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Different mechanisms in cancer cells become resistant to one or more chemotherapeutics
is known as multidrug resistance (MDR) which hinders chemotherapy efficacy.
Potential factors for MDR includes enhanced drug detoxification, decreased drug
uptake, increased intracellular nucleophiles levels, enhanced repair of drug induced
DNA damage, overexpression of drug transporter such as P-glycoprotein(P-gp),
multidrug resistance-associated proteins (MRP1, MRP2), and breast cancer resistance
protein (BCRP). Currently nanoassemblies such as polymeric/solid lipid/inorganic/metal
nanoparticles, quantum dots, dendrimers, liposomes, micelles has emerged as an
innovative, effective, and promising platforms for treatment of drug resistant cancer cells.
Nanocarriers have potential to improve drug therapeutic index, ability for multifunctionality,
divert ABC-transporter mediated drug efflux mechanism and selective targeting to
tumor cells, cancer stem cells, tumor initiating cells, or cancer microenvironment.
Selective nanocarrier targeting to tumor overcomes dose-limiting side effects, lack of
selectivity, tissue toxicity, limited drug access to tumor tissues, high drug doses, and
emergence of multiple drug resistance with conventional or combination chemotherapy.
Current review highlights various nanodrug delivery systems to overcome mechanism
of MDR by neutralizing, evading, or exploiting the drug efflux pumps and those
independent of drug efflux pump mechanism by silencing Bcl-2 and HIF1α gene
expressions by siRNA and miRNA, modulating ceramide levels and targeting NF-κB.
“Theragnostics” combining a cytotoxic agent, targeting moiety, chemosensitizing agent,
and diagnostic imaging aid are highlighted as effective and innovative systems for tumor
localization and overcoming MDR. Physical approaches such as combination of drug with
thermal/ultrasound/photodynamic therapies to overcome MDR are focused. The review
focuses on newer drug delivery systems developed to overcome MDR in cancer cell.
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INTRODUCTION
Cancer is a heterogeneous disease and use of multiple drugs
simultaneously can result in drug resistance which is either intrin-
sic or acquired known as multidrug resistance (MDR). MDR
renders cancer cells immune to standard treatments with many
anticancer agents and is a major challenge in cancer therapy as
it needs to address multiple phenotypes including MDR phe-
notypes. Tumor heterogeneity and tumor cell resistance to anti-
cancer drugs thus remains key formidable challenges for effective
targeting of drug delivery systems for successful chemotherapy.
Drug resistance toward antineoplastic agents is a result of reduc-
tion in the effective concentration of drug in the cell prior to its
interaction with the target or due to a combination of processes.
The numerous mechanism of drug resistance reported includes
(a) over expression of drug efflux pumps such as permeability gly-
coprotein (P-gp), multidrug resistance associated protein (MRP),
and breast cancer resistance protein (BCRP) (b) alterations in

lipid metabolism (ceramide pathway) (c) drug elimination by
detoxification systems (d) drug test sequestration inside lyso-
somes and endosomes (e) reduced drug uptake due to altered sur-
face receptors/carriers (f) inactivation of drugs via glutathione-
mediated reduction (g) over expression of target enzymes such
as up-regulated thymidylate synthase (h) altered drug targets
such as topoisomerase II (i) increased DNA repair capacity (j)
reduced ability to undergo apoptosis (k) hypoxia up-regulated
expression of MDR-linked genes such as ABC transporters, Bcl-2
family genes, glutathione, metallothionein, etc. through activa-
tion of transcription factor HIF1 (l) chromosomal abnormalities
in cancer cells lead to over-expression of anti-apoptotic genes
(m) altered signal transduction pathways in cancer cells gov-
erned via integrin receptors, growth factor receptors etc. leads to
blockage of apoptosis and expression of MDR-linked genes those
involved in DNA repair and drug-efflux pumps (Broxterman
et al., 2003).
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Drug resistance mechanism of antineoplastic agents (Table 1)
and mechanism of MDR in tumor cells is shown in Figure 1.

MULTIDRUG EFFLUX PUMPS
Drug efflux pumps expressed on human cancer cells majorly con-
tribute to MDR (Sharom, 1997). These efflux pumps belong to
ATP-binding cassette (ABC) family and include (a) P-gp also
known as multidrug resistance protein 1 (MDR1) or cluster of
differentiation 243 (CD243) a ATP-binding cassette sub-family
B member 1 encoded in human by ABCB1 gene (b) Multidrug
Resistance Associated Protein 1 (MRP1) a ATP-binding cassette
sub-family C member 1 encoded in human by ABCC1 gene,
Multidrug Resistance Associated Protein 2 (MRP2) also called as
canalicular multispecific organic anion transporter 1 (cMOAT) a
ATP-binding cassette sub-family C member 2 encoded in human
by ABCC2 gene (c) BCRP also known as cluster of differentia-
tion (CDw338) a member of white sub-family and ATP-binding
cassette G member 2 encoded in human by ABCG2 gene (Ozben,
2006).

P-GLYCOPROTEIN (P-gp)
P-gp is the first member of ABC super family and is an
ATP-powered drug efflux pump membrane transporter (Fardel
et al., 1996; Sharom, 1997). Over-expression of P-gp in mam-
malian and human cancer cells results in MDR. P-gp has
two isoforms expressed in human, class I and III isoforms
are drug transporters (MDR1/ABCB1) while class II isoforms
export phosphatidylcholine into bile (MDR2/3/ABCB4) (Sharom,
1997). P-gp encoded by MDR1 gene is present in human tis-
sues including liver, kidney, pancreas, small and large intes-
tine while P-gp encoded by MDR2 gene is present at high
levels only in liver (Fardel et al., 1996). Carcinoma of colon,
kidney, adrenal gland, pancreas, and liver express high P-gp
levels while intermediate P-gp levels are expressed in neurob-
lastomas, soft tissue carcinomas, hematological malignancies

including CD34-positive acute myeloid leukemias, etc. with low
P-gp levels expressed in malignancies of lung, esophagus, stom-
ach, ovary, breast, melanomas, lymphomas, multiple myelomas,
and acute promyelocytic leukemia but may display elevated
P-gp levels after chemotherapy due to acquired drug resistance
(Velingkar and Dandekar, 2010). P-gp interacts with struc-
turally diverse substrates such as anticancer drugs, HIV protease
inhibitors, analgesics, calcium channel blockers, immunosup-
pressive agents, cardiac glycosides, antihelminthics, antibiotics,
H2-receptor antagonists, steroids, fluorescent dyes, linear and
cyclic peptides, ionophores, peptides, lipids, small cytokines such
as interleukin-2, intereukin-4, and interferon-γ, MDR chemosen-
sitizers, and many more (Velingkar and Dandekar, 2010).

FIGURE 1 | Mechanism of multidrug resistance in tumor cell.

Table 1 | Drug resistance mechanisms of anticancer drugs.

Class Example Cytotoxicity mechanism Molecules in resistance mechanism

Intercalators Doxorubicin
Daunomycin

Topoisomerase II inhibitor, superoxides and free
radicals

P-gp, Topoisomerase II, MRP, GST

Alkylators Cyclophosphamide DNA alkylation O6-alkylguanine-DNA alkyltransferase, Glutathione,
Aldehyde dehydrogenase

Cisplatin DNA alkylation Glutathione, Metallothionein, DNA repair enzyme,
multispecific organic anion transporter

Antimetabolites BCNU DNA alkylation O6-alkylguanine-DNA alkyltransferase

Methotrexate Folic acid antagonist Amplification of dihydrofolate reductase, MRP,
decreased reduced folate carrier expression

Vinca alkaloids 5-Fluorouracil Uracil analog Amplification of thymidylate synthase

Vinblastine Tubulin P-gp, MRP, Tubulin

Vincristine Polymerization inhibitor Mutation

Epidophylotoxins Etoposide Topoisomerase II inhibitor MRP, Glutathione, P-gp, Topoisomerase I

Taxanes Paclitaxel Microtubule assembly inhibitor P-gp, altered α/β Tubulin
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FIRST GENERATION INHIBITORS
These are non-selective, less potent with poor, and low bind-
ing affinity; requiring high doses to achieve plasma levels
to reverse MDR, resulting in unacceptable patient toxicity.
They are substrates for P-gp and act as competitive inhibitors
thereby requiring high serum concentrations of chemosen-
sitizers to produce adequate intracellular concentrations of
cytotoxic drug due to which these inhibitors are unsuccess-
ful in clinical trials (Dantzig et al., 2003). First generation
inhibitors include Verapamil, Trifluoperazine, Cyclosporine-A,
Quinidine and Reserpine, Vincristine, Yohimbine, Tamoxifen,
and Toremifene. Due to unpredictable pharmacokinetic inter-
actions of these substrates in presence of chemotherapy agents
several novel chemosensitizers analogs were developed with less
toxicity and greater potency.

SECOND GENERATION INHIBITORS
Structural modifications of first generation inhibitors resulted
in more potent second generation P-gp modulators with bet-
ter pharmacological profile, reduced toxicity, and better toler-
ability. They significantly inhibit metabolism and excretion of
cytotoxic agents leading to unacceptable toxicity necessitating
chemotherapy dose reductions. Successful treatment of refractory
cancers and reversal of MDR in clinical trials have been possi-
ble by co-administration of these modulators with chemother-
apy agents. Modulators include Dexverapamil, Dexniguldipine,
Valspodar (PSC 833), and Biricodar citrate (VX-710).

THIRD GENERATION INHIBITORS
They have high potency and specificity for P-gp transporters
over second generation agents. They do not interfere with
cytochrome P450 3A4 unaffecting drug pharmacokinetics with
no dose alterations in chemotherapy. They include Tariquidar-
XR9576, Zosuquidar-LY335979, Laniquidar-R101933, ONT-093
(substituted diarylimidazole), Elacridar-GF120918, OC 144-093,
Mitotane (NSC-38721), Annamycin, and R101933 (Ozben,
2006). Most promising Tariquidar (non-transported P-gp
inhibitor) which inhibits ATPase by interaction with protein is
currently in phase III trials for non-small cell lung cancer but
still suspended due to unfavorable toxicity. Clinical trial stud-
ies revealed that Tariquidar, LY335979, R101933, and ONT-093
can be administered with therapeutic doses and minimal inter-
ference with pharmacokinetics of cytotoxic agents. They have
shown promise in clinical trials and continued development of
these agents may establish the true therapeutic potential of P-gp
mediated MDR reversal.

Tariquidar a third generation inhibitor with no limitations
of first and second generation inhibitors, have highest speci-
ficity which specifically and potently inhibits P-gp. Inhibition of
ATPase activity of P-gp suggests that the modulating effect is
derived from inhibition of substrate binding, inhibition of ATP
hydrolysis and or both (Fox and Bates, 2007). Clinical trials of
third-generation inhibitors (Thomas and Coley, 2003) showed
better tolerability of Tariquidar with no significant pharmacoki-
netic interaction with chemotherapy. This makes Tariquidar an
ideal agent for demonstrating P-gp inhibition activity in cancer.
Targeted delivery of paclitaxel and tariquidar co-encapsulated in

biotin functionalized PLGA nanoparticles revealed significantly
higher cytotoxicity in vitro and greater tumor growth inhibition
in vivo in drug-resistant tumor mouse model compared to pacli-
taxel nanoparticles alone with promising results in clinical trials
(Patil et al., 2009b).

TUMOR MICROENVIRONMENT AND MDR
Tumors are core-shell structures with hypoxic core surrounded
by tissues and proliferative cells. Tumor microenvironment is
made of complex tissues containing extracellular matrix, acti-
vated fibroblasts, immune cells, pericytes, adipocytes, epithelial
cells, glial cells, vascular and lymphatic endothelial cells, and
numerous proteins (van Kempen et al., 2003; Weber and Kuo,
2012). The proliferative cells are highly vascularized, unorga-
nized and discontinuous resulting in enhanced permeability and
retention (EPR) effect widely exploited for passive targeting. The
major factors contributing to tumor progression and metastasis,
enhanced drug resistance, poor prognosis, and response to thera-
pies includes cell mobility, survival potential, capacity to degrade
extracellular tissue matrix, and ability to adjust in new tissue envi-
ronment (Otranto et al., 2012; Singh and Kaur, in press). All solid
tumor microenvironment possess the following characteristics
(Milane et al., 2011) (Table 2) (a) leaky and unorganized tumor
vasculature (b) hypoxia region (c) up-regulation of oncogenes (d)
DNA repair mechanisms (e) down regulation of tumor suppres-
sors and cell cycle regulation (f) increased growth factor receptors
(g) low nutrients. Tumor microenvironment significantly con-
tributes to drug resistance by reducing drug accessibility to tumor
cells and reduces the oxygen radicals generated by antitumor
drugs (Otranto et al., 2012; Singh and Kaur, in press). Hypoxia
and acidity with low nutrient levels remains the two key factors
characterizing tumor microenvironment (Schornack and Gillies,
2003; Wouters et al., 2003). Tumor hypoxia is low oxygen regions
with partial oxygen pressure (pO2) levels below 10 mm-Hg where
normal tissues range from 24 to 66 mm-Hg (Rofstad, 2000).
Hypoxia microenvironment is characterized by low pH (acidic
cell environment) and can be associated with activation of pro-
teases that contributes to metastasis, low glucose levels, high
interstitial fluid pressure due to leaky vasculature, impaired lym-
phatic drainage, and high levels of P-gp (Tomida and Tsuruo,
2002). Hypoxia Inducible Factor (HIF) (Harris, 2002) is another
mechanism that induces MDR and metastasis by up-regulating
target genes by binding to hypoxia-response element (HRE) in

Table 2 | Tumor microenvironment characteristics contributing

toward MDR.

