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Abstract

The aim of this study was to integrate human clinical, genotype, mRNA microarray and 16 S rRNA sequence data collected
on 84 subjects with ileal Crohn’s disease, ulcerative colitis or control patients without inflammatory bowel diseases in order
to interrogate how host-microbial interactions are perturbed in inflammatory bowel diseases (IBD). Ex-vivo ileal mucosal
biopsies were collected from the disease unaffected proximal margin of the ileum resected from patients who were
undergoing initial intestinal surgery. Both RNA and DNA were extracted from the mucosal biopsy samples. Patients were
genotyped for the three major NOD2 variants (Leufs1007, R702W, and G908R) and the ATG16L1T300A variant. Whole
human genome mRNA expression profiles were generated using Agilent microarrays. Microbial composition profiles were
determined by 454 pyrosequencing of the V3–V5 hypervariable region of the bacterial 16 S rRNA gene. The results of
permutation based multivariate analysis of variance and covariance (MANCOVA) support the hypothesis that host mucosal
Paneth cell and xenobiotic metabolism genes play an important role in host microbial interactions.
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Introduction

Inflammatory bowel diseases are complex genetic disorders

resulting from the interplay of genetic and environmental factors

[1–3]. Crohn’s diseases (CD) and ulcerative colitis (UC) represent

the two major inflammatory bowel diseases (IBD) phenotypes

and are distinguished by different patterns of disease location.

The inflammation in CD patients may be located anywhere

along the gastrointestinal tract, but in the majority (80%) of CD

patients, the terminal ileum is involved. In UC, the inflammation

is confined to the colon. Because there is evidence that isolated

Crohn’s colitis are associated with genetic factors that are distinct

from ileal CD, and the overlap between genetic factors associated

with UC and isolated Crohn’s colitis, we have focused our

attention on the ileal CD subphenotype as a relatively homog-

enous category that is distinct from isolated colitis (CD or UC)

and non-IBD controls [4–6].

Single nucleotide polymorphisms in the NOD2 gene and the

ATG16L1 gene have been linked to alterations in innate host

immunity, particularly Paneth cell function and with ileal CD

phenotype [7–14]. We previously reported that increased CD3D

mRNA expression in disease affected ileum resected from 18 ileal

CD patients was associated with NOD2 genotype [15]. We also

observed alterations in mRNA gene expression in the disease

unaffected proximal margin of resected ileum from 19 ileal CD

patients compared to 9 control non-IBD patients, regardless of

NOD2 genotype [15]. The microarray dataset has recently been

further expanded to include 47 ileal CD, 27 UC and 25 non-IBD

control subjects (total = 99).

Culture-independent microbiological technologies coupled

with high-throughput DNAsequencing have uncovered altera-

tions in human intestine-associated microbial compositions

(‘‘dysbiosis’’) in IBD patients compared with controls [16–25].

Ileal CD phenotype has been also associated with shifts in

intestinal and fecal microbial composition, particularly reduced

relative frequency of Faecalibacterium prausnitzii [19], [20], [23]. In

addition to disease phenotype, exploratory analyses have also
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associated NOD2 genotype to intestinal associated microbial

composition [22]. We have recently completed 16 S rRNA

sequence analysis on an independent set of disease-unaffected

ileal biopsies collected of 52 ileal CD, 58 colitis and 60 control

patients without IBD undergoing initial surgical resection [24].

Of the 170 subjects with microbial composition data and 99

subjects with mRNA expression profiles, 84 subjects had paired

microarray and microbial datasets. We report here the results of

permutation based MANCOVA of these paired mRNA expres-

sion and microbial profiles in 34 ileal CD, 27 UC and 23 non-

IBD control patients.

Results

Patient Characteristics
As shown in Table 1, 35% of ileal CD patients harbored at

least one NOD2 risk allele (NOD2R) compared to 13% of

nonIBD control patients, consistent with previous studies [1–3].

Only one ileal CD patient was homozygous for the ATG16L1

nonrisk allele. The patients were predominantly Caucasian. The

median age of surgery was lower in ileal CD patients than

nonIBD control patients. Thirty percent of colitis patients had

a concomitant C. difficile infection, consistent with the increased

incidence of this infection noted previously in IBD patients [26],

[27]. Thirty to fifty percent of IBD patients and none of the non-

IBD control patients were treated with 5-aminosalicylic acid (5-

ASA), steroids, immunomodulators or an anti-TNFa agent. All of

the subjects received intravenous antibiotics within one hour of

incision [28].

