additional file 11, Additional file 12).
We characterized the statistical fits obtained by model

building of each gene and models with a poor goodness-
of-fit were discarded. We used the two following selec-
tion criteria: First, we discarded genes whose response
variability was poorly explained the statistical model
(adjusted R2 ≤ 0.5). Second, we interpreted large fitted
intercepts as evidence of an expression source not
represented by any of the four reference signals and we
eliminated the corresponding genes from further consid-
eration as well. The gene expression model used in
PSEA implies a constant term (corresponding to the
intercept in the regression) with an upper bound given
by the background of expression measure (see Equation
four in Kuhn et al. [3]). In practice, however, we
observed that the fitted intercepts were moderately
correlated with mean gene expression. This may be
caused by noisy reference signals, which resulted in
imperfect control of expression variability. Indeed, “error-
in-variable” can lead to the intercept being biased toward
the mean response (and thus overshooting the upper
bound of the constant term in the expression model).
Therefore and to avoid predominantly filtering out genes
with large mean expression (which would result from the
use of a fixed threshold on fitted intercepts), we used
a relative criterion and eliminated genes with a ratio of
fitted intercept over mean expression greater or equal to
0.5 (Additional file 3: Figure S2).
We also checked that assumptions underlying linear

least-squares fitting were generally verified and we inves-
tigated error normality, error variance and linearity.
Error distributions were deemed to be normal by com-
paring the sample distribution of studentized residuals
with quantiles of the normal distribution (QQ plot),
for a large number of fitted genes. Similarly, we exam-
ined studentized residuals versus fitted responses for a
large number of gene expression models and concluded
that most probe sets had constant error variance. A mi-
nority showed increasing error variance with increasing
fitted expression values. This increase was modest and
was deemed not to compromise ordinary least squares-
based coefficient estimation. Finally, model linearity was
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checked by looking at partial residual plots. The majority
of fitted genes did not show clear nonlinearity.

Laser-capture microdissection and gene expression
profiling of Purkinje cells
Frozen tissue samples of the cerebellum were obtained
from 100 neurologically normal Caucasian subjects.
Tissue was immersed in Shandon M-1 embedding matrix
(Thermo Electron Corporation, Rockford, IL) and stored
at −80°C until use. Cryostat sections (7–8 μm thick) were
cut from frozen tissue samples using a Leica CM1900
cryostat (Leica, Houston, TX), and stored in pap jar
(Evergreen, Los Angeles, CA) to avoid hydration. Before
laser capture microdissection, brain sections were stained
with Cresyl Violet (Ambion, Austin, TX) according to
standard procedure. Given the notably unique morph-
ology and position of Purkinje cells, this method of identi-
fication was sufficient to distinguish individual stained
cells under the microscope. Laser-capture microdissection
was performed with ArcturusXT microdissection system
(Arcturus, Mountain View, CA). Purkinje cells were
selected from the slide surface and captured on LCM
Macro Caps. High-quality cellular RNA was recovered
from the collected cells using PicoPureTM RNA isolation
kit (Arcturus) and treated with RNase-free DNase
(Qiagen, Valencia, CA). The quality of RNA was analyzed
using an Agilent 2100 bioanalyzer (Agilent, Foster City,
CA). Two rounds of amplification were carried out with
the Ambion MessageAmp II aRNA kit.
Illumina human oligonucleotide arrays (HumanHT-12)

were used according to the manufacturer's instructions,
starting with 750 ng of amplified RNA for each sample.
Array chips were scanned on an Illumina Bead array
reader confocal scanner. The raw data can be obtained
from NCBI GEO GSE37205. The Bioconductor package
beadarray [44] was used to load raw Illumina gene
expression data and to normalize them using robust
multi-array average [45]. For comparison with gene
expression measured in whole-tissue samples, we consid-
ered the set of probes that were present on the two array
chips.

Additional files

Additional file 1: Table S1. Sample characteristics for gene expression
series 1. Series 1 was comprised of 43 samples. The minimal, 1st quartile,
median, 3rd quartile and maximal age were 15, 20.5, 38, 48, and 72 years,
respectively. Table S2: Sample characteristics for gene expression series 2.
Series 2 was comprised of 57 samples. The minimal, 1st quartile, median,
3rd quartile and maximal age were 16, 24, 33, 45 and 58 years,
respectively. Table S3: Marker genes used to construct reference signals
for PSEA. Two different sets of astrocytic markers were used to generate
2 independent astrocytic reference signals. Set 2 was used to assess the
robustness of astrocyte-specific changes detected with set 1. For some
genes, we also used the following marker genes to test if expression
could be detected in additional minor cell populations (see Results): DES
(smooth muscle cells), CSPG4 (pericytes), P4HA1 (fibroblasts), PECAM1
(endothelial cells), CD37 (microglia) [35,46-55]. Table S4: Distribution of
gene expression models obtained with PSEA upon statistical model
building. G, P, A and O stand for the granular, Purkinje cell, astrocyte and
oligodendrocyte reference signals, respectively. The third column
indicates the average goodness-of-fit (as mean adjusted R2) for probes
assigned a particular statistical model.