Increased levels Decreased levels

Oncogenes Tumor suppressors

Growth factors/receptors Oxidative phosphorylation

Nutrient importers pH

ABC transporters Cell cycle regulation

Aerobic glycolysis Increased apoptosis

Interstitial fluid pressure

DNA repair

Detoxification enzymes
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the target. HIF-1 is a transcription factor activated in hypoxia.
While tumor acidic pH results in poor tumor perfusion due to
abnormal vascularization, hypoxia, and metabolic abnormalities
are associated with cell growth and increased capacity for trans-
membrane pH regulation (Simon et al., 1994). Both pO2 and
pH are important determinants of tumor growth, metabolism,
and response to variety of therapies (Fukumura and Jain, 2007).
Acidic extracellular pH restricts uptake of weak base drugs such
as Adriamycin, Doxorubicin, and Mitoxantrone. Both hypoxia
and acidic pH contributes to growth and tumor metastasis
(Harris, 2002). Hypoxia upregulates various angiogenic growth
factors including Vascular Endothelial Growth Factor (VEGF),
Angiopoietin (Ang) 2, Platelet Derived Growth Factor (PDGF),
Placenta Growth Factor (PGF), Transforming Growth Factor
α (TGFα), Interleukin (IL)-8, and Hepatocyte Growth Factor
(HGF) of which Hypoxia Inducible Factor 1α (HIF1α) is consid-
ered the master regulator of oxygen homeostasis.

STRATEGIES TO OVERCOME MDR IN CANCER CELLS
MODIFICATION OF CHEMOTHERAPY REGIMENS
Chemotherapy regimen includes “induction regimen” and
“maintenance regimen” refers to initial disease treatment and
ongoing chemotherapy to reduce chances of cancer recurrence or
prevent growth of an existing cancer, respectively. Combination
chemotherapy utilizes synergistic effect of multiple antineoplas-
tic drugs acting through different mechanisms, but due to their
different dose-limiting adverse effects they are given together
in chemotherapy regimens. Chemotherapy regimen needs to
balance efficacy and toxicity through proper dosing schedule.
Dose-dense regimens have more toxic effects than standard reg-
imen causing treatment delays and toxicity with few survival
improvements and early treatment discontinuation. A dose-
dense approach is more effective than standard approach, as
it hampers formation of blood vessels that feed tumors and
tumor shrinkage following treatment promoting tumor dor-
mancy by maintaining tumor size and preventing outgrowth.
Chemotherapy regimens are identified by acronyms, identi-
fying the drug combination agents. E.g., (i) Breast cancer:
AC (Adriamycin, Cyclophosphamide), CAF (Cyclophosphamide,
Adriamycin, Flurouracil), EC (Epirubicin, Cyclophosphamide),
FEC (Flurouracil, Epirubicin, Cyclophosphamide); (ii) Colorectal
cancer: FL (Fluorouracil, Leucovorin), FOLFOX (Fluorouracil,
Leucovorin, Oxaliplatin), FOLFIRI (Fluorouracil, Leucovorin,
Irinotecan). Chemotherapy regimen is based on the assump-
tion that the mutations conferring drug resistance will not con-
vey resistance to all the agents in the regimen and high-dose
chemotherapy regimens could be given to cancer patients. Such
approach assumes that despite resistance to standard doses of
anticancer drugs, a dose-response relationship exists for tumors
and high doses of chemotherapy might overcome the resistance.

INACTIVATION OF MDR-ASSOCIATED GENES BY TARGETING SPECIFIC
mRNA FOR DEGRADATION
Strategies to overcome multi drug resistance by silencing the
expression of gene encoding P-gp efflux transporter, i.e., MDR-1
or Survivin through RNA interference (RNAi) or small interfer-
ing RNA (siRNA) has been explored. Transient RNAi mediated

silencing can be achieved by siRNA or stable RNAi-mediated
gene silencing through short hairpin RNA (shRNA) transfec-
tion. The siRNAs assembles into endoribonuclease inside the
cells containing complexes known as RNA-Induced Silencing
Complexes (RISCs) which guides the RISCs to complemen-
tary RNA molecules, cleaving and destroying the target RNA.
Antisense oligonucleotides and catalytic RNAs have been success-
ful in inhibiting P-gp, MRP, and BCRP expression and sensitized
drug-resistant cells (Nadali et al., 2007; Ren et al., 2008). In vitro
and in vivo studies with biotin-functionalized nanoparticles co-
encapsulating paclitaxel and P-gp targeted siRNA partially over-
came tumor drug resistance (Patil et al., 2010). Two groups, Nieth
et al. (2003) and Wu et al. demonstrated that RNAi knock downs
the MDR1/P-gp encoding mRNA and reverse the MDR pheno-
type of cancer cells. They further chemically synthesized siRNA
to transiently down regulate MDR1/P-gp mRNA and protein
expression. To overcome MDR in cancer, Lage (2009) devel-
oped anti-ABC transporter shRNA expression vectors with high
potential to overcome MDR through silencing specific ABC trans-
porter transcripts. These studies revealed total knock down of
mRNA and protein by inhibition of P-gp and reversal of drug-
resistant phenotype. Efficiency of RNAi to overcome MDR in vivo
were performed by transfecting MDR cancer cells with anti-MDR
shRNA expression plasmids. Treatment of these cells grown as
xenografts in nude mice with vincristine revealed tumor growth
inhibitin by 42% for the shRNA expressing tumors. Tumor
growth inhibition by 80-fold was observed in cells transfected
with anti-MDR1/P-gp shRNA expressing retroviruses implanted
in nude mice (Milane et al., 2011).

MONOCLONAL ANTIBODIES FOR P-gp
Monoclonal antibodies (MAbs) have potential for targeting P-gp
and kill MDR tumor cells. Anti-P-gp MAbs such as MRK-16
and MRK-17 along with chemosensitizers reverses P-gp mediated
MDR and conjugated MAbs such as bispecific antibody, immuno-
toxin and radioisotope conjugates enhance anti-tumor activ-
ity. Combination of MRK-16 with Cyclosporin-A or PSC-833
reversed Doxorubicin resistance in K562/ADM cells and inhib-
ited tumor growth in athymic mice bearing HCT-15/ADM2-2
xenografts. MRK-16 increased Cyclosporine-A accumulation in
MDR cells but not affected intracellular PSC-833 accumulation
in MDR cells, instead Cyclosporin-A and PSC-833 increased
MRK-16 binding to P-gp revealing a synergistic MDR reversal
activity. MAbs with other anti-P-gp MAbs such as UIC2, 4E3, and
series of HYB antibodies have potential to inhibit drug transport
(Tomida and Tsuruo, 2002).

DEVELOPMENT OF NEW ANTICANCER DRUGS THAT ARE NOT
SUBSTRATES OF P-gp
Drug analogs such as Taxane analogs DJ-927 (Phase I),
BMS-184476 (Phase I), RPR 109881A (Phase II), Ortataxel (Phase
II), Trabectedin-ET-743 (Phase II and III) are not recognized by
P-gp transporter and are evaluated in clinical trials for their broad
spectrum activity in sensitive and resistant tumor cell lines to
overcome MDR (Dong and Mumper, 2010). DJ-927 was more
potent and cytotoxic than paclitaxel and docetaxel when com-
pared in vitro and in vivo in various P-gp expressing tumor
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cell lines with high intracellular accumulation in P-gp posi-
tive cells. The expression of P-gp levels or P-gp modulators did
not affect the tumoricidal efficacy of DJ-927. Phase I study of
DJ-927 in combination with capecitabine was acceptable with
no pharmacokinetic drug interactions in patients with advanced
solid tumor malignancies and is recommended for further clin-
ical studies. Preclinical studies showed that BMS-184476 was
more potent than paclitaxel against taxane sensitive and resis-
tant tumors. The P-gp over-expressing human colon cancer cell
line (HCT-116/MDR) was 62-fold more resistant to paclitaxel and
15-fold resistant to BMS-184476. Also the human ovarian cancer
cells with acquired taxane resistance expressed 9-fold resistance
to BMS-184467 and 32-fold to paclitaxel. Studies of BMS-184476
against human tumor xenografts with both acquired and primary
taxane resistance models revealed superiority of BMS-184476
(Yared and Tkaczuk, 2012).

INHIBITORS OF ABC TRANSPORTERS TO REVERSE MDR
Inhibition of ABC transporters should reverse MDR by increas-
ing intracellular drug concentrations in tumor cells and restore
drug sensitivity. These inhibitors transport themselves and then
act as competitive antagonists while others are not transported
but affect transporter function (Dong and Mumper, 2010).
Preclinical trials of first and second generation ABC transport
inhibitors were not successful. They failed in clinical trials due
to their non-specificity, high concentrations to inhibit activ-
ity, undesirable drug interactions due to co-administration of
inhibitors and anticancer drugs (e.g., verapamil and doxoru-
bicin), substrates of cytochrome P-450 and increased toxicity of
anticancer drugs. Clinical trials of third generation inhibitors
with LY335979 (Zosuquidar), GF120918 (Elacridar), R101933
and XR9576 (Tariquidar) are ongoing. Tariquidar in phase I stud-
ies revealed high potency in in vitro and in vivo studies. LY335979
prolonged survival by reducing tumor growth in mice with
drug resistant tumors, GF120918 enhanced topotecan bioavail-
ability in mice by sensitizing human MDR sarcoma MES-Dx5
cells. Although phase I and II clinical trials of third generation
inhibitors are promising but are limited to unpredictable pharma-
cokinetic drug interactions, simultaneous involvement of several
drug transporters and variability in drug transporter expression
levels among individuals restricts restoration of drug sensitivity
of such modulators in clinic (Wu et al., 2008).

NANOTECHNOLOGY BASED APPROACHES TO OVERCOME MDR
Nanocarriers to overcome MDR are extensively discussed in sec-
tion “Nanocarriers as potential drug delivery systems in cancer
therapy.” Nanocarriers have been developed encapsulating anti-
cancer drugs as P-gp substrates and/or with P-gp substrates.

INHIBITION OF MDR USING PEPTIDES
Synthetic P-gp peptides derived from fragments of extracellu-
lar loops of murine P-gp coupled with polyethylene glycol and
loaded in Doxorubicin liposomes have shown MDR reversal with
83% increase in survival time of mice inoculated with P388R
cells. Antitumor effect of peptide-conjugated Doxorubicin in
human erythroleukemic (K562/ADR) resistant cells showed dose-
dependent inhibition of cell growth against K562/ADR cells as
compared with Doxorubicin alone (Dong and Mumper, 2010).

NANOCARRIERS AS POTENTIAL DRUG DELIVERY SYSTEMS
IN CANCER THERAPY
Nanovehicles such as polymeric nanoparticles, solid lipid
nanoparticles, magnetic nanoparticles, dendrimers, liposomes,
micelles, quantum dots, etc. are extensively explored for cancer
diagnosis, treatment, imaging, and as ideal vectors to overcome
drug resistance by diverting ABC-transporter mediated drug
efflux mechanisms. The major classes of nanocarriers utilized for
chemotherapeutic drug delivery are listed in Table 3 (Ayers and
Nasti, 2012).

