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Mingming Tan*

Department of Quality Management, Zhejiang Provincial People’s Hospital, Hangzhou, China

Although several meta-analyses have revealed the beneficial e�ects of dietary

fiber intake on human health, some have reported inconsistent findings. The

purpose of this work was to perform an umbrella meta-analysis to evaluate

the relevant evidence and elucidate the e�ect of dietary fiber intake on

glycemic control, lipid profiles, systematic inflammation, and blood pressure.

Eligible studies were searched in several electronic databases, including Web

of Science, PubMed, Scopus, and the Cochrane Library, up to March 2022. A

total of 52 meta-analyses involving 47,197 subjects were identified to assess

the pooled e�ect size. Overall, higher dietary fiber intake was significantly

associated with reductions in parameters involving glycemic control, including

fasting plasma glucose (ES = −0.55, 95% CI: −0.73, −0.38, P < 0.001), fasting

plasma insulin (ES = −1.22, 95% CI: −1.63, −0.82, P < 0.001), homeostasis

model assessment of insulin resistance (HOMA-IR) (ES=−0.43, 95% CI:−0.60,

−0.27, P < 0.001), and glycosylated hemoglobin (HbA1c) (ES = −0.38, 95%

CI: −0.50, −0.26, P < 0.001). In terms of lipid profiles, higher dietary fiber

intake was associated with significant reductions in the serum level of total

cholesterol (ES = −0.28, 95% CI: −0.39, −0.16, P < 0.001) and low-density

lipoprotein cholesterol (ES = −0.25, 95% CI: −0.34, −0.16, P < 0.001), but not

triglycerides (ES = −0.001, 95% CI: −0.006, 0.004, P = 0.759) and high-density

lipoprotein cholesterol (ES = −0.002, 95% CI: −0.004, 0.000, P = 0.087).

Higher dietary fiber intake was also significantly associated with improved

tumor necrosis factor-alpha serum levels (ES = −0.78, 95% CI: −1.39, −0.16,

P = 0.013), while no significant e�ect was observed for C-reactive protein

(ES = −0.14, 95% CI: −0.33, 0.05, P = 0.156). Finally, blood pressure was

also significantly improved following higher dietary fiber intake (systolic blood

pressure: ES=−1.72, 95%CI:−2.13,−1.30, P< 0.001; diastolic blood pressure:

ES = −0.67, 95% CI: −0.96, −0.37, P < 0.001). Subgroup analysis revealed

that the study population and type of dietary fiber could be partial sources
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of heterogeneity. In conclusion, the present umbrella meta-analysis provides

evidence for the role of dietary fiber supplementation in the improvement of

established cardiovascular risk factors.

KEYWORDS

umbrella meta-analysis, dietary fiber, glycolipid metabolism, inflammation, blood

pressure

Introduction

Cardiovascular diseases (CVDs), which represent a group

of disorders of the heart and blood vessels, including coronary

heart disease, cerebrovascular disease, rheumatic heart disease,

and other conditions, are the leading cause of death globally (1).

It was estimated that, in 2017, 55 million people died worldwide,

of which about 18 million deaths were attributable to CVDs

(2, 3). Similarly, a report on disease burden in China during

1990–2017 pointed out that stroke and ischemic heart disease

were the major causes of all-age disability-adjusted life years in

2017; in addition, a report on cardiovascular health and disease

burden in China (2020) also revealed that CVDs accounted for

the majority of all deaths, by 46.66 and 43.81% in rural and

urban areas, respectively (4, 5). Thus, global strategies aimed

at reducing the morbidity and mortality of these diseases are

urgently required.

Despite the existence of non-variable risk factors for CVDs,

such as age, gender, and family history, shifts in some variable

risk factors, including sedentary lifestyle, unhealthy diet, and

physical inactivity, are much more important; among these,

a healthy diet may be the most effective method with the

lowest cost and could be regarded as a primary target for

CVDs prevention (6). Dietary fiber is defined as a group

of carbohydrates with three or more monomeric units that

are resistant to digestion and absorption in the human small

intestine but confer health benefits to the host (7). Several

clinical studies have shown that patients at risk of CVDs can

benefit from dietary fiber intake. For example, Xu et al. found

that oat β-glucan led to significant reductions in serum total

cholesterol by −8.41% and low-density lipoprotein cholesterol

by −13.93% in individuals with hypercholesterolemia (8).

Indeed, a previous review revealed the crucial role of dietary

fiber consumption in the prevention and treatment of CVDs

(9). Moreover, epidemiological studies have indicated an inverse

relationship between dietary fiber intake and the risk of CVDs,

such as ischemic heart disease (10) and type 2 diabetes mellitus

(11). Evidence from another meta-analysis also suggested that

every additional 7 g/d of total fiber intake could lower the risk of

CVDs by 9% (12). However, other meta-analyses have indicated

that dietary fiber intake may not cause significant improvements

in CVDs risk factors, including blood glucose and inflammatory

markers (13, 14). Since the strength, precision, and influence of

potential bias in these studies, as well as the quality of existing

meta-analyses still have not been clarified, it is necessary to

address the broader scope of benefits related to dietary fiber

intake and CVDs risk factors.

