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ABSTRACT: Membrane fusion is an important step for the entry of the lipid-sheathed viruses into the host cells. The fusion
process is being carried out by fusion proteins present in the viral envelope. The class I virus contains a 20—25 amino acid sequence
at its N-terminal of the fusion domain, which is instrumental in fusion and is called as a “fusion peptide”. However, severe acute
respiratory syndrome (SARS) coronaviruses contain more than one fusion peptide sequences. We have shown that the internal
fusion peptide 1 (IFP1) of SARS-CoV-2 is far more efficient than its N-terminal counterpart (FP) to induce hemifusion between
small unilamellar vesicles. Moreover, the ability of IFP1 to induce hemifusion formation increases dramatically with growing
cholesterol content in the membrane. Interestingly, IFP1 is capable of inducing hemifusion but fails to open the pore.

M embrane fusion is a crucial step for successful entry and
infection of the enveloped viruses, leading to the
transfer of viral genetic materials into the host cell.' ™ The
fusion event is triggered by the viral fusion protein that comes
into action after the receptor-binding domain interacts with the
cell surface receptor proteins.’ Generally, for class I viruses, a
20—2S amino acid stretch present in the N-terminus of the
fusion protein is known as a fusion peptide, which is
instrumental in binding with the host cell, and initiating the
fusion process.7’8 Severe acute respiratory syndrome (SARS) is
an emerging form of pneumonia caused by SARS-CoVs, and
the entire world is now going through a crisis due to the attack
of SARS-CoV-2. The fusion domain of SARS-CoV spike
protein (S2) contains three putative fusion peptides recognized
as the N-terminal fusion peptide (FP), internal fusion peptide
1 (IFP1), and internal fusion peptide 2 (IFP2).”~"* The S2
protein contains heptad repeats, HR1 and HR2, and a
transmembrane region at the C-terminus in addition to these
fusion peptides. Interestingly, the FP and IFP1 are highly
homologous between SARS-CoV-1 and SARS-CoV-2 (Table
1). Therefore, a proper understanding of the role of FP and
IFP1 in inducing membrane fusion would provide valuable
mechanistic insights into the entry of both SARS-CoV-1 and
SARS-CoV-2. The atomic resolution structure of the complex
formed by two heptad regions revealed the formation of a six-

Table 1. Sequences of FP and IFP1 for SARS-CoV-1, SARS-
CoV-2, and Peptides Used in the Study

Fusion Peptide

SARS-CoV-1 MYKTPTLKDFGGFNFSQIL
SARS-CoV-2 IYKTPTLKDFGGFNFSQIL
Internal Fusion Peptide 1
SARS-CoV-1 GAALQIPFAMQMAYRF
SARS-CoV-2 GAALQIPFAMQMAYRF
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helix bundle, considered to facilitate close apposition of two
fusing membranes.'”'> Membrane composition plays a
significant role in the fusion process as it alters the fusion
protein or peptide conformation as well as the membrane
organization and dynamics.'® The role of cholesterol in
membrane fusion is firmly established from the results
obtained from viral and model membrane fusion.'”"®
Cholesterol is also known to promote oligomerization of the
SARS-CoV FP."

The lipid stalk hypothesis assumes the sequential evolution
of the intermediates toward the opening of the fusion pore.
Initially, two bilayers come close, and the outer leaflets of both
bilayers mix to form the stalk intermediate. Subsequently, the
inner leaflets of the apposed membranes come in contact with
each other to form transmembrane contact, which finally
undergoes mixing of inner leaflets to open the fusion pore. The
stalk and transmembrane contact structures are collectively
called hemifusion intermediates. A schematic representation of
the fusion process is shown in Scheme 1.

In this work, we have studied the effectiveness of FP and
IFP1-induced fusion of small unilamellar vesicles (SUVs), and
evaluated the effect of membrane cholesterol on the fusion
process. Our results demonstrate that the IFP1 promotes lipid
mixing in a cholesterol-dependent fashion. Both the rate and
extent of lipid mixing increase significantly in the presence of
cholesterol. On the contrary, the FP is not that efficient to
induce lipid mixing; however, there is a slight increase in the
rate and extent of lipid mixing in the presence of membrane
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Scheme 1. Schematic Representation of Different
Intermediates during the Course of Membrane Fusion
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cholesterol. Interestingly, both FP and IFP1 fail to demonstrate
substantial content mixing, highlighting the role of other
domains of S2 protein for the pore formation. The extent of
content leakage remains about 10%, which confirms the overall
integrity of fusing membranes.

The above observation indicates that the IFP1 (and partially
FP) induces hemifusion but is incapable of opening the pore
between two fusing membranes. Our results support the
requirement of interaction between FP and transmembrane
domain of fusion protein for pore opening as proposed earlier
in HIV.”’