POLYMERIC NANOPARTICLES
Polymeric nanoparticles have emerged as a versatile nanotech-
nology platform for controlled, sustained and targeted delivery
of anticancer agents including small molecular weight drugs
and macromolecules such as genes and proteins (Wang et al.,
2009; Sahay et al., 2010; Tang et al., 2010). A significant reduc-
tion in tumor size and increased animal survival rate in rat
xenograft glioma model with indomethacin loaded nanocap-
sules was observed by Bernardi et al. (2009). PLGA loaded
cystatin nanoparticles and PLGA loaded cytokeratin specific
monoclonal antibody nanoparticles neutralized excessive pro-
teolysis preventing metastatic and invasive potential of breast
tumor cells (Kos et al., 2009). Paclitaxel loaded PLA immuno-
nanoparticles covalently coupled with humanized monoclonal
antibodies (antiHER2) actively targeted tumor cells over express-
ing HER2 receptors (Cirstoiu-Hapca et al., 2009). Folic acid
receptors over-expressed on human cancer cells (Antony, 1996;
Wang et al., 2010) are studied in tumor models including mouse
M109 carcinoma, KB human epidermal carcinoma cell line and
mouse J6456 lymphoma (Alberto et al., 2004). Paclitaxel loaded
PLA-PEG-ligand conjugated nanoparticles functionalized with
biotin and folic acid enhanced drug accumulation in MCF-7
tumor xenograft model (Patil et al., 2009b). Lee et al. found
that folic acid conjugated chitosan nanoparticles showed higher
transfection activity than unmodified chitosan nanoparticles (Lee
et al., 2006). Wang et al. (2010) observed 35% reduction in
tumor growth, inhibition of P-gp and mdr1 gene levels in KB-A-1
cells implanted in Balb/c-nu/nu mice targeted by folic acid con-
jugated antisense oligodeoxynucleotides-hydroxypropyl-chitosan
nanoparticles compared to bare antisense oligodeoxynucleotides
to overcome tumor drug resistance. Folate functionalized
PLGA nanoparticles loaded with anti-cancer drug nutlin-3a
and chemosensitizer Curcumin enhanced therapeutic poten-
tial of nutlin-3a by modulating MDR of Y79 retinoblastoma
cell through Curcumin and enhanced the anticancer activity of
nutlin-3a in drug resistance Y79 cells. Dual drug loaded nanopar-
ticles revealed better therapeutic efficacy with enhanced expres-
sion or down regulation of proapoptotic/antiapoptotic proteins
and down-regulation of Bcl2 and NF-κB protein. Study demon-
strated the role of Curcumin as MDR modulator to enhance the
therapeutic potential of nutlin-3a for targeting MDR cancer (Das
and Sahoo, 2012).

Silencing P-gp expression by RNAi with reduction-sensitive
linear cationic click polymer nanoparticles (RCPNs) loaded
with plasmid iMDR1-pDNA for gene delivery revealed higher
transfection efficiency and lower cytotoxicity than PEI/DNA
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Table 3 | Chemotherapeutic nanodrug delivery systems.

Nanocarriers Properties Characteristics

Solid lipid nanoparticle (SLNs) Release drug in acidic microenvironment of multidrug
resistance cells

Delivers anticancer drugs to overcome P-gp mediated
multidrug resistance

Polymeric nanoparticles (NPs) Versatile platform for controlled, sustained, and targeted
delivery of anticancer agents including small molecular
weight drugs and macromolecules (genes and proteins)

Enhanced drug accumulation, reduction in tumor
size/volume, increased animal survival rate in rat models,
minimal cytotoxicity in cancer cell lines, high transfection
activity, potential to overcome multidrug resistance

Liposomes (LIPO) Made of lipid bilayers encapsulating both hydrophobic and
hydrophilic drugs, stealth liposomes are surface coated
with PEG

Long-circulating, prevents non-specific interactions,
preferential accumulation in tumor tissues via enhanced
permeability, and retention effect to overcome drug
resistance

Micelles (MI) Small size, high payload capacity, greater solubilization
potential for hydrophobic drugs, improved stability, long
circulation

Selective targeting, P-gp inhibitory action, altered drug
internalization, and sub-cellular localization properties

Mesoporous silica
nanoparticles (MSNPs)

Inorganic nanocarriers with tunable size and shape, high
drug loading due to high pore volume and surface area,
multifunctionalization for targeted, and controlled delivery

Enhanced cellular uptake and bioavailability, circumvents
unwanted biological interactions, delivers therapeutics at
cellular levels for therapeutic, and imaging in cancer

Inorganic nanoparticles
(a) Iron oxide magnetic
nanoparticles

Unique optical, electrical, magnetic and/or electrochemical
properties, inert, stable, ease of functionalization

Circumvents drug resistance associated with over
expression of ATP-binding cassette transporters,
increased intracellular drug retention, enhanced loss of
cell viability

(b) Gold nanoparticles
(AuNPs)

Shape and size dependent on electronic characteristics,
versatile drug delivery system due to tunable optical
properties

Induces cellular DNA damage

(c) Quantum dots (QD) Semiconductor inorganic fluorescent nanocrystals, small
(1–20 nm), and uniform size, high surface to volume ratio,
surface conjugation with multiple ligands, biocompatible,
fluorescence properties help real time tracks within target
cells

Release of toxic compounds (cadmium) and generation
of reactive oxygen species can result in long term toxicity

nanoparticles against human breast cancer MCF-7 cells and drug-
resistant MCF-7/ADR cells (Gao et al., 2011). Vincristine sulfate
loaded nanoassemblies enhanced cytotoxicity by 36.5-fold and
cellular accumulation by 12.6-fold in MCF-7 and P-gp over
expressing MCF-7/ADR cells compared to vincristine sulfate
solution and overcome MDR by clathrin and caveolae medi-
ated endocytosis pathways (Zhang et al., 2011b). Co-delivery
of Paclitaxel and survivin shRNA nanoparticles lowered IC50

by 360-fold in Paclitaxel resistant lung cancer cells against
A549/T cells compared to free Paclitaxel and enhanced effi-
cacy with Paclitaxel induced apoptosis and cell arrest in G2/M
phase. Nanoparticles facilitated drug accumulation in tumor
cells and down-regulated of survivin shRNA into nuclei of lung
cancer cells lowering the apoptosis threshold of drug resis-
tant cells and renders chemotherapeutic agents more effec-
tive to overcome MDR (Shen et al., 2012). Docetaxel loaded
poly(ε-caprolactone)/Pluronic F68 nanoparticles increased drug
uptake and enhanced cytotoxicity in docetaxel-resistance human
breast cancer cell line and MCF-7 TAX30 compared to poly capro-
lactone nanoparticles indicating its potential to overcome MDR
(Mei et al., 2009). Lipid/particle assemblies (LNPs) loaded with

Doxorubicin in DMAB-modified PLGA nanoparticles coated
with DPPC lipid shell significantly increased accumulation and
improved nucleus targeting in MCF-7 cells and P-gp over
expressing resistant MCF-7/ADR cells relative to free drug and
reversed the transporter-mediated drug resistance in human
breast cancer. Cytotoxicity (IC50) of Doxorubicin loaded-LNPs
was 30-fold lower than free Doxorubicin in MCF-7/ADR, indi-
cating intracellular retention of Doxorubicin and bypassing
drug resistance (Li et al., 2012a). Co-delivery of MDR1 siRNA
via lipid-modified dextran-based polymeric nanoparticles with
Doxorubicin increased intracellular drug concentration in MDR
cell nucleus and efficiently suppressed P-gp expression in drug
resistant osteosarcoma cell lines (KHOSR2 and U-2OSR2) (Susa
et al., 2010). Pramanik et al. developed composite nanoparti-
cles of Doxorubicin with Curcumin a potent MDR inhibitor
to overcome Doxorubicin resistance in multiple in-vivo models
such as multiple myeloma, acute leukemia, prostate and ovar-
ian cancers. Composite nanoparticles revealed no cardiac toxic-
ity or bone marrow suppression compared to free Doxorubicin
(Pramanik et al., 2012). P-glycoprotein mediated efflux can be
effectively circumvented by co-administration of P-gp inhibitor/s
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and anticancer drug/s in nanoparticles which evades P-gp recog-
nition at cell membrane and delivers drug in the cell cytoplasm
or nucleus thereby sustaining delivery of the drug inside the cell.
Chavanpatil et al. encapsulated paclitaxel a P-gp substrate and
verapamil a P-gp inhibitor in PLGA nanoparticles to circum-
vent P-gp-mediated drug efflux in MDR tumor cells (Chavanpatil
et al., 2006). Doxorubicin loaded aerosol OT (AOT)-alginate
nanoparticles enhanced the cellular delivery and therapeutic effi-
cacy of P-gp substrates in P-gp over expressing cells (Chavanpatil
et al., 2007). Novel polymer-lipid hybrid nanoparticle loaded with
doxorubicin and chemosensitizer (GG918) evaluated in human
MDR breast cancer cell line (MDA435/LCC6/MDR1) demon-
strated nuclear drug localization and anticancer activity toward
MDR cells, while co-administration of the single-agents loaded
nanoparticles resulted in high cellular internalization but were
ineffective (Wong et al., 2006). Encapsulation of paclitaxel with
P-gp modulator tariquidar in poly (D, L-lactide-co-glycolide)
nanoparticles functionalized with biotin revealed higher in-vitro
cytotoxicity and increased intracellular accumulation compared
to paclitaxel nanoparticles alone in drug-resistant tumor cells
to overcome tumor drug resistance through biotin receptor-
mediated endocytosis (Patil et al., 2009a).

SOLID LIPID NANOPARTICLES (SLNS)
In-vitro cytotoxicity in resistant P388/ADR cell line and in-vivo
studies in P388/ADR leukemia mouse model revealed lower-
ing of IC50 value by 9-fold and greater median survival time
about 20 days (3.5 mg/kg dose) with Doxorubicin SLN com-
pared to Doxorubicin solution. While comparable cell uptake
and IC50 values were obtained with both Idarubicin SLN and
free Idarubicin in P-gp over expressing P388/ADR and HCT-15
cells mouse tumor models. Study revealed the potential of
Doxorubicin SLN in overcoming P-gp-mediated MDR both
in-vitro in P388/ADR leukemia cells and in-vivo in murine
leukemia mouse model (Ma et al., 2009). Greater accumulation of
Doxorubicin SLN in MCF-7/ADR cells over expressing P-gp with
enhanced apoptotic cell death and decreased cell viability com-
pared to plain Doxorubicin revealed the potential of Doxorubicin
SLNs to overcome chemoresistance in adriamycin-resistant breast
cancer cell line. Decrease in the intensity of 116-kDa PARP
band (DNA repair enzyme activated by DNA damage and used
as apoptosis biochemical marker) in MCF-7/ADR cells treated
with 3 μM either of Doxorubicin or SLN alone or Doxorubicin
SLN indicated efficiency of Doxorubicin SLN to cause cell death
through induction of apoptosis in Doxorubicin resistant can-
cer cells. Cellular uptake of Doxorubicin SLN was 17.1-fold
and 21.6-fold higher than Doxorubicin alone implying poten-
tial of SLNs in diminishing P-gp mediated drug efflux (Kang
et al., 2010). SLNs being easily internalized enhanced cellular
uptake and cytotoxicity of Doxorubicin and Paclitaxel loaded
solid lipid nanospheres in human promyelocytic leukemia cells
(HL60) and human breast carcinoma cells (MCF-7) compared
to free drug solutions. Paclitaxel solid lipid nanospheres were
100-fold more effective than free Paclitaxel in MCF-7 cells with
low sensitivity on HL60 cells. Doxorubicin SLN enhanced cyto-
toxicity and sensitivity on MCF-7 cells (10-fold) and on HL60
cells (>40-fold) with IC50 at 1 ng/ml compared to Doxorubicin