Comparison of Ileal Mucosal Expression Profiles between
Ileal CD, UC and non-IBD Control Subjects

Normalization and pre-processing of the data to filter out

undetectable gene-probes resulted in a total of 26,765 gene-

probes. Because this number of variables still greatly exceeded the

sample size, we sought to further reduce the number of input

microarray variables. We reasoned that genes that were differen-

tially expressed between the three disease phenotypes were most

likely to be involved in altering host-microbial interactions. Two-

class unpaired SAM analysis was used to identify genes

differentially expressed (fold change .1.5, FDR ,0.05) between

ileal CD and Control samples, between UC and Control samples,

and between CD and UC samples [29]. The results indicate

significant differences in gene expression patterns between all three

disease phenotypes (see Table S1) [30], [31]. By taking the union

of the candidate genes identified by the three two-class compar-

isons, the dimensions of the normalized microarray data was

reduced from 26,765 to a 2,979 gene-probe set (see Fig. 1).

Hierarchical clustering of the 2,979 gene-probe set was then

carried out by using 1-correlation dissimilarities and Ward linkage

as previously described [32], [33]. The number of clusters was

chosen to be 43, based on inspection of the R2 plot (see Table S2).

Hierarchical clustering of the original 26,765 gene-probe set was

also carried out using the same algorithms to 265 clusters. This

number of clusters was again chosen based on inspection of the R2

plot. In all but four (clusters #14, 20, 31, 36) of the 43 clusters,

greater than 40% of the gene-probes were concentrated in two of

the 265 clusters obtained by clustering the original 26,765 gene-

probe set, indicating that using SAM to reduce the number of

Table 1. Distribution of NOD2 composite and ATG16L1 genotype and clinical characteristics of ileal CD, colitis and control non-IBD
patients.

Variables
Ileal CD
(n=34)

UC
(n=27)

Control
(n =23) P-value FDR

NOD2 genotype 0.11 0.15

NOD2R (R/R + R/NR) 35% 19% 13%

NOD2NR (NR/NR) 65% 81% 87%

ATG16L1 genotype 0.23 0.28

ATG16L1R/R 41% 41% 43%

ATG16L1R/NR 56% 41% 35%

ATG16L1NR/NR 3% 18% 22%

Gender (male) 38% 59% 30% 0.095 0.14

Race (Caucasian) 94% 96% 96% 0.92 0.92

Median age (range) y 36 (21–59) 43 (17–64) 55 (32–84) ,0.001 ,0.001

Current smoker 38% 11% 22% 0.048 0.08

Positive fecal C. difficile toxin 0% 30% 0% ,0.001 ,0.001

Median BMI (range) kg/m2 25 (16–38) 24(18–43) 28(20–38) 0.43 0.47

5-ASA 52% 70% 0% ,0.001 ,0.001

Steroids 55% 74% 0% ,0.001 ,0.001

Immunomodulators 50% 52% 0% ,0.001 ,0.001

Anti-TNFa biologics 0.003 0.006

Current (#8 weeks) 35% 41% 0%

Past (.8 weeks) 9% 7% 0%

Never 56% 52% 100%

The variables shown below are included in the subsequent MANCOVA analyses for 84 patients. Chi-square test for contingency table was used for categorical data and
Kruskal-Wallis test was used for age and BMI. Variables that differed significantly (FDR #0.05) are bolded.
doi:10.1371/journal.pone.0030044.t001
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probes did not appear to bias clustering. We reasoned that genes,

which were highly correlated with each other, would be linked by

common biological pathways. Ingenuity Pathway Analysis (IPA)

canonical pathways were associated (P,0.01 and at least 4 gene

probes) in 12 of 43 clusters (see Table S3). In addition, direct

inspection of cluster #24 revealed that this cluster included

a number of genes expressed in Paneth cells, such as the a-

defensins.

Permutational based MANCOVA with Stepwise Variable
Selection and Gene Cluster Centroids as Independent
Variables

For 84 of 99 ileal mucosal samples with microarray profiles, 454

pyrosequencing of the V3, V4, and V5 (V3–V5) hypervariable

regions of the 16 S rRNA gene was completed using primers

adopted by the Human Microbiome Project [34], [35]. A vector

consisting of the relative frequencies of six phyla/subphyla

categories (excluding the seventh ‘‘other Taxa’’ category):1.)