Umbrella meta-analysis is a synthesis method developed

to evaluate the pooled effects of existing published meta-

analyses and the quality and strength of the presented evidence.

For example, Veronese et al. reported an umbrella meta-

analysis of observational studies on the summarized associations

of dietary fiber intake and various health outcomes (15).

However, the pooled evidence from randomized controlled

trials (RCTs) exploring the effects of dietary fiber intake

on cardiovascular risk markers (blood glucose/lipids, blood

pressure, and inflammation) remains under investigation. The

aim of the present work was to collect relevant evidence and

perform an assessment, the results of which could provide robust

evidence for the role of dietary fiber in patients at risk for CVDs.

Methods

Umbrella reviews can provide a broad understanding of

a given topic for decision makers (16). The current umbrella

review of meta-analyses was conducted in accordance with the

guidance outlined in the Cochrane Handbook for Systematic

Reviews of Intervention (17).

TABLE 1 PICO criteria for the present umbrella meta-analysis of

randomized controlled trials.

Items Descriptions

Participants Subjects who were treated with dietary fiber

Intervention Dietary fiber or other conditions*

Comparator Placebo or control group or low dietary fiber intake

Outcomes Parameters involved with blood glucose or blood lipids

or blood pressure or inflammatory factors

*Other conditions including resistant starch, cereal β-glucan, guar gum, inulin-type

fructan, psyllium, glucomannan and brown rice.
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Literature search

Two authors (LF and SQ) independently searched the four

databases (Web of Science, PubMed, Scopus, and the Cochrane

Library) from inception to March 2022 for meta-analyses that

explored the effects of dietary fiber intake on cardiovascular risk

markers (blood glucose/lipids, blood pressure, or inflammation)

using the following search strategy: (dietary fiber or fiber or

fiber or whole grain or whole wheat or cereals or wheat

bran or bran or barley or oat or beta-glucans or glucans or

cellulose or pectin or resistant starch or secale cereale or rye

or ryes or spelt or triticum or rice or rices or oryza sativa or

fructooligosaccharides or inulin) AND (blood glucose or blood

sugar or fasting plasma glucose or FPG or glycated hemoglobin

A or glycated hemoglobin or HbA1c or insulin or homeostasis

model assessment of insulin resistance or HOMA-IR or

cholesterol or lipids or total cholesterol or TC or triglyceride

or TG or high density lipoprotein cholesterol or HDL-C or low

density lipoprotein cholesterol or LDL-C or blood pressure or

hypertension or systolic blood pressure or SBP or diastolic blood

pressure or DBP or inflammatory or tumor necrosis factor-alpha

or TNF-α or C-reactive protein or CRP) AND (systematic review

or review, systematic or meta-analysis). We also performed a

manual review of the references from eligible meta-analyses so

that any relevant studies were not missed (Supplementary Files;

Supplementary Table S1 presents the detailed search strategy

and the results from all four databases). Table 1 shows the

participants, interventions, comparators, and outcomes (PICO)

criteria that were defined for the present umbrella review.

Inclusion and exclusion criteria

Relevant trials with the following characteristics were

included: (1) meta-analysis of RCTs that explored the effects

of dietary fiber intake on cardiovascular risk factors (blood

glucose/lipids, blood pressure, and inflammatory factors) and

reported the effect sizes (ESs) and corresponding confidence

intervals (CIs) and (2) RCTs comparing any proper control

groups (placebo, control group, or diet with low dietary fiber).

We excluded studies that (1) involved animal research; (2)

were in vitro or ex vivo studies; (2) were only a systematic

review without a meta-analysis; and (3) were a meta-analysis of

observation studies on self-reported dietary fiber intake.

Data extraction

Two independent authors (QZ and GZ) screened the

potential studies on the basis of the inclusion and exclusion

criteria. Any disagreement was resolved either by consultation

together or a third author (MT). For each eligible study,

information regarding first author’s name; published year

(country); sample size (the number of involved subjects); the

type, dosage, and duration of interventions; and outcomes

assessed were extracted. In addition, the pooled ESs and

corresponding CIs for the influence of dietary fiber intake on

cardiovascular risk factors were also extracted.

Quality assessment

The AMSTAR 2 questionnaire was employed to evaluate the

quality of each eligible meta-analysis and served as a reliable

and valid tool for assessing the quality of systematic reviews and

meta-analyses; it consisted of 16 items scored as High,Moderate,

Low, or Critical low of overall confidence (18). When a study

had one or no non-critical weaknesses, it was considered as a

high-quality meta-analysis. Furthermore, we also evaluated the

certainty of the evidence and the strength of recommendation

with the GRADE (grading of recommendations, assessment,

development, and evaluation) tool (19).