solution reducing drug cell resistance. Such increased cytotoxic-
ity of Doxorubicin nanocarriers compared to solution has been
earlier reported with polymeric nanoparticles, micelles and lipo-
somes. Enhanced intracellular accumulation and cytotoxicity
of Doxorubicin loaded pluronic copolymer micelles have been
reported by Kabanov and coworkers. Couvreur reported that
Doxorubicin loaded polyalkylcyanoacrylate nanoparticle were
more cytotoxic than Doxorubicin solution against P388 leukemia
cells overcomed MDR and decreased cell viability against resis-
tant MCF-7 cell-lines (Couvreur and Vauthier, 1991). Paclitaxel
SLN enhanced cytotoxicity (100-fold) at concentration >5 ng/ml
on HL60 cells and at 1 ng/ml on MCF-7 cells (Miglietta et al.,
2000). Polymer-lipid hybrid nanoparticle with Doxorubicin and
chemosensitizer (GG918) or their combination revealed high
Doxorubicin uptake in human MDR breast cancer cell line
(MDA435/LCC6/MDR1) compared to co-administration of two
single-agent/s loaded hybrid nanoparticles (Wong et al., 2006).
Tween®80 coated Edelfosine lipid nanoparticles revealed antipro-
liferative effect due to P-gp inhibitory action on C6 glioma
cell lines and significantly reduced the tumor growth within 14
days post treatment in nude mice bearing C6 glioma xenograft
tumor (Mendoza et al., 2011). Paclitaxel and Doxorubicin SLN
exhibited higher cytotoxicity in human breast tumor drug sen-
sitive MCF-7 and drug resistant MCF-7/ADR cells compared
to Taxol and Doxorubicin solution. Paclitaxel and Doxorubicin
loaded SLN revealed 31.0- and 4.3-fold reversal in drug resis-
tance of MCF-7 cells compared to MCF-7/ADR cells respectively
(Miao et al., 2013). Doxorubicin-mitomycin co-loaded stealth
polymer-lipid hybrid nanoparticles enhanced efficacy in sensi-
tive and MDR human mammary tumor xenografts with 3-fold
increase in life span, 10–20% tumor cure rate, inhibition of tumor
angiogenesis with no severe tissue toxicity compared to liposo-
mal Doxorubicin (Prasad et al., 2013). P-glycoprotein efflux at
the brain limits entry of Docetaxel for cancer treatment. Folic
acid modified solid lipid nanoparticles loaded with docetaxel and
ketoconazole (P-gp inhibitor) evaluated in brain endothelial cell
lines for cytotoxicity and cell uptake revealed a brain permeation
coefficient 44 times higher than that of Taxotere® (Venishetty
et al., 2013). Docetaxel loaded hepatoma-targeted SLNs revealed
high cellular uptake by hepatoma cells, better biodistribution and
enhanced antitumor efficacy due to increased drug accumulation
and cytotoxicity in murine model bearing hepatoma and hep-
atocellular carcinoma cell line BEL7402 compared to Taxotere®
or non-targeted SLNs for treatment of advanced and metastatic
hepatocellular carcinoma (Xu et al., 2009). A lipophilic paclitaxel
derivative (2′-behenoyl-paclitaxel) (C22-PX) conjugated in lipid
nanoparticle for metastatic breast cancer improved antitumor
efficacy, tumor retention, better tolerability, and higher plasma
levels compared to Taxol in a subcutaneous 4T1 mouse mammary
carcinoma model (Ma et al., 2013).

LIPOSOMES
Liposomal anthracyclines approved by US FDA for treat-
ment of AIDS-related Kaposi’s sarcoma are pegylated liposo-
mal doxorubicin (Doxil®/Caelyx®) and liposomal daunorubicin
(DaunoXome®) which preferentially accumulates in tumor tis-
sues via EPR effect to overcome drug resistance or accumulates
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within extracellular space of tumor stroma and leaks into tumor
environment which provides pharmacologic advantage for lipo-
somes over free drug to overcome drug resistance (Table 4).
Currently liposomes of Paclitaxel, Camptothecins and Vincristine
are in clinical development. Liposomal strategies to enhance drug
bioavailability and efficacy in drug-resistant cancer include (i)
liposomes modified for controlled release (ii) ligand targeted lipo-
somes such as immunoliposomes for intracellular drug delivery in
tumor cells.

Liposomes directly interact with P-gp and inhibit P-gp
through endocytosis. Liposome co-encapsulating Doxorubicin
and Verapamil conjugated with human transferrin (Tf) showed
greater cytotoxicity, selective targeting and reversal of P-gp medi-
ated drug resistance in resistant leukemia K562 cells than non-
targeted co-loaded liposomes. Doxorubicin liposomes increased
cytotoxicity on HL60 cells and Vincristine resistant HL60 cells
due to rapid internalization and drug release inside the cells
(Gokhale et al., 1996). Robert Lee et al. found that uptake of
folate-PEG-liposomal Doxorubicin by KB cells was 45-fold higher
than non-targeted liposomal Doxorubicin (Lee and Low, 1995).
Liposomes overcome drug resistance due to endothelial P-gp
efflux mechanism at blood-brain and blood-tumor barriers in
brain tumors where the barriers allows extravasation of long cir-
culating liposomes and circumvent drug resistance with stabilized
liposomal Doxorubicin in rat intracranial sarcoma model (Siegal
et al., 1995) and rat intracranial 9L gliosarcoma model (Zhou
et al., 2002).

MODIFIED LIPOSOMES TO OVERCOME DRUG RESISTANCE
New liposomal systems developed for treatment of drug-resistant
cancers are listed in Tables 5, 6.

MICELLES
Micelles are efficient drug carriers with potential P-gp inhibitory
action, altered drug internalization, subcellular localization and
selective targeting. Seven anti-tumor drugs loaded polymeric
micelles in clinical trials are Genexol®-PM, NK105, NC-6004,
NC-4016, NK012, NK911 and SP1049C (Gong et al., 2012).
Micelles overcome drug resistance by combination of mecha-
nisms including EPR effect, active internalization, endosomal-
triggered release and drug escape. Folate decorated pH-sensitive
Doxorubicin micelles showed high drug concentration in

cytosol and nucleus due to triggered release in early endo-
somes (∼pH 6) and high cytotoxicity in Doxorubicin resistant
MCF-7 (MCF-7/DOXR) cells due to internalization via folate-
receptor mediated endocytosis to overcome P-gp (Lee et al.,
2005). Folate functionalized micelles co-encapsulating Paclitaxel
and Verapamil in O-carboxymethylated chitosan modified with
deoxycholic acid revealed greater cytotoxicity and higher cellu-
lar uptake in drug resistance MCF-7 and multi-drug-resistant
MCF-7/ADR cells through synergistic effect of folate receptor-
mediated endocytosis and Verapamil mediated efflux mechanism
to overcome drug resistance in tumor cells (Wang et al., 2011a).
Wei et al. revealed that pluronics lowered the IC50 in human
lung adenocarcinoma cell lines SPC-A1 (8.7 ± 0.4 ng/ml) and
A-549 (0.10 ± 0.04 μg/ml) with Paclitaxel-Pluronic P123/F127

Table 5 | Modified liposome approaches to overcome multidrug

resistance.

Modified liposomes Mechanism of action

Anionic liposomes Anionic lipids (Cardiolipin and
Phosphatidylserine) inhibits P-gp by direct
interaction with membrane lipids, enhance
cellular absorption, and cellular toxicity
compared to free drugs

Inhibitory phospholipids Inhibits P-gp to overcome multidrug resistance

Stimuli responsive
liposomes

Modified liposomes which release drug in
target tissue upon hyperthermia
treatment/temperature change, pH change, or
other stimuli

Liposomes in
combination with
resistance inhibitors

Liposome inhibits P-gp and successfully
delivers chemotherapeutic to cancer cells and
increase drug therapeutic index

Liposomes encapsulating
drug analogs

Liposomes delivers hydrophobic drugs that are
not substrates for P-gp or not effluxed by P-gp

Gene therapy approaches Non-viral delivery of nucleic acid to tumor cells
circumvents drug resistance, non-viral delivery
of resistance genes to normal tissues gives
chemoprotection

Table 4 | Marketed liposomal delivery systems to overcome drug resistance.

Marketed liposomes Rationale Mechanism

Pegylated liposomal Doxorubicin
(Doxil®/Caelyx®)

Long-circulating liposomes preferentially accumulates in tumor tissue Increased tumor
exposure

Non-pegylated liposomal Doxorubicin
(Myocet™)

Liposome leads to altered biodistribution, reduced drug toxicity profiles with
new chemotherapeutics combinations to overcome drug resistance

Reduced toxicity profile

Liposomal Daunorubicin
(DaunoXome®)

Liposomal encapsulated Doxorubicin is less cardiotoxic than unencapsulated
Doxorubicin and can be safely used in concurrent combination with other
cardiotoxic chemotherapy drugs such as Trastuzumab
Minimal side effects allow substitution with Doxorubicin in same treatment
regimen improving safety with no loss of efficacy
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Table 6 | Immunoliposomes and ligands-liposomes to overcome drug

resistance.

Liposomes Mechanism

Immunoliposomes for
growth factor receptors

Targeting growth factor receptors with
liposomes encapsulating monoclonal
antibodies (MAbs) for targeting undergo
endocytosis pathways to overcome drug efflux
pumps

Immunoliposomes for
endothelial receptors

Unlike cancer cells, endothelial cells do not
develop multidrug resistance

Immunoliposomes for
P-gp

Multidrug resistance is reversed with MAbs
against P-gp

mixed polymeric micelles compared to Taxol and free Paclitaxel
(Wei et al., 2009). Lu et al. developed dendrimer phthalocyanine-
encapsulated polymeric micelle with Doxorubicin and revealed
nuclear accumulation of Doxorubicin in doxorubicin-resistant
MCF-7 breast cancer cells and xenograft model after photoir-
radiation with higher antitumor activity compared to photody-
namic therapy alone (Lu et al., 2011). Cambón et al., synthesized
reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene
oxide) block copolymers with potential P-gp inhibitory action in
MDR cell line. Doxorubicin loaded in these polymeric micelles
enhanced cell accumulation and cytotoxicity in MDR ovarian
NCIADR-RES cell line over expressing P-gp (Cambón et al.,
2013). Methotrexate conjugated mixed micelles of pluronic F127
and P105 suppressed tumor growth in KBv MDR cells compared
to physically entraped mixed micelles due to combined effect
of tumor chemosensitization by pluronic and passive targeting
by micelles (Chen et al., 2013). Vincristine sulfate nanocarri-
ers improved cellular uptake, cytotoxicity in MCF-7 and P-gp
over expressing MCF-7/Adr resistant cancer cells by bypass P-gp
due to endocytosis mediated by clathrin and caveolae path-
ways (Zhang et al., 2011b). Chemosensitizing ability of pluronics
suppressed Doxorubicin induced MDR in murine lymphocytic
leukemia cells (P388) and in BDF1 mice bearing (P388) ascite
cancer cells with Doxorubicin-Pluronic P85 micelles (Sharma
et al., 2008). Pluronics modulate MDR by intracellular ATP
depletion, decreased mitochondrial potential and passive target-
ing. IC50 values of Paclitaxel-Pluronic P123/F127 mixed micelles
revealed anti-proliferation activity against lung resistance protein
over expressing human lung adenocarcinoma A-549 cells with
3-fold longer mean residence time and 31.8% reduction in
tumor volume compared to Taxol after 28 days (Wei et al.,
2010). Polyethylene glycol-polycaprolactone or Pluronic P105
micelle down-regulated the mitochondrial membrane potential
and reduced ATP level to improve cytotoxicity (4 times), intra-
cellular accumulation and overcome Doxorubicin resistance in
human myelogenous leukemia (K562/ADR) cells compared to
Doxorubicin solution at 12 ng/mL (Han et al., 2011).

MESOPOROUS SILICA NANOPARTICLES (MSNPS)
Mesoporous silica nanoparticles (Figure 2) have high
drug loading due to high pore volume and surface area,

FIGURE 2 | Mesoporous silica nanoparticles (MSNPs).

multifunctionalization for targeted and controlled delivery,
enhanced cellular uptake and delivers therapeutics at cellular
levels in cancer (Mai and Meng, 2013; Mamaeva et al., 2013).
Doxorubicin MSNPs surface conjugated with TAT peptide
facilitated intranuclear drug localization in multidrug resistant
MCF-7/ADR cancer cells and overcome MDR compared to
free Doxorubicin or non-TAT peptide conjugated nanoparticles
(Pan et al., 2013). Doxorubicin MSNPs lowered the IC50 value
8-fold compared to free Doxorubicin and overcome MDR in
Doxorubicin resistant and P-gp over expressing cancer cell
line MCF-7/ADR by increased cell proliferation suppression
effect (Shen et al., 2011). Chemotherapy efficacy was enhanced
bypassing the efflux pump resistance in multidrug-resistance
cancer cells by co-delivery of Doxorubicin and siRNAs in MSNPs
(Chen et al., 2009a). Rapid internalization of siRNA loaded
magnetic MSNPs coated with polyethylenimine and surface
modified with fusogenic peptide (KALA) in the tumor cells
resulted in knockdown of enhanced green fluorescent protein
(EGFP) and VEGF and inhibited tumor growth by suppression of
tumor neovascularization (Li et al., 2013b). Doxorubicin-CTAB
micelles co-loaded pH responsive MSNPs overcome multi-drug
resistance in both drug-resistant MCF-7/ADR cells and drug-
sensitive MCF-7 cells due to chemosensitization potential of
CTAB arresting the cell cycle and inducing apoptosis (He et al.,
2011). Manganese oxide-based MSNPs loaded with Doxorubicin
multifunctionalized as theranostics circumvented MDR, restored
drugs anti-proliferative effect by endocytosis, P-gp inhibition
and ATP depletion in cancer cells (Chen et al., 2012). Anticancer
drug loaded magnetic MSNPs were internalized by A549 cells
through an energy-dependent clathrin induced endocytosis
pathway and inhibited cancer cell growth under magnetic field
(Liu et al., 2012; Sekhon, 2012). Exposure of Doxorubicin
loaded zinc doped iron oxide nanocrystals in mesoporous silica
framework surface-modified with pseudorotaxanes to AC field
caused death of (MDA-MB-231) breast cancer cells (Thomas
et al., 2010). Hyperthermia stimulated the intracellular GSH
level in A549 human lung cancer cells and enhanced anti-cancer
efficacy of Doxorubicin MSNPs by inducing cell death and
apoptosis (Lee et al., 2011). Lejiao Jia et al. developed Paclitaxel
MSNPs and revealed that anti-tumor activity of Paclitaxel in
breast cancer cells (MCF-7) was dependent on pore-size and
apoptosis increased with increased nanoparticle pore size (Jia
et al., 2013). Galactose functionalized Camptothecin MSNPs
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with photosensitizer (porphyrin) enhanced anti-cancer activ-
ity in human cell lines of colorectal (HCT-116), pancreatic
(Capan-1) and breast cancer (MDA-MB-231) (Gary-Bobo et al.,
2012).