Additional file 2: Figure S1. Expression levels of marker genes (left)
and corresponding population-specific reference signals (right) for the
granule (A), Purkinje (B), astrocytic (C) and oligodendrocytic (D) cell
populations. For each row, the left panel shows the (log2) expression of
marker genes across all samples. The right panel shows the reference
signal obtained by averaging expression of the corresponding marker
genes. The standard deviation of reference signals was 0.38 (granule cell),
0.36 (Purkinje cell), 0.55 (astrocyte), 0.8 (oligodendrocyte).

Additional file 3: Figure S2. Characterization of gene expression
models obtained upon statistical model building, for all genes on the
microarray. Genes with better goodness-of-fit (higher adjusted R2) had
smaller (relative) intercepts, in line with the hypothesized model for total
expression (see Methods). Gray lines show the threshold criteria used for
selecting expression models for further consideration (intercept/
mean<0.5, adjusted R2>0.5).

Additional file 4: Figure S3. Population-specific expression levels and
associated p-values (for 5,952 genes passing fit quality criteria). Each
volcano plot shows the (normalized) values for a particular model
coefficient and corresponding (−log10) p-values (y-axis). Model
coefficients were normalized by the average gene expression.
A: intercept, B: granule cell-specific expression, C: Purkinje cell-specific
expression, D: astrocyte-specific expression, E: oligodendrocyte-specific
expression.

Additional file 5: Table S5. Genes specifically associated with the
granule cell reference signal. We selected genes with p-values for granule
cell-specific expression at least 1000 times smaller than for any of the
other 3 populations, and p-values for expression in these three
populations greater than 0.001. Expr and p stand for coefficients
(i.e. population-specific expression levels) and associated p-values,
respectively. A, O, G and P indicate the corresponding reference signal:
astrocyte, oligodendrocyte, granular and Purkinje, respectively.

Additional file 6: Table S6. Genes specifically associated with the
Purkinje cell reference signal. We selected genes with p-values for
Purkinje cell-specific expression at least 1000 times smaller than for any
of the other 3 populations, and p-values for expression in these three
populations greater than 0.001. Expr and p stand for coefficients
(i.e. population-specific expression levels) and associated p-values,
respectively. A, O, G and P indicate the corresponding reference signal:
astrocyte, oligodendrocyte, granular and Purkinje, respectively.

Additional file 7: Table S7. Genes specifically associated with the
astrocyte reference signal. We selected genes with p-values for astrocyte-
specific expression at least 1000 times smaller than for any of the other 3
populations, and p-values for expression in these three populations
greater than 0.001. Expr and p stand for coefficients (i.e. population-
specific expression levels) and associated p-values, respectively. A, O, G
and P indicate the corresponding reference signal: astrocyte,
oligodendrocyte, granular and Purkinje, respectively.

Additional file 8: Table S8. Genes specifically associated with the
oligodendrocyte reference signal. We selected genes with p-values for
oligodendrocyte-specific expression at least 1000 times smaller than for
any of the other 3 populations, and p-values for expression in these three
populations greater than 0.001. Expr and p stand for coefficients
(i.e. population-specific expression levels) and associated p-values,
respectively. A, O, G and P indicate the corresponding reference signal:
astrocyte, oligodendrocyte, granular and Purkinje, respectively.

Additional file 9: Figure S4. Predicted (log2) Purkinje cell-specific
expression levels (x-axis) versus (log2) expression levels measured in
experimentally isolated cells (y-axis) for all genes that obtained a
non-negative, significant (p<0.05) Purkinje cell expression component
by PSEA.
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Additional file 10: Compressed (gzip) archive file (tar) containing
computer code used for the PSEA analysis presented here. The
archive contains the main R code (psea.R) and associated functions
(psea_f.R), sample information (param.txt), subject phenotypes
(phenotypeInfo.txt) and microarray probe annotation file
(GPL6104-20626.txt).

Additional file 11: Compressed (zip) text file with the raw gene
expression data used for the main analysis (i.e. subset of samples
deposited in GEO GSE15745).

Additional file 12: Compressed (zip) text file with the raw gene
expression data used for validation (i.e. subset of samples
deposited in GEO GSE15745).
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