In order to evaluate the effect of FP and IFP1 in membrane
fusion, we have measured lipid mixing, content mixing, and
content leakage kinetics using fluorescence-based method-
ologies described in the method section in the Supporting
Information. IFP1 induced about 51% of lipid mixing in
DOPC/DPOE/DOPG (60/30/10 mol %) SUVs in a lipid-to-
peptide ratio of 100:1. The rate and extent of lipid mixing
increases with increasing cholesterol concentration, and extents
are about 71% and 84% in DOPC/DOPE/DOPG/CH (50/
30/10/10 mol %) and DOPC/DOPE/DOPG/CH (40/30/
10/20 mol %) SUVs, respectively (Figure 1A, Table 2). This
result suggests that the efficiency of IFP1 in promoting lipid
mixing is extremely dependent on the concentration of
membrane cholesterol, although it promotes a significant
amount of lipid mixing, does not induce content mixing, and
brings about 10% content leakage in the membrane containing
20 mol % of cholesterol (Figure 1B,C). Putting this
observation in the context of membrane fusion, it is clear
that the IFP1 is capable of inducing the hemifusion
intermediate formation but unable to open the fusion pore.
The hemifusion is solely dependent on lipid mixing, where the
lipids of outer leaflets of two fusing membranes mix with each
other. A small amount of content mixing in the hemifusion
intermediate is possible as the small fluorophores can move
from one membrane to the other through thermal fluctuation.
Moderately low content leakage indicates the overall integrity
of the membrane during the formation of hemifusion
intermediates. Interestingly, the content leakage data saturates
within about 400 s, which designates that the content leakage
is majorly observed during the lipid reorganization, forming the
hemifusion intermediate. Similar experiments were carried out
in three different lipid compositions with the N-terminal FP,
and the results are shown in Figure 2A—C. The FP promotes a
nominal amount of lipid mixing in all three lipid compositions
in a lipid-to-peptide ratio of 100:1. The extent of content
mixing and content leakage are similar to what we observed in
the presence of IFP1. Overall, our result suggests that the N-
terminal FP is less efficient in promoting hemifusion, FP does
not rupture the membrane as evident from the moderately low
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Figure 1. Effect of SARS-CoV IFPI on the kinetics of (A) lipid
mixing, (B) content mixing, and (C) content leakage in SUVs
containing 0 mol % (blue), 10 mol % (red), and 20 mol % (green) of
cholesterol at 37 °C, keeping a lipid-to-peptide ratio of 100:1. See the
Supporting Information for more details.

Table 2. Extent and Rate Constant of Lipid Mixing in the
Presence of FP and IFP1 in Different Lipid Compositions

Lipid Mixing
Lipid Composition Peptide (%) k (sec™)
DOPC/DOPE/DOPG(60/30/10)  IFP1 50.8 1.3 x 1073
FP 3.5 8.8 X 1075
DOPC/DOPE/DOPG/CH IFP1 714 2.0 x 1072
(50/30/10/10) FP 8.9 6.5 107
DOPC/DOPE/DOPG/CH IFP1 83.6 23 %1073
(40/30/10/20) FP 115 82 x 107

content leakage, and content leakage majorly takes place
during the formation of the hemifusion intermediate.

Generally, for the entry of class I viruses, the N-terminal FP
is considered to be crucial. Though SARS-coronaviruses
belong to the class I category, our results demonstrated that
IFP1 is more fusogenic than its N-terminal counterpart. The
higher fusogenicity of IFP1 could be correlated to its higher
hydrophobicity compared to the N-terminal FP. The Kyte—
Doolittle plot with a running average of seven residues
indicates that IFP1 and FP markedly differ in hydrophobicity
(Figure 3).>! Note, 3D structures and localization of FP and
IFP1 in membrane mimetic environments are determined by
NMR spectroscopy and demonstrated that IFP1 displays a
much deeper insertion into the hydrophobic core of the
micelle compared to the FP.**

Our results further demonstrated the important role of
cholesterol in the enhancement of IFP1 and FP-induced
hemifusion, an important link between the membrane
cholesterol and higher risk of viral infection. The stringency
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Figure 2. Effect of SARS-CoV FP on the kinetics of (A) lipid mixing,
(B) content mixing, and (C) content leakage in SUVs containing 0
mol % (blue), 10 mol % (red), and 20 mol % (green) of cholesterol at
37 °C, keeping a lipid-to-peptide ratio of 100:1. See the Supporting
Information for more details.
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Figure 3. Hydrophobicity scores measured with a running average of
seven residues of IFP1 (green, circle) and FP (red, triangle) have
been plotted against the residue position. Hydrophobicity scores have
been taken from the Kyte—Doolittle scale.

of cholesterol in the class I viral infection has been shown
earlier, and our results indicate that the higher fusogenicity
could be due to the higher effectiveness of fusion peptides in
inducing the hemifusion intermediate in the presence of
cholesterol. Cholesterol might promote membrane fusion
either by modulating the peptide conformation®”** and
depth of penetration'® or changing physical membrane
properties such as intrinsic negative curvature and stiffness.”
Cholesterol has an inverted cone-like structure that generates
intrinsic negative curvature to the membrane, which promotes
the formation of nonlamellar fusion intermediates. In addition,
cholesterol enhances overall membrane stiffness, which
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provides mechanical stability to the highly curved intermediate
structures.

In spite of being so successful in inducing hemifusion, both
IFP1 and FP fail to open the fusion pore between two fusing
membranes. It was shown that the fusion peptide interacts with
the transmembrane domain of the fusion protein to open up
the pore.”” The limited ability of the fusion peptides to open
up the pore in our study further supports the hypothesis of an
interaction between fusion peptide and transmembrane
domain to open the fusion pore.

Taken together, our work provides three important pieces of
information regarding the fusion peptide-induced membrane
fusion for SARS-coronaviruses. First, it is clearly demonstrated
that the IFP1 is more fusogenic than the FP, and it could be
due to the higher hydrophobicity of IFP1. Second, the
importance of cholesterol in the peptide induced membrane
fusion and, finally, the requirement of interaction between the
fusion peptide and transmembrane domain for pore opening.
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