OTHER INORGANIC NANOPARTICLES
Inorganic nanoparticles for cancer therapy include quantum
dots, carbon nanotubes, silica nanoparticles, gold nanoparti-
cles, iron oxide magnetic nanoparticles and ceramic nanopar-
ticles. Doxorubicin covalently bounded to polyethylenimine via
pH sensitive hydrazone linkage and conjugated to iron oxide
nanoparticles functionalized with polyethylene glycol circum-
vented MDR and reduced cell viability in DOX-resistant cells
over-expressed in rat glioma C6 cells compared to free drug
(Kievit et al., 2011). Wu Yanan et al. studies reversed the
effect of 5-Bromotetrandrine and magnetic iron oxide nanopar-
ticle combining Daunorubicin in xenograft leukemia model and
inhibited expression of Bcl-2 protein and up-regulated BAX
and CASPASE-3 protein expression in K562/A02 cells xenograft
tumor (Yanan et al., 2009). Doxorubicin loaded pH sensitive
poly (beta-amino ester) copolymer superparamagnetic iron oxide
nanoparticle in drug-resistant C6 glioma cell lines (C6-ADR)
revealed 300% higher cellular internalization 24 h post-treatment
and reduced IC50 by 65% at 72 h post-treatment compared
to free Doxorubicin (Fang et al., 2012). Co-administration of
Doxorubicin and magnetite nanoparticles in presence of mag-
netic field showed cytotoxic effects against breast cancer cell lines
MDA-MB-468 with greater than 80% cell death in hyperther-
mia combination than with Doxorubicin alone (Sadeghi-Aliabadi
et al., 2013). Similar drug resistance inhibitory effect of mag-
netite nanoparticles loaded with Doxorubicin and Tetrandrine
against K562 leukemia cells have been reported by Wang et al.
(2007), Chen et al. (2008). Significant reduction in transcrip-
tions of Mdr-1 and Bcl-2 gene and increased expressions of
Bax and caspase-3 in K562-n and K562-n/VCR cells in-vivo
in nude mice revealed the potential of Daunorubicin mag-
netic nanoparticles to overcome multi-drug resistance (Chen
et al., 2009b). MDR1-siRNA encapsulated magnetic chitosan
iron oxide nanoparticle reversed MDR effect on MDR1 gene
in BT325 glioblastoma cell line with 70–80% transfection effi-
ciency by reduced expression of MDR1 at mRNA and protein
level and decreased IC50 values in normal BT325 and trans-
fected cell (Zhao et al., 2013). Lectin functionalized Paclitaxel
magnetic nanoparticles lowered the IC50 with higher cellular
uptake and cytotoxic effect on Bcr-Abl positive K562 cells in
chronic myelogenous leukemia (Singh et al., 2011). Cisplatin
magnetic nanoparticles enhanced inhibition of A549 cells and
cisplatin-resistant A549 cells in MDR lung cancer cells, low-
ered the levels of MRP1, lung resistance-related protein, Akt and
Bad pathways and increased the levels of caspase-3 genes and
proteins (Li et al., 2013a). Single drug Tetrandrine loaded mag-
netic nanoparticles revealed a 100-fold lowering in mdrl mRNA
level but no reduction in total P-gp content while magnetic
nanoparticles loaded with Adriamycin and Tetrandrine syner-
gistically reversed multidrug resistant in K562/A02 resistant cell
lines (Chen et al., 2008). Heparin coated Doxorubicin super-
paramagnetic iron oxide nanoparticles promoted apoptosis due

to regulation of anti-apoptotic genes including caspase-3, bax,
bcl-2 and surviving in human ovarian cancer cell lines A2780
(Javid et al., 2011).

Gold nanoparticles (AuNPs) are versatile platform for can-
cer drug delivery (Kumar and Liang, 2011; Kumar et al., 2013)
and have recently entered cancer clinical trials phase I and
II (Thakor et al., 2011; Vigderman and Zubarev, 2012). Gu
et al. successfully synthesized doxorubicin grafted-PEGylated gold
nanoparticles to overcome Doxorubicin resistant in cell lines (Gu
et al., 2012). Oxaliplatin grafted on PEGylated AuNPs rapidly
distributed in the nucleus and enhanced the chemotherapeu-
tic efficacy (Brown et al., 2010). AuNPs surface conjugated
with therapeutic peptide (PMI or p12) and targeted peptide
(CRGDK) was rapidly internalized for better efficacy in over-
coming breast cancer (Kumar et al., 2012). AuNPs covalently
grafted with doxorubicin through thioctic acid-PEG linker inhib-
ited growth of drug resistant breast cancer cells due to high drug
concentrations inside cancer cells due to acid sensitive release
from endosomes (Wang et al., 2011b). Zhang et al. observed
similar effects with gold nanoparticle–DNA–paclitaxel conjugate
(Zhang et al., 2011d). Gold nanorods functionalized with gastrin-
releasing peptide (Bombesin) showed uptake via GRP receptor-
mediated endocytosis with high binding affinity to breast cancer
cells (Chanda et al., 2009, 2010). Selenium nanoparticles signifi-
cantly enhanced the expression of pp38, Bax and cytochrome C
in estrogen receptor-α positive cells (MCF-7) but not in estrogen
receptor-α-negative cells (MDA-MB-231) and prevented mam-
mary tumor growth by inducing cell death (Vekariya et al.,
2012).

Quantum dots are semiconductor inorganic fluorescent
nanocrystals with small and uniform sizes (1–20 nm), high sur-
face to volume ratio, surface conjugation with multiple ligands
and biocompatibility (Zhang et al., 2008a; Geszke-Moritz and
Moritz, 2013). Water-soluble cadmium telluride (CdTe) quan-
tum dots capped with negatively charged 3-mercapitalpropionic
acid combined with Daunorubicin as a biomarker for simul-
taneous cellular imaging and inhibition of MDR for treatment
of drug-sensitive leukemia K562 and drug-resistant leukemia
K562/A02 cell lines was developed by Yanyan Zhou et al. The
study revealed significant drug uptake in target cancer cells and
cytotoxicity suppression in both cell lines (Zhou et al., 2010).
Further Zhang et al. demonstrated rapid uptake and increased
apoptosis rate which activated apoptosis-related caspases protein
expression in drug-resistant human hepatoma HepG2/ADM cells
with Daunorubicin-3-mercaptopropionic acid-capped Cadmium
telluride quantum dots (Zhang et al., 2011a). Paclitaxel-loaded
PLGA quantum dots were more cytotoxic than free Paclitaxel
in paclitaxel-resistant KB paclitaxel-50 cells than paclitaxel-
sensitive KB, however treatment with Verapamil reversed the
MDR activity and reduced viability of KB paclitaxel-50 cell
(Kuo et al., 2009). Doxorubicin conjugated via pH-sensitive
hydrazone bond and aptamer to quantum dots when tar-
geted to mutated MUC1 mucin over expressed in ovar-
ian carcinoma revealed higher cytotoxicity than free drug
with preferential accumulation in ovarian tumor and drug
release in acidic environment of cancer cells (Savla et al.,
2011).
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DENDRIMERS
Novel delivery systems comprising of Doxorubicin, dendrimer
and vector protein rAFP3D to bind alpha-fetoprotein recep-
tors on tumor cell surface accumulated in the cells by
receptor mediated endocytosis and demonstrated high cyto-
toxicity against human ovarian adenocarcinoma cell lines -
Doxorubicin-sensitive SKOV3 cells and Doxorubicin-resistant
SKVLB cells revealed low toxicity against human peripheral
blood lymphocytes reversing the MDR in Doxorubicin-resistant
cells (Yabbarov et al., 2013). The cancer-targeting potential
of folate/dextran/galactose ligands anchored on poly(propylene
imine) dendrimers evaluated on HeLa and SiHa cell lines
indicated an IC50 values of 0.05, 0.2, 0.8 and 0.08 μM for
folate, dextran, galactose formulations and free paclitaxel respec-
tively on HeLa cells while the IC50 values of 0.6, 0.8, 10 and
6 μM with folate, dextran and galactose formulations and free
PTX respectively with SiHa cells. The study revealed the tar-
geting potential of ligands in the order folate > dextran >

galactose (Kesharwani et al., 2011). Dendrimer phthalocyanine-
encapsulated polymeric micelle combined with doxorubicin and
mediated by photochemical internalization showed doxorubicin
release from endo-lysosomes to nuclei after photoirradiation and
nuclear accumulation of doxorubicin, higher antitumor activ-
ity than DPc/m-PDT alone in drug-resistant MCF-7 cells and
xenograft model (Lu et al., 2011). Biotin, a cell growth promoter
is required for rapid proliferation of cancer cells and is over-
expressed on cancer cell surface than normal tissue. Bifunctional
dendrimer conjugated with biotin a targeting moiety and fluores-
cein isothiocyanate an imaging moiety exhibited higher cellular
uptake by an energy-dependent process in HeLa cells than con-
jugate without biotin. Conjugation of targeting moieties such as
sugar, folic acid, antibody, peptide and epidermal growth fac-
tor to dendrimers leads to preferential accumulation of drug
in the targeted tissue or cells. Similar biotin-conjugate carri-
ers have been reported to increase uptake of anti-cancer drugs
in tumor cells (Yang et al., 2009a). Cytotoxicity of dendrimers-
chlorambucil conjugate and inhibition of [3H] thymidine incor-
porated in DNA on both MDA-MB-231 and MCF-7 breast cancer
cells demonstrated that the conjugate had more potent antiprolif-
erative activity and actively inhibited collagen biosynthesis than
chlorambucil (Bielawski et al., 2011). Similar cytotoxicity effects
have been reported by Khandare et al. for conjugation of pacli-
taxel to linear PEG polymers and PAMAM dendrimers. PAMAM
dendrimer-paclitaxel conjugate showed significantly higher tox-
icity while linear PEG-paclitaxel conjugate showed more than
25-fold lower toxicity compared to free drug with increased IC50

dose (Khandare et al., 2006). Surface modified G3 PAMAM den-
drimers with permeation enhancing lauryl chains conjugated
with Paclitaxel via glutaric anhydride linker revealed the poten-
tial to cross cellular barriers in cell monolayers indicated by
increased apparent permeability coefficient and increased cyto-
toxicity in both human colon adenocarcinoma cell line (Caco-2)
and primary cultured porcine brain endothelial cells (PBECs).
The interactions of hydrophobic lauryl moieties of L6-G3-
glu-pac dendrimer conjugate with plasma membrane revealed
12-fold greater permeability across both cell monolayers than
free Paclitaxel (Teow et al., 2013). Dendrimer conjugated with

methotrexate a dual-acting molecule showed cytotoxicity due to
its potent inhibitory activity against dihydrofolate reductase and
binds folic acid receptor, upregulated on cancer cell surface (Li
et al., 2012b).