Actinobacteria, 2.) Bacteroidetes, 3.) Firmicutes. Clostridium

Group IV, 4.) Firmicutes. Clostridium Group XIVa, 5.)

Firmicutes. Bacilli, 6.) Proteobacteria, was used as the dependent

variables. The 43 microarray cluster medians were used as cluster

centroids [36], [37], in addition to disease phenotype and the

other 12 input variables in the analysis. Using the stepwise variable

selection method, permutation based MANCOVA selected disease

phenotype, a Paneth cell gene enriched cluster, two xenobiotic

metabolism gene enriched clusters, and NOD2 genotype as the

independent variable set (see Table 2). Gene-probes included in

these three clusters are listed in Table 3. We obtained similar

results using the cluster mean or first principle component [36],

[38] as the cluster centroids (data not shown). We also obtained

similar results when parallel Sanger and 454 V1–V3 16 S

sequence datasets were used (data not shown).

To examine correlations between gene transcripts and bacterial

taxa at a more granular level, we selected individual gene

transcripts within these microarray clusters and individual

bacterial genera. The selected transcripts included the alpha

defensins, (DEFA5 and DEFA6), which have exhibited altered

regulation in ileal Crohn’s disease [10], [39], [40], and included

cellular detoxification genes, which have exhibited altered

regulation in ulcerative colitis [41]. The bacteria genera selected

included the Faecalibacterium and Shigella/Escherichia genera,

because the relative frequency of Faecalibacterium prausnizii has been

reported to be reduced and that of Escherichia coli have been

reported to be increased in patients with ileal CD. Bacterial

genera, previously selected as ulcerative colitis related were also

included in this analysis [42].

As shown in Figure 2, a positive correlation (P,0.05) between

the relative frequency of the Faecalibacterium genus (Firmicutes

Phylum, Clostridium GroupIV) and mRNA expression levels of

Paneth cell genes, including DEFA5 and DEFA6, was observed in

ileal CD patients but not in non-IBD controls or UC patients.

Negative correlations (P,0.05) were observed between the relative

frequency of the Bacteroidetes genus and Parabacteroides genus

(Bacteroidetes phylum) and mRNA expression levels of the REG

genes in ileal CD patients, but not in UC or non-IBD control

patients. Furthermore, negative correlations (P,0.05) were

observed between the relative frequency of the Parabacteroides

genus (Bacteroidetes phylum) and mRNA expression levels of

Figure 1. Venn diagram of the union of the gene-probes identified by SAM. Two-class unpaired SAM analyses of ileal CD vs Control
samples, UC vs. Control Samples and ileal CD vs. UC samples have been conducted. The number of gene-probes that overlapped between the three
separate analyses is shown within the Venn diagram. The total numbers of upregulated and downregulated gene-probes for each individual analysis
are shown on the side.
doi:10.1371/journal.pone.0030044.g001

Table 2. Selected variables associated (P#0.05) with shifts in
ileum associated microbial composition.

Selected Variables Df R2 P value

Phenotype 2 0.0460 0.037

Paneth cell cluster (Cluster 24) 1 0.0576 0.002

Xenobiotic cluster A (Cluster 13) 1 0.0319 0.024

Xenobiotic cluster B (Cluster 2) 1 0.0291 0.041

NOD2 genotype 1 0.0414 0.011

doi:10.1371/journal.pone.0030044.t002
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cellular detoxification genes in non-IBD control and ileal CD

patients but not in UC patients. The highest correlation (out of

.500 comparisons) was observed between Faecalibacterium and

DEFA6 (r = 0.59, P = 0.00024, FDR = 0.057) in ileal CD patients.

Discussion

In this exploratory study, we report the results of the analysis

integrating human ileal mucosal microarray expression profiles

with microbiota profiles. Since the number of genes and bacterial

taxa greatly exceed the number of samples, we sought to shrink

these high dimensional datasets by grouping the bacteria taxa into

broad phyla/subphyla categories, and by selecting potentially

disease relevant transcripts by SAM followed by clustering using 1-

correlation dissimilarity measure. We were gratified to observe

that a number of the resulting clusters could be linked to canonical

pathways by IPA. Furthermore inspection of one of the clusters

revealed that it included a number of genes that were expressed in

Table 3. Gene list for the Paneth cell gene enriched cluster and the xenobiotic metabolism gene enriched clusters A and B.