Data synthesis and statistics

We used the ESs and their corresponding CIs extracted from

each eligible meta-analysis to obtain the overall pooled effect

sizes. Heterogeneity between studies was calculated using the

I2 statistic and Cochrane’s Q-test. We considered an I2 value

> 50% or a P-value from the Q-test of < 0.1 as indicators

of substantial heterogeneity, in which case the random-effect

model was applied; otherwise, a fixed effect model was used

(20). To further explore the sources of heterogeneity, a subgroup

analysis including study population, sample size, and other

characteristics was performed. Publication bias was measured

using funnel plots and Egger’s regression test, in which a P-

value of < 0.1 was considered significant (21, 22). In addition,

we employed “trim and fill” analysis to simulate a new model

without publication bias and calculated a new effect size with

the insertion of new fictitious studies. Finally, we used the leave-

one-out method for sensitivity analysis to measure the impact

of each study on the overall results. The statistical analysis was

performed using the Comprehensive Meta Analysis software

version 3.0 with a level of significance of 5%.

Results

Study selection

Of the 3,699 publications initially found in our searches,

we identified 75 articles for further assessment after removing

duplicates and irrelevant records. After reading the full text of

the remaining articles, a total of 52 meta-analyses were finally

selected for the current umbrella meta-analysis; 23 articles were
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FIGURE 1

The flow diagram for present umbrella meta-analysis.

excluded for the following reasons: (1) abstracts or letters to

editors (n = 7); (2) systematic reviews without meta-analysis (n

= 4); (3) results confounded by non-dietary fiber (n= 9); and (4)

outcomes were not interested (n = 3) (Figure 1). The studies of

the excluded meta-analyses are listed in Supplementary Table S2

in the Supplementary Files.

Characteristics of included
meta-analyses

The characteristics of the included meta-analyses are

depicted in Table 2. Briefly, the 52 eligible meta-analyses

involved a total of 47,197 participants, including patients with

diabetes mellitus (DM), dyslipidemia, hypertension, obesity (or

who were overweight), metabolic syndrome, nonalcoholic fatty

liver disease (NAFLD); women with breast cancer undergoing

neoadjuvant chemotherapy; and healthy subjects. The dietary

fibers included resistant starch, β-glucans, glucomannan, guar

gum, inulin-type fructans, inulin-type carbohydrates, psyllium,

and brown rice. The dosages and durations of dietary fiber

intervention ranged from 3 g/day to 30 g/day (except for one

study, which used guar gum at 15 mg/day, and another study

that used brown rice at 225 g/d), and 4 to 13 weeks, respectively.

Twenty-two meta-analyses were performed in China (23, 25–

27, 29–31, 35–37, 42, 43, 45, 49, 51, 53–56, 69–71), six in Iran

(24, 32–34, 38, 40), four in the UK (13, 39, 41, 57), one in

Australia (14), eight in Canada (44, 46, 47, 50, 52, 58, 62, 72),

five in the USA (48, 60, 65, 67, 68), one in Brazil (59), one in

Ireland (61), one in South Africa (63), one in Italy (64), one in

the Netherlands (66), and one in Malaysia (28).

Risk of bias and quality evaluation

Most of the meta-analyses employed the Cochrane Risk of

Bias tool to assess the quality of individual meta-analyses (73);

in addition, Jadad scores (74), Heyland Methodologic Quality

Score (75), the Delphi checklist (76), the GRADE pro-guideline

development tool (19), and the Downs Black assessment

tools (77) were also applied in some of the meta-analyses.

The results showed that of the 52 meta-analyses, 35 used

high-quality studies, nine used studies with moderate quality,

seven did not report the quality of the included studies, and
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TABLE 2 Characteristics of included 50 trials for present umbrella meta-analysis.

First author,

year (Country)

No. of primary

studies

No. of

participants in

meta-analysis

Type of

Interventions

Dosage

(median)

Health status

of Participant

Outcomes

evaluated

Duration

(median)

Quality

assessment

scale

(evidence)

Wei et al. (23)

(China)

16 739 Resistant starch 7–45 g/d

(NR)

Healthy and

patients with other

metabolic diseases

TNF-α;

CRP

2 weeks to 3 months

(8 weeks)

Cochrane

(high-quality)

Mirzababaei et al. (24)

(Iran)

6 124 Glucomannan 3–15 g/d

(4.8 g)

Patients with

obesity, T2DM,

schizophrenia and

dyslipidemia

FPG 4–12 weeks (8

weeks)

Cochrane

(moderate)

Xu et al. (8)

(China)

21 1,140 Oat and barley

β-glucan

1.45–11.2 g/d (5.0 g) Mildly

hypercholesterolaemic

individuals

TC, TG, LDL-C,

HDL-C

3–12 weeks (6

weeks)

Cochrane

(high-quality)

Xiong et al. (25) (China) 19 503 Resistant starch 5–66 g/d

(21.5 g)

Overweight, high

risk of developing

diabetes, diabetes

FPG, FPI, HbA1c,

HOMA-IR

2–12 weeks (6

weeks)

Jadad

(moderate)

Xie et al. (26) (China) 29 1,517 Soluble dietary fiber 1–20 g/d

(10 g)

T2DM FPG, FPI, HbA1c,

HOMA-IR

3–12 weeks (8

weeks)

Cochrane

(high-quality)

Wang et al. (27) (China) 17 494 Guar gum 5–29 mg/d

(15mg)

Diabetes, hypercho