NANOSTRUCTURED LIPID CARRIERS (NLCs)
Mitoxantrone hydrochloride nanostructured lipid-dextran sul-
fate hybrid carriers enhanced cytotoxicity and invaded cells by
clathrin-mediated endocytosis with high drug accumulation in
BCRP overexpressing MCF-7/MX cells and overcome MDR com-
pared to solution (Zhang et al., 2012). Oral bioavailability of
Etoposide was enhanced 1.8-, 3.0-, and 3.5-fold in NLCs, PEG40-
NLCs and DSPE-NLCs respectively compared to suspension.
Etoposide DSPE-NLCs and NLCs revealed highest cytotoxic-
ity, lower cellular viability and strong inhibitory effects against
human epithelial-like lung carcinoma cells (A549) than etopo-
side with IC50 values of 40.61 ± 6.15 nM, 61.78 ± 7.49 nM, and
210.87 ± 0.76 nM respectively after 24 h (Némati et al., 1996;
Zhang et al., 2011c). Oleh Taratula et al. developed dual tar-
geting NLCs loaded with an anticancer drug (Doxorubicin or
Paclitaxel) to induce cell death and siRNA to target MRP1 mRNA
and BCL2 mRNA to suppress pump and nonpump cellular resis-
tance in lung cancer cells respectively and overcome resistance.
Further conjugation of targeting moiety Luteinizing Hormone
Releasing Hormone (LHRH peptide) to NLCs enhanced the
targeting specificity to cancer cells overexpressing LHRH recep-
tors (Taratula et al., 2013). Folate decorated Paclitaxel and
Doxorubicin loaded NLCs designed by Xing-Guo Zhang et al.
exhibited high cytotoxicity against human breast cancer (MCF-7)
cells and multi-drug resistant (MCF-7/ADR) cells with Paclitaxel
NLCs and in MCF-7/ADR cells with Doxorubicin NLCs with
MDR reversal potential of 34.3-fold for Paclitaxel NLCs and
6.4-fold for Doxorubicin NLCs. Similar cytotoxicity trend was
observed against human ovarian cancer (SKOV3) cells and multi-
drug resistant (SKOV3TR) cells with reversal power of 31.3 and
2.2-fold for Paclitaxel NLCs and Doxorubicin NLCs respectively
compared to Taxol and Doxorubicin solution (Zhang et al.,
2008b). Potential of active targeting the low density lipoprotein
(LDL) receptors over expressed on cancer cells was utilized by
Jaber Emami et al. and developed Paclitaxel loaded cholesterol
NLCs which were taken by human colorectal cancer cell line (HT-
29) through LDL receptor endocytic pathway and revealed IC50

values of 5.24 ± 0.96 ng/mL compared to 8.32 ± 1.35 ng/mL of
free Paclitaxel solubilized in Cremophor-EL after 72 h exposure
(Emami et al., 2012). Folate decorated Paclitaxel and Doxorubicin
NLCs exhibited high cytotoxicity in MCF-7 and MCF-7/ADR
cells while Doxorubicin NLCs revealed high cytotoxicity only in
MCF-7/ADR cells compared to Taxol and Doxorubicin solution,
while Paclitaxel and Doxorubicin NLCs revealed same cytotox-
icity trends against human ovarian cancer cells (SKOV3) and
their multidrug resistant (SKOV3TR) cells. The reversal power
of Paclitaxel and Doxorubicin NLCs were 34.3- and 6.4-folds,
respectively (Zhang et al., 2008b).

Nanovehicles enhance chemotherapeutics solubility, bioavail-
ability, therapeutic index and overcome dose-limiting toxicity,
non-specific biodistribution, non-targeting and emerging drug
resistance in cancer therapy. Multifunctional nanocarriers along
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with distinct size and surface characteristics are able to tar-
get tumor cells through active and passive targeting approaches.
Nanocarrier’s ability to down regulate ABC transporters or carry
gene expression modulator/inhibitor enhance drugs intracellular
tumor concentrations improving the chemotherapeutic efficacy.
Thus nanotechnology is a novel approach for specific delivery
of chemotherapeutics with potential to overcome complexity of
MDR in tumors treatments.

NANOCARRIERS INHIBITING MDR BASED ON DRUG EFFLUX
PUMPS
SILENCING OF DRUG RESISTANCE GENES
RNAi technology has been explored as a therapeutic strategy to
overcome MDR by silencing drug efflux transporter genes such
as P-gp/MDR1 and MRP1. RNAi mediated silencing through
siRNA, through transfection with shRNA (Saad et al., 2008;
MacDiarmid et al., 2009; Chen et al., 2010; Patil et al., 2010)
and decreased MDR1 expression with antisense oligodeoxynu-
cleotides (Wang et al., 2010) are strategies to overcome P-gp
associated MDR using RNAi. Targeting transferrin receptors with
PEG coated siRNA nanoparticles silenced target gene M2 ribonu-
cleotide reductase in refractory metastatic melanoma (Davis et al.,
2010). Cationic and anionic liposome polycation-DNA nanopar-
ticles loaded with C-Myc siRNA and Doxorubicin suppressed
MDR1 gene expression via silencing the transcription level
by targeting transcription factors, intercalation of Doxorubicin,
topoisomerase II inhibition, transcription inhibition of resistant
tumors and tumor regression (Chen et al., 2010). Sigma receptors
overexpressed on non-small cell lung cancer, breast tumor and
prostate cancer targeted with anisamide decorated nanoparticles
reduced tumor growth of C-Myc siRNA, down-regulated MDR1
expression and increased Doxorubicin accumulation in xenograft
model of NCI/ADR-RES (OVCAR-8 derived) tumor (Banerjee
et al., 2004). Bacterially derived minicells encapsulating siRNA
targeting MDR1 gene transcripts with cytotoxic drugs down-
regulated P-gp and increased survival of mice bearing human
tumor xenografts (MacDiarmid et al., 2009).

INHIBITION OF DRUG RESISTANCE PROTEINS
To overcome MDR, colloidal carries inhibiting drug resis-
tance proteins P-gp includes polymeric nanoparticles (Khdair
et al., 2009; Kuo et al., 2009; Patil et al., 2009a; Song et al.,
2009), quantum dots (Kuo et al., 2009), liposomes (Wu et al.,
2007), nanoemulsions (Ganta and Amiji, 2009) etc. which con-
tains combination of P-gp inhibitors with anticancer drugs
such as Paclitaxel, Vincristine, or Doxorubicin. Biotin or folic
acid functionalized PLGA nanoparticles encapsulating Tariquidar
and Paclitaxel resulted in higher cytotoxicity and inhibited
tumor growth in human MDR tumor xenografts compared to
Paclitaxel nanoparticles alone (Robey et al., 2008; Patil et al.,
2009b). Paclitaxel loaded theragnostic PLGA nanoparticles con-
jugated to quantum dots were more effective than free Paclitaxel
in Paclitaxel-sensitive nasopharyngeal KB carcinoma cells and
Paclitaxel-resistant KB PTX-50 while cytotoxicity enhanced in
presence of Paclitaxel-loaded nanoparticles with Verapamil (Kuo
et al., 2009). Transferrin coated liposomes co-encapsulating
Doxorubicin and Verapamil exhibited 5 and 3-fold cytotoxicity

in Doxorubicin-resistant human erythroleukemia K562 cells
compared to non-targeted liposomes and transferrin targeted
liposomes with Doxorubicin alone respectively (Wu et al., 2007).

NANOCARRIERS SUPPRESSING MECHANISM OF DRUG
RESISTANCE INDEPENDENT OF EFFLUX TRANSPORTERS
SILENCING OF Bcl-2 AND HIF1α GENE EXPRESSION
Nanotechnology approaches suppressing drug resistance mech-
anisms independent of drug efflux pumps are silencing of B-cell
lymphoma 2 (Bcl-2) (Indran et al., 2011) (Figure 3) and hypoxia-
inducible factor alpha (HIF1-α) genes. Bcl-2 family proteins are
regulators of apoptosis and HIF1-α gene encodes a transcrip-
tion factor in cellular response to hypoxia (Rapisarda and Melillo,
2009). Two isoforms of Bcl-2, Isoform 1 (1G5M) and Isoform 2
(1G5O/1GJH) exhibit similar fold antiapoptotic activity, however
their ability to bind the BAD and BAK proteins suggest differences
in antiapoptotic activity of the isoforms. Bcl-2 gene damage is a
major cause of cancer and resistance to cancer treatments because
over-expression of anti-apoptotic genes and under-expression of
pro-apoptotic genes results in lack of cell death. Hypoxia regions
present in solid tumors are indicators of malignant progres-
sion, metastatic development and chemoresistance. The degree of
intra-tumoral hypoxia depends on expression of HIF-1 which is
composed of 2 sub-units HIF-1α and HIF-1β and is major factor
for cell survival in hypoxic environment (O’Donnell et al., 2006).
Matrine (active component of Sophora flavescence dry roots)
in human gastric cancer MKN45 tumor cells activates caspase-
3, 7 and up-regulates pro-apoptotic molecules Bok, Bak, Bax,
Puma, Bim and induces apoptosis via Bcl-2 (Noguchi et al., 2003;

FIGURE 3 | Mitochondrial pathway.
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Luo et al., 2007). Cationic cholesterol derivative with hydrox-
yethylamino head group, cholesteryl-3bcarboxyamidoethylene-
N-hydroxyethylamine (I) on liposome significantly promoted
gene transfection, Bcl-2 antisense phosphorothioate oligonu-
cleotides complexed with cationic liposomes suppressed human
cancer cell growth and induced apoptosis in human cervix epithe-
lial carcinoma cell lines HeLa and mouse fibroblast NIH3T3
cells (Okayama et al., 1997). Positively charged chitosan coated
PLGA nanoparticles with siRNA increased transfection and
blocked the expression of anti-apoptotic Bcl-2 gene with signif-
icant cellular uptake and tumor regression (Jagani et al., 2013).
Dong-feng Yu et al. developed cationic liposomes to downregu-
late the expression of Bcl-2 gene with siRNA transfection with
enhanced apoptosis and sensitivity of 5-Fluorouracil in gastric
adenocarcinoma SGC-7901 cell (Yu et al., 2013). Suppression
of Bcl-xL gene through co-delivery of Doxorubicin and small
hairpin RNA (shRNA) in polyplexes conjugated with an anti-
PSMA aptamer specifically binds the prostate-specific mem-
brane antigen expressed on prostate cancer cell surface. Aptamer
polyplexes revealed excellent tumoricidal efficacy and signifi-
cantly lowered the IC50 values by 17-fold compared to mixture
of shRNA and Doxorubin (Kim et al., 2010a). Gene silenc-
ing capability of siRNA loaded magnetic MSNPs coated with
polyethyleneimine effectively knock downed both exogenous
enhanced green fluorescent protein (EGFP) gene and endoge-
nous Bcl-2 gene with negligible cytotoxicity and released siRNA
in cancer cells (Li et al., 2011). Glycoprotein transferrin (Tf) is
a ligand for transferrin receptors (TfR) overexpressed on cancer
cells and internalized by receptor-mediated endocytosis. Novel
transferrin receptor-targeted liposomes delivered phosphoroth-
ioate antisense oligodeoxyribonucleotide (ODN-G3139) in TfR
positive K562 leukemia cells and downregulated Bcl-2 protein in
K562 cells 2-fold greater than non-targeted liposomes and 10-fold
greater than free G3139. Tf-conjugated liposomes with G3139
reduced Bcl-2 transcription by >80%, lowered IC50 from 1.8 to
0.18 μM and sensitized K562 cells to Daunorubicin (Chiu et al.,
2006).