Cluster Function Gene list

Paneth Cell (cluster 24) ENPP7, DEFA5, TM4SF20, RGN, MDK, REG3A, BCMO1, BAI2, GPR172B, CA9, ANGPTL4, ASAH2, CEL, NPC1L1, SERPINB5, SERPINA1, NPNT, VNN1,
DDO, PRSS2, PLA2G2A, PRSS1, SLC2A12, CCK, CDKN1C, UNC5CL, FBXO2, KLK12, SIGLEC15, CLCA1, RHBG, CCL25, AZGP1, LCT, DEFA6, GCNT1,
SLC16A4, UNC93A, LOC100128979, WNT11, VNN1, PEAR1, LOC643201, ITLN2, REG4, LOC100240735, LOC100240735, REG3G, PRSS2

Xenobiotic Metabolism
Cluster A (cluster 13)

CPO, PRSS7, AATK, HEBP1, ABCG5, CYP2C9, GATM, SLC5A12, GSTA1, MS4A8B, SULT1E1, PTGR1, CYP2C19, CYP2C19, ABCC2, NR0B2, ABCA4,
APOC3, CYBRD1, MME, MTTP, GSTA2, UNC93A, SST, ACE2, GSTA3, SOAT2, FBP1, TM4SF5, SLC23A3, EDN2, NR1I3, PDIA2, ENPEP, UGT2B4,
C17ORF78, SLC5A11, ANO6, KCNH6, C19ORF77, C21ORF129, MGAM, ABCC2, PDZK1, CYP2C18, CPS1, NQO2, DNASE1, DHDH, OSR2, BST1, PIK3C2G,
MEP1B, APOB, RBP2, AADAC, PEPD, MAOB, MAOB, APOA4, REEP6, MEP1A, GSTA5, PHYHIPL, OAT, MEP1A, SULT2A1, MGAT3, MME, GSTA2, TIAM2,
LOC285733, EMB, SLC16A10, SLC6A4, EMB, LOC149703, TMEM229A, C19ORF69

Xenobiotic Metabolism
Cluster B (cluster 2)

NELL2, ACOX2, CYP2J2, SULT1A2, PRR15L, GUCA2A, LGALS2, PCK2, DDC, RNF128, FMO1, FAM82A2, ABAT, SAT2, NAT8, AGXT2, BTNL3, MYO1A,
MTHFS, SMPD3, CBS, VIL1, EDN3, ABCG2, MOSC2, G6PC, CDK20, CYP4F3, VIL1, ABHD6, HSD17B11, TRPM6, C9ORF24, KLKB1, TM4SF4, EFNA1, CBR1,
ANKRD43, SLC9A3R1, SUSD2, SLC1A7, LINCR, CHP2, SLC17A4, MAF, FAM151A, OAZ1, KAZALD1, APOM, C9ORF40, ANXA13, GUCA2B, GLRX,
C6ORF123, EPHX2, CTU2, CES2, PBX1, KAZALD, SP8, SULT1A4, TRPM6, VPS35, NAT8B, CSNK1D, STAU2, PTPRF, PGRMC2, AGPHD1, AGXT2, APOM,
IYD, LRAT, LAMA1, ADI1

The genes selected for further correlation analyses are bolded.
See Table S3 for the complete list of all clusters.
doi:10.1371/journal.pone.0030044.t003

Figure 2. Correlations between selected mRNA transcripts and bacterial genera. Selected transcripts from the Paneth cell and xenobiotic
metabolism microarray clusters are listed with their public reference along the vertical axis (see text). Selected bacterial genera are classified by phyla.
CD, ileal CD phenotype; Control, non-IBD control phenotype; UC, UC phenotype; F, Firmicutes; B, Bacteroidetes; P, Proteobacteria. Red squares
represent positive correlations (P,0.05), and green squares represent negative correlations (P,0.05).
doi:10.1371/journal.pone.0030044.g002
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Paneth cells. We therefore selected gene transcripts within these