MODULATION OF CERAMIDE LEVELS
Ceramide lipids are endogenous lipids and potent mediators of
cellular responses in cancer including apoptosis, cell growth sup-
pressor, differentiation, cell migration and adhesion. Ceramides
are located in cell membranes and mitochondrial outer mem-
brane, releasing pro-apoptotic factors Cytochrome c by form-
ing permeable channels. Few sphingolipids are vital signal
transducer and cell regulator in growth suppression and apop-
tosis. Extracellular agent such as tumor necrosis factor α activates
sphingomyelinase and cleaves membrane sphingomyelin to gen-
erate cellular ceramide. Ceramide are converted to sphingolipids
in presence of P-gp and accelerates cancer cell death by co-
administration of P-gp antagonists with short-chain ceramides
(C6-ceramide) (Hannun and Obeid, 1995; Pettus et al., 2002;
Boddapati et al., 2008). Exposure to chemotherapy and/or anti-
cancer drugs increase intracellular ceramide levels in cancer cells
and is involved in membrane clustering of the death receptor.
Most anticancer chemotherapeutics stimulate ceramide accumu-
lation through increased ceramide synthesis or inhibition of

ceramide catabolism. Neutralization of ceramide via glycosyla-
tion or phosphorylation in malignant cells is linked to MDR. New
therapeutic strategies to overcome resistance focus on increasing
endogenous ceramide levels by stimulating ceramide synthesis,
inhibiting ceramide neutralization, or direct delivery of exoge-
nous ceramide (Barth et al., 2011). Cytotoxicity of C6-ceramide
nanoliposomes with P-gp antagonist (Tamoxifen, Cyclosporine-
A, VX-710 (Biricodar), Verapamil) in human CRC cell lines
(HCT-15, HT-29, LoVo) revealed synergistic effect of cas-
pase dependent apoptosis, poly ADP ribose polymerase(PARP)
cleavage, DNA fragmentation, cell cycle arrest, increased mito-
chondrial membrane permeability and enhanced protein expres-
sion of tumor suppressor p53 (Morad et al., 2013). Shabbits and
Mayer (2003) revealed that cytotoxicity and cellular uptake of
ceramides are dependent on acyl chain length with the most
active C6-ceramide (IC50 value = 3–14 μM) and least active
C16-ceramide (IC50 value = 100 μM) in MDA435/LCC6 human
breast cancer and J774 mouse macrophage cell lines (Shabbits and
Mayer, 2003). Cisplatin-Fe3O4 magnetic nanoparticles reversed
resistance of ovarian carcinoma cell line SKOV3/DDP by 2.2-
fold and down-regulated mRNA levels of Bcl-2 and survivin
expression with increased cell apoptosis (Jiang et al., 2009).
Similarly Daunorubicin-Fe3O4 magnetic nanoparticles lowered
the transcriptions of Mdr-1 and Bcl-2 gene and increased the
transcriptions and expressions of Bax and caspase-3 in K562-
n and K562-n/VCR cells in nude mice to overcome MDR
(Chen et al., 2009b). Lonidamine and Paclitaxel dual loaded
PLGA/PEG/EGFR-peptide targeted nanoparticles at 1 μM pacli-
taxel/10 μM lonidamine dose revealed <10% cell viability for all
hypoxic cell lines and <5% cell viability for all normoxic cell
lines overexpressing EGFR in human breast and ovarian cancer
cell lines. EGFR-peptide targeted nanoparticles promoted mito-
chondrial binding of Bcl-2 proteins (Lonidamine) and hyper-
stabilizing microtubules (Paclitaxel) to overcome MDR (Milane
et al., 2011). siRNA cationic polymeric nanoparticles downreg-
ulated Bcl-2 mRNA expression levels (<10%) in HepG2, HeLa
and MDA-MB-231 cell lines and sensitized HeLa cells to Paclitaxel
(Beh et al., 2009). Transferrin targeted protamine lipid nanopar-
ticles of antisense oligonucleotide (G3139) down-regulated Bcl-2
to overcome resistance in K562, MV4-11 and Raji leukemia cell
lines and was more effective than non-targeted lipid nanoparti-
cles and frees G3139 and induced caspase-dependent apoptosis
(Yang et al., 2009b). Co-administration of Paclitaxel (20 mg/kg)
and C6-ceramide (100 mg/kg) in poly(ethylene oxide)-modified
poly(epsilon-caprolactone) nanoparticles revealed > 4.3- and
3-fold increase in tumor growth delay and 3.6- and 3-fold
increase in tumor volume doubling time in wild-type SKOV-3
and multidrug resistant (MDR-1 positive) SKOV-3TR mod-
els respectively compared to individual agents (Devalapally
et al., 2007). Tumor accumulation of Paclitaxel from Paclitaxel-
C6-ceramide poly (beta-amino ester) nanoparticles was high
compared to free drug in sensitive MCF-7 and multidrug
resistant MCF-7TR (MDR-1 positive) human breast adeno-
carcinoma (van Vlerken et al., 2008). C6-ceramide nanolipo-
somes revealed caspase-dependent apoptosis and diminished
survivin protein expression in treatment of human and rat
natural killer-large granular lymphocytic leukemia cells (Liu
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et al., 2010). C6-ceramide loaded temperature-sensitive linear-
dendritic nanoparticle revealed preferential uptake of fluorescein
isothiocyanate-labeled linear-dendritic nanoparticles into human
MDA-MB-231 breast adenocarcinoma cells with growth inhi-
bition and solid tumor apoptosis with hyperthermia (Stover
et al., 2008). Cytotoxicity of cetyltrimethyl ammonium bro-
mide stabilized SLNs loaded MBO-asGCS oligonucleotide with
or without C6-ceramide evaluated in NCI/ADR-RES human
ovary cancer cells revealed enhanced uptake of MBO-asGCS
oligonucleotide with downregulation of GCS reversing resis-
tance of cells to Doxorubicin (Siddiqui et al., 2010). Docetaxel
loaded hyaluronic acid-ceramide nanoparticles enhanced intra-
cellular uptake in CD44-overexpressing cell line (MCF-7)
and revealed MDR effect in MCF-7/ADR cells (Cho et al.,
2011). Doxorubicin loaded polyethylene glycol conjugated
hyaluronic acid-ceramide revealed greater uptake in CD44
receptor expressed in SCC7 cell line (Cho et al., 2012).
C6-ceramide nanoliposomal with Gemcitabine or an inhibitor of
glucosylceramide synthase [D-threo-1-phenyl-2-decanoylamino-
3-morpholino-1-propanol (PDMP)] in Gemcitabine resistant
human pancreatic cancer cell line revealed cytotoxicity and inhib-
ited tumor growth (Jiang et al., 2011). Transferrin modified
ceramide liposomes initiated lysosomal membrane permeabi-
lization resulting in leakage of hydrolytic enzymes (cathepsins)
into cytoplasm, induced cancer cells apoptosis and revealed
antitumor and pro-apoptotic effects in A2780-ovarian carci-
noma xenograft mouse model compared to ceramide-free and
ceramide-loaded non-modified liposomes (Koshkaryev et al.,
2012). Co-administration of Tamoxifen and Paclitaxel in poly
(ethylene oxide) modified poly (epsilon-caprolactone) poly-
meric nanoparticles enhanced antitumor efficacy, lowered IC50

of Paclitaxel by 10- and 3-fold in SKOV3 cells and P-gp
over-expressing SKOV3TR cells respectively (Devalapally et al.,
2008). Polymeric nanoparticles co-encapsulating Paclitaxel and
C6-ceramide enhanced apoptotic signaling and reduced tumor
volume 2-fold over standard Paclitaxel monotherapy (van
Vlerken et al., 2010). Ceramide-generating properties of 4-HPR
(Fenretinide) are being evaluated in phase II study of recur-
rent ovarian cancer and C6-ceramide nanoliposomes are being
evaluated as neoplastic-selective agent (Chapman et al., 2010).

TARGETING NF-κB
Transcriptional factor nuclear factor-kappa B (NF-κB) plays
vital role in cancer development and resistance. Degradation
of inhibitor κB after phosphorylation by inhibitor κB kinases
activates NF-κB translocating into nucleus and initiating
transcription contributing to tumor development, progres-
sion, chemoresistance, inflammation, and autoimmune diseases
(Zingarelli et al., 2003; Li and Sethi, 2010). NF-κB is involved
in multiple cellular processes including stress, cytokine gene
expression, free radicals, cellular adhesion, cell cycle activation,
apoptosis, and oncogenesis (Baud and Karin, 2009). NF-κB is
activated via two distinct signal transduction pathways in can-
cer, the canonical and non-canonical pathways. NF-κB regu-
lates expression of key proteins such as Bcl-2, Bcl-XL, cellular
inhibitors of apoptosis, survivin, TRAF, Cox-2, MMP9, iNOS,
and cell cycle regulatory components. Thus, NF-κB is a potential

target for cancer therapeutics since inhibitors of NF-κB mediates
antitumor responses and enhances tumor sensitivity to anticancer
drugs (Luqman and Pezzuto, 2010). Activation of NF-κB affects
cancer cell survival while inhibition of NF-κB enhances sensitiv-
ity of cancer cells to antineoplastic agents (Schwartz et al., 1999).
NF-κB is important in tumorigenic process due to its strong
anti-apoptotic functions in cancer cells (Magné et al., 2006).
Polyethylene glycol-5000 coated Curcumin PLGA nanoparticles
induced apoptosis of leukemic cells, inhibited TNF-induced NF-
κB activation and suppressed NF-κB-regulated proteins involved
in cell proliferation (cyclin D1), invasion (MMP-9) and angiogen-
esis (VEGF) (Nair et al., 2010). Micellar aggregates of cross-linked
copolymers N-isopropylacrylamide with N-vinyl-2-pyrrolidone
and poly(ethyleneglycol) monoacrylate encapsulating Curcumin
induced cellular apoptosis, blocked NF-κB activation and down-
regulated proinflammatory cytokines (IL-6, IL-8 and TNFα) in
human pancreatic cancer cell lines (Bisht et al., 2007). Silica
nanoparticles (50–200 μg/mL) generated reactive oxygen species,
mitochondrial depolarization and apoptosis in human umbili-
cal vein endothelial cells (HUVECs), activated c-Jun N-terminal
kinase (JNK), c-Jun, p53, caspase-3 and NF-κB, increased Bax
expression and suppressed Bcl-2 protein while the highest con-
centration significantly increased the necrotic rate, LDH leakage,
expression of CD54 and CD62E and release of TF, IL-6, IL-8
and MCP-1 (Liu and Sun, 2010). Potential of gene therapy for
targeting NF-κB has recently been explored as a new strategy
in cancer (Tas et al., 2009). Degradation of TSP [Tween 85-
s-s-polyethyleneimine (TSP)] a non-viral gene vector for p65
(shRNA) from TSP/p65 shRNA nanoparticles with release of
shRNA blocked NF-κB signaling pathway, induced cell apop-
tosis and down-regulated p65 expression in breast cancer cells
(Xiao et al., 2013). Inhibition of NF-κB with pyrrolidine dithio-
carbamate (PDTC) an antioxidant and heavy metals chelator
suppressed release of IκBα from NF-κB and induced cell death
in neuroblastoma cells (Schreck et al., 1992). Doxorubicin and
NF-κB inhibitor PDTC entrapped folic acid conjugated chitosan
nanoparticles enhanced intracellular targeting of tumor cells via
folic acid receptor mediated endocytosis and lowered IC50 val-
ues compared to free drug to overcome resistance (Fan et al.,
2010).

NANOCARRIERS ADDRESSING EFFLUX PUMP DEPENDENT
AND INDEPENDENT DRUG RESISTANCE MECHANISMS
Simultaneously delivery of single/multiple anticancer agents in
nanocarriers addressing both efflux pump dependent (P-gp) and
independent (NF-κB) drug resistance mechanisms enhances cell
apoptosis and induce cancer cell death. Paclitaxel and Curcumin
(NF-κB and P-gp inhibitor) co-encapsulated in flaxseed oil
nanoemulsion enhanced cancer cell sensitivity to Paclitaxel and
cytotoxicity in SKOV3 and drug resistant SKOV3TR human ovar-
ian adenocarcinoma cells (Ganta and Amiji, 2009). Doxorubicin
and siRNA containing cationic liposomes simultaneously silenced
MRP1 and Bcl-2 (Saad et al., 2008). Doxorubicin/Mitomycin/5-
Fluorouracil loaded hydroxyapatite nanoparticles acted synergis-
tically with recombinant mutant human tumor necrosis factor-α
(rmhTNFα) reduced P-gp levels of mRNA, increased intracellular
concentration in human hepatoma xenografts of HepG2/ADM
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cells and suppressed tumor cell growth by apoptosis (Al-Bataineh
et al., 2010; Ronaldson et al., 2010).

PHYSICAL APPROACHES TO OVERCOME MDR
DRUG DELIVERY WITH THERMAL THERAPY
In hyperthermia therapy, cells undergo heat stress (41–46◦C)
resulting in activation and/or initiation of intracellular and
extracellular degradation mechanisms like protein denaturation,
protein folding, aggregation and DNA cross linking, changing
tumor cell physiology and leading to apoptosis or making cancer
cells more sensitive to anti-cancer drugs. Hyperthermia increases
blood flow to the tumor cells and enhances delivery of nanocar-
riers and thus used as an adjunct treatment to increase efficacy
of chemotherapy and enhance radiation induced tumor dam-
age. Depending on the degree of temperature, hyperthermia
is classified (i) in-thermo ablation; tumor subjected to >46◦C
(upto 56◦C) causes cells to undergo direct tissue necrosis, coag-
ulation or carbonization (ii) moderate hyperthermia (41–46◦C)
affects both cellular and tissue (iii) diathermia (<41◦C) for
rheumatic diseases. Cellular effects of moderate hyperthermia
include induction and regulation of apoptosis, signal transduc-
tion and MDR. Super-paramagnetic iron oxide particles induced
therapeutic hyperthermia; liposomal nanocarrier revealed high
intra-tumoral accumulation of magnetic particles on application
of magnetic field (100–120 kHz) to attain temperatures 40–45◦C.
Folate receptor targeted Doxorubicin liposomes with hyperther-
mia reduced IC50 in cervical carcinoma cells. Temperature sensi-
tive poly(N-isopropylacrylamide) nanocarriers release anticancer
drugs in presence of specific temperature triggers. Hyperthermia
enables magnetic nanoparticles to enter tumor cells by gener-
ating heat in tissues/cells and is utilized for selective targeting
through cancer-specific binding agents and controlled drug deliv-
ery over conventional hyperthermia (Chicheł et al., 2007; Kumar
and Faruq, 2011).

DRUG DELIVERY WITH ULTRASOUND THERAPY
Ultrasound induces thermal effects and helps nanocarrier’s
extravasation in tumor, enhance drug diffusion through tumor
interstitium, release drug from nanocarriers within tumor
and increase intracellular drug accumulation on irradiation to
enhance treatment of MDR cancer. Howard et al. demonstrated
that sonication enhanced uptake of Paclitaxel 20-fold from micel-
lar system in breast cancer tumor cell line and inhibited 90%
cell proliferation. Doxorubicin-pluronic® P105 micelles with
ultrasound resulted in high intracellular drug accumulation in
promyelocytic leukemia HL-60 cells, ovarian carcinoma drug
sensitive and multidrug resistant cells (A2780 and A2780/ADR)
and breast cancer (MCF-7) cells (Marin et al., 2002). Paclitaxel
micelles of methoxy poly (ethylene glycol)-block-poly (D, L-
lactide) enhanced intracellular drug accumulation 2-fold and
cytotoxicity in drug-sensitive (MDCKII and MCF-7) and P-
gp expressing (MDCKII-MDR and NCI-ADR) cell lines with
ultrasound (Wan et al., 2012). Pure and mixed micelles of
pluronic® P105, PEG2000-diacylphospholipid and poly (ethy-
lene glycol)-co-poly(β-benzyl-L-aspartate) loaded Doxorubicin
with ultrasound treatment enhanced intracellular drug accu-
mulation in ovarian carcinoma tumor model in nu/nu mice

and inhibited tumor growth rate (Gao et al., 2005). Ultrasound
therapy downregulated levels of P-gp, MRP and lung resistance
protein to 62.84 ± 3.42%, 10.26 ± 1.18%, and 3.05 ± 0.37%
in HepG2/ADM cells from 96.97 ± 2.41%, 20.84 ± 3.12%,
and 1.16 ± 0.59% levels, respectively. Ultrasound increased per-
cent Bax in HepG2/ADM cells leading to cellular apoptosis and
MDR reversal (Liu et al., 2001; Rapoport, 2004; Howard et al.,
2006; Kedar et al., 2010; Milane et al., 2011; Wu et al., 2011;
Gao et al., 2012). The studies indicate potential of ultrasound
waves to disrupt nanocarrier core, form micropores in cell mem-
brane allowing diffusion of drugs and modulate membrane drug
efflux pumps function. However which mechanisms of ultra-
sound (heat, cavitation or microstreaming) are predominantly
involved in modulating drug efflux transporter on cell mem-
brane is still unclear. The studies on these aspects are underway
in our lab.

DRUG DELIVERY WITH PHOTODYNAMIC THERAPY
Photodynamic therapy (PDT) has wide applications in cancer
therapy due to its specificity and selectivity. PDT involves three
components light, oxygen, and a photosensitizer (non-toxic drug)
to achieve photocytotoxicity. PDT includes administration of
a photosensitizer which specifically accumulates in cancer cells
and when illuminated with red visible light (620–690 nm) gen-
erates reactive oxygen species in presence of tissue oxygen and
causes cell death. Photofrin-2 (hematoporphyrin derivative) is
the only PDT drug approved for clinical application in treat-
ment of bladder, lung and esophageal cancer. Folic acid coated
phospholipid-capped protoporphyrin IX (PpIX) loaded FITC-
sensitized mesoporous silica nanocarriers (NanoPDT) effectively
targeted receptors overexpressed on HeLa cells with high intra-
cellular PpIX concentrations compared to free PpIX. NanoPDT
on irradiation generated oxygen species, enhanced photocytotox-
icity and inhibited 65% tumor growth in nude mice inoculated
with B16F10 melanoma (Teng et al., 2013). Dendrimer phthalo-
cyanine encapsulated polymeric micelle showed higher PDT effi-
cacy in mice bearing human lung adenocarcinoma A549 cells,
enhanced photocytotoxicity upon photoirradiation and accu-
mulated in endolysosomes than Photofrin-2 (Nishiyama et al.,
2009). However, polyethylene-glycol(PEG)-grafted transferrin-
conjugated liposomes of second-generation photosensitizer 5,
10, 15, 20-tetra (m-hydroxyphenyl) chlorin (Foscan) did not
improved the photocytotoxicity or intracellular accumulation of
Foscan in esophageal cancer cell line when compared to unmod-
ified liposomes (Paszko et al., 2013). Chitosan functionalized
pluronic nanogel containing gold nanorod as photothermal ther-
apy agent and chlorine e6 (Ce6) as photosensitizer for PDT
enhanced tumor ablation in-vivo by combination of PDT fol-
lowed by photothermal therapy compared to single therapy
(Kim et al., 2013). Co-delivery of Docetaxel and photosensitizer
zinc-phthalocyanine (ZnPc) loaded nanoparticles on irradiation
decreased viability in HeLa cells after 72 h and enhanced antitu-
mor activity in orthotopic amelanotic melanoma animal model
compared to Docetaxel nanoparticles alone (Conte et al., 2013).
Hyperbranched poly(ether-ester) (HPEE) loaded photosensitizer
chlorin (e6) nanoparticles revealed better up taken by human oral
tongue cancer CAL-27 cells after 4 h with cytoplasmic localization
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and higher phototoxicity compared to free ce6 after irradiation
(Li et al., 2012c). Efficiency of second generation photosensitiz-
ers [2, 9, 17, 23-tetrakis-(1,6-hexanedithiol) phthalocyaninato]
zinc (II) in PDT either free or encapsulated in gold nanoparti-
cles/liposomes on photodamage of fibroblast and breast cancer
cells revealed breast cancer cell damage with phthalocyanine lipo-
somes while gold nanoparticles improved the effect with PDT
(Nombona et al., 2012). Hematoporphyrin loaded liposomes
revealed higher intratumoral accumulation of photosensitizer
compared to free drug in MS-2 fibrosarcoma mouse model.
Necrosis or apoptosis contributes to PDT mediated cell death in
cancer and is due to generation of reactive oxygen species caus-
ing oxidative damage of cellular organelles. Thus, drug delivery
in combination with PDT is a novel technique to selectively tar-
get cancer cells leading to cell lysis and overcome MDR in cancer
therapy improving the efficacy.

NANOTHERANOSTICS
Nanotheranostics or quadrugnostic are third generation inte-
grated nanovehicles comprising of four elements for diagnosis of
tumor location/s, specific targeting to cancer cells, eradication of
malignant cells with cytotoxic drug/s and neutralize drug resis-
tance mechanism (Figure 4). Nanotheranostics serve dual roles
as diagnostics and therapeutics thereby reducing chemotherapy
dose, toxicity and side-effects to healthy tissues and increase
therapeutic index (Ahmed et al., 2012). Superparamagnetic iron-
oxide nanoparticles (SPIONs) with magnetic properties have
excellent potential in tumor-targeting, diagnosis, monitoring
and therapy (Santhosh and Ulrih, 2013). Polysorbate 80 coated
Temozolomide-loaded PLGA superparamagnetic nanoparticles
revealed higher intracellular uptake with antiproliferative effect
on malignant brain glioma C6 cells compared to non-polysorbate
80 coated nanoparticles (Ling et al., 2012). Diagnostic, target-
ing and therapeutic potential of Doxorubicin loaded SPION
and plasmonic gold nanoparticles have been evaluated in can-
cer treatment (Maeng et al., 2010). PEG and PEI-coated SPIONs
increased intracellular concentration of Doxorubicin in resistant
rat glioma C6-ADR cell line with IC50 values 3–5-fold lower

FIGURE 4 | Theragnostic agent.

compared to free Doxorubicin (Kievit et al., 2011). Fang et al.
(2012) reported 3-fold lower IC50 with PBAE-coated SPIONs
than free Doxorubicin in C6-ADR cells in accordance with Kievit
et al. Gu et al. revealed that Doxorubicin loaded PEGylated gold
nanoparticles were more cytotoxic on MDR cells compared to
free Doxorubicin but less effective on sensitive cell lines (human
hepatoma cells HepG2 and HepG2-R-a MDR subline). PEGylated
Doxorubicin gold nanoparticles increased intracellular uptake
and nuclear localization significantly up to 6 h by endocyto-
sis (Gu et al., 2012). Theragnostic nanoparticles incorporating
Doxorubicin or Paclitaxel for imaging and targeted chemother-
apy were developed by Ahmed et al. (2012) and Kelkar and
Reineke (2011). Paclitaxel loaded chitosan nanoparticles labeled
with Cy5.5 (NIR fluorescence dye) were developed for imag-
ing and cancer therapy in SCC7 tumor-bearing mouse models
(Min et al., 2008; Kim et al., 2010b; Na et al., 2011; Ryu et al.,
2011). Fluorescence property of Doxorubicin and photolumi-
nescence of gold was utilized for imaging, monitoring drug
uptake and tumor cells localization with folic acid decorated
Doxorubicin gold nanorods (Newell et al., 2012). Chen et al.
developed Doxorubicin encapsulated pH-responsive theragnos-
tic nanoparticles with Cy5 for tissue targeting and imaging.
Folate coated Doxorubicin SPIONs made of poly(ethylene oxide)-
trimellitic anhydride chloride-folate increased anticancer efficacy
in liver cancer, lowered expression of CD34 and Ki-67 markers of
angiogenesis and cell proliferation respectively with 2- and 4-fold
decrease in tumor volume compared to free Doxorubicin and
Doxil® respectively (Maeng et al., 2010). Acetylated dendrimer-
entrapped gold nanoparticles were taken by cell lysosomes and
detected under X-ray after incubation in-vitro and in xenograft
tumor model after intratumoral and intraperitoneal administra-
tion for imaging human lung adenocarcinoma cell line (SPC-A1
cell) (Wang et al., 2011b). Cetuximab conjugated magneto-
fluorescent silica nanoparticles for targeting EGFR receptor and
in-vivo colon cancer imaging revealed high tumor uptake with
application of an external magnetic field and MRI signal changes
in human colon cancer xenograft mouse model (Cho et al.,
2010). Folic acid-conjugated PEG-SPIONs labeled with Cy5.5 for
imaging and active targeting to lung cancer resulted in higher
intracellular uptake in KB cells and lung cancer model com-
pared to non-folic acid coated nanoparticles (Yoo et al., 2012).
Butyl rhodamine B fluorescent nanoparticles conjugated with
anti-Her-2 monoclonal antibody were developed successfully for
imaging and targeting ovarian cancer (Hun et al., 2008). Paclitaxel
SPIONs significantly increased intracellular uptake and induced
regrowth delay in-vivo in CT-26 cells with no toxicity (Schleich
et al., 2013). Folic acid decorated Tamoxifen magnetic nanoparti-
cles were developed for imaging and detection of human breast
cancer cells that over express folic acid receptors (Majd et al.,
2013). Immuno-targeted gold-iron oxide nanoparticles selectively
accumulated in SW1222 xenograft colorectal tumors compared
to non-antigen-expressing tumor xenografts. Photothermal treat-
ment with IR irradiation revealed >65% of antigen-expressing
tumor cells presented corrupt extracellular matrix and cytoplas-
mic acidophilia suggesting effectiveness of nanoparticle-assisted
thermal therapy (Xie et al., 2010; Lu et al., 2012; Luk et al., 2012;
Kirui et al., 2013).
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CONCLUSION
Nanodrug delivery systems are versatile platform for delivery
of anticancer drugs and have been utilized successfully toward
overcoming cancer drug resistance mechanisms, maximizing
chemotherapeutic efficacy. Nanocarriers have effectively over-
come challenges of limited aqueous solubility, low bioavailabil-
ity, lack of targeting cancer tissues, increase drug therapeutic
index, preferential accumulation by EPR effect and divert ABC-
transporter mediated drug efflux MDR with potential to be
multi-functionalized for cancer treatment. Nanocarriers promise
to alleviate many challenges in clinical cancer therapy to bene-
fit patients in future. Cancer science is progressing rapidly and
understanding the molecular basis of drug resistance in cancer
promises more effective treatments.
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