three microarray clusters for further analysis. These genes

included the alpha defensins and members of the regenerating

gene (REG) family. The alpha defensins are antimicrobial peptides

that are secreted by Paneth cells. Manipulation of alpha defensin

expression in experimental animals has been shown to alter gut

microbial composition [43]. On the other hand, monoassociation

of a Bacteroidetes species with germ free animals was shown to

alter regulation of Paneth cell gene expression [44]. Altered

expression of alpha defensins have been associated with the ileal

Crohn’s disease phenotype. The REG genes belong to the calcium

(C-type) dependent lectin superfamily and have been noted to be

upregulated in CD and UC intestinal tissues [45], [46]. Expression

levels of cellular detoxification genes, which are target genes for

the transcription factor pregnane X receptor (PXR and also

termed NR1I2), have been previously noted to be down-regulated

in the colons of UC patients [41]. The expression levels of these

genes were correlated with bacterial genera that had been

previously reported to be disease associated [42]. At a threshold

of P#0.05, exploratory analyses revealed potential correlations

between transcript levels of specific genes with individual bacterial

genera (e.g. Faecalibacterium, Bacteroidetes and Parabacteroides),

that were modulated by disease phenotype. By honing in on these

promising correlations identified by exploratory studies, we hope

to be able to further confirm these observations in an expanded set

of samples. Co-linearity between input variables may occur,

despite our efforts to shrink the dimensions of the datasets. This

may account for why C. difficile was not selected in this subset of the

microbial dataset. Alternatively C. difficile may not have been

selected because paired microarray and microbial data have been

collected on a smaller number of subjects thus far. While the use of

immunomodulators and anti-TNFa biologics were included as co-

variates in the MANOVA [24], we cannot completely exclude the

potential confounding effects of these drugs on the microbial

composition and mucosal gene expression. Nevertheless our results

demonstrate that integrating paired expression profiles and

microbial data can lead to the discovery of biologically meaningful

host-microbial interactions in inflammatory bowel diseases. We

anticipate that as we expand the sample set, other associations will

be detected.

Materials and Methods

Patients and Acquisition of Macroscopically Disease-
unaffected Proximal Margin Ileal Tissue Samples

This study was approved by the Institutional Review Boards of

Washington University-St. Louis and Stony Brook University. Ileal

CD patients undergoing initial ileocolic resection, UC patients

undergoing initial total colectomy and Control non-IBD patients

undergoing either right hemicolectomy or total colectomy were

prospectively enrolled in a consecutive fashion by the Washington

University Digestive Diseases Research Core Center Tissue

Procurement Facility to donate surgically resected tissue samples

between April 2005 and February 2010. Patients who were

unwilling or unable to give informed consent were excluded.

Clinical information and patient samples were stripped of all

identifying information and assigned a patient code and sample

code. The de-identified patients were genotyped for the three

major NOD2 and ATG16L1 genotypes and phenotyped as

previously described [15]. All of the patients received antibiotics

within one hour of incision. Ex-vivo biopsies were obtained of the

disease unaffected proximal margin of the surgical resection

specimens as previously described. RNA and DNA were extracted

from the biopsy samples as previously described [15].

Human Ileal Mucosal Expression Profiles
The test RNA and a common reference ileal RNA were labeled

and the resulting probes were hybridized to Agilent Whole Human

Genome Arrays (Agilent No. G4410A) as previously described

[15]. The pre-processing, filtering and normalization of the array

data was conducted using the R package LIMMA [47], [48].

Probes with all Genepix flags less than 250 were treated as absent

and removed from the dataset. There were technical duplicates on

three samples and the log2 ratios for these three samples were

averaged prior to analysis. Genes that were differentially expressed

between ileal CD vs. Control, UC vs. Control, and ileal CD vs.

UC were selected by conducting three two-class unpaired

comparisons using SAM, with a cutoff of change .1.5 fold and

false discovery rate (FDR) ,0.05 [29]. The hierarchical clustering

was carried out by using 1-r dissimilarity measurement and Ward

linkage as previously described [32], [34]. The cluster number was

decided based on inspection of the coefficient of determination

(R2) plot [49], [50]. The biological significance of these clusters

was assessed by using Ingenuity Pathway Analysis (IPA) software

[51]. To select cluster-enriched IPA canonical pathways, we

lowered the threshold of the p-value from 0.05 to 0.001, and

included only pathways that included $4 genes in the cluster. The

data discussed in this publication have been deposited in NCBI’s

Gene Expression Omnibus and are accessible through GEO Series

accession number GSE24287 (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc = GSE24287).

Assessment of Ileal-associated Microbial Composition
The V3–V5 region was targeted by using barcoded primers

357F (59-CCTACGGGAGGCAGCAG-39) and 907R

(59CCGTCAATTCMTTTRAGT) and were identical to the

primers used by the Human Microbiome Project to characterize

the microbiota in healthy human subjects. All sequences were

screened for fidelity to a 16 S rRNA bacterial covariance model

(CM) based on secondary structure using the Infernal software

package [52] and were checked for chimerism with ChimeraSlayer

[53] http://microbiomeutil.sourceforge.net/#A_CS). Potentially

chimeric sequences and sequences lacking high fidelity to the CM

were removed from subsequent analysis. Genera level taxonomic

calls were produced by the RDP Classifier [53], which performs

naı̈ve Bayesian taxonomic classification versus a training set. This

project used the code and training set provided by RDP (Version

2.1, http://sourceforge.net/projects/rdpclassifier/) April 6, 2010

respectively. The sequences were also classified into seven phyla/

subphyla categories. The seven categories were 1) Actinobacteria, 2)

Bacteroidetes, 3) Firmicutes.Clostridium Group IV, 4) Firmicutes.

Clostridium Group XIVa, 5.) Firmicutes. Bacillus, 6.) Proteobacteria,

and 7.) Other taxa. The subdivisions of the Firmicutes phyla were

based on concordance between the RDP classifier and the

Greengenes 16 S rRNA phylogenetic schema [54–56]. The

Clostridium GroupIV and Clostridium Group XIVa taxa are

subsets of the Lachnospiriciae taxon [22], [57]. The sequence

screening, classification, final binning and enumeration operations

described were performed within a python based analysis pipeline

created for this project [24]. Assembled Sanger sequences were

deposited in GenBank accession HQ739096-HQ821395. 454 V1–

V3 and V3–V5 sequences were deposited in the Sequence Read

Archive accession SRX021348-SRX021368, SRX037800-

SRX037802. Clinical and genotyping data can be accessed

through the dbGAP authorized access system. Request access to:

phs000255. The study accession is SRP002479 ‘‘Effect of Crohn’s

disease risk alleles on enteric microbiota’’. In order to request

access to any of the individual-level datasets within the controlled-

access portions of the database, the Principal Investigator (PI) and

Host Microbial Interactions in IBD
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the Signing Official (SO) at the investigator’s institution will need

to co-sign a request for data access, which will be reviewed by an

NIH Data Access Committee at the appropriate NIH Institute or

Center (https://dbgap.ncbi.nlm.nih.gov/aa/wga.

cgi?page = login).

Statistical Analysis
In order to investigate the relationship between gene expression

and bacteria composition, permutational MANOVA with stepwise

variable selection was performed for a vector including six bacteria

taxa, which served as the dependent variable [58]. Because the

dependent variable is a vector of compositions, the centered log

ratio transformation was used on the bacterial proportions [59].

The cluster medians [36], [37] were chosen to represent the cluster

centroids and included as input variables along with clinical

information (patients phenotype, age, race, smoking, BMI, gender,

C._difficile, 5-ASA, steroids, immunomodulator, TNF) and geno-

types (NOD2 and ATG16L1).

Supporting Information

Table S1 A. Gene-probes upregulated in CD compared
to Control (n= 502). B. Gene-probes downregulated in
CD compared to Control (n= 594). C. Gene-probes
upregulated in UC compared to Control (n= 371).
(DOC)

Table S2 Gene-probes in the 43 clusters.
(DOCX)

Table S3 Clusters obtained by after dimension re-
duction using SAM. The clusters are listed along with the

percentage of variation explained by the 1st PC of the cluster,

which is related to the compactness of the cluster. The bolded

clusters are the clusters in which .40% of the gene-probes were

concentrated in two of the 265 clusters obtained without prior

dimension reduction. The clusters were considered enriched for

genes that were differentially expressed in CD vs. Control, UC vs.

Control or CD vs. UC if $50% of the genes with a correlation of

$0.75% to the 1st PC of the cluster demonstrated a significant fold

change (see Supplementary Table 1). Clusters were considered

enriched for genes in an IPA canonical pathway if P,0.01 and at

least 4 genes were in the pathway. In addition we listed our

interpretation of the biological significance of the pathway.

(DOCX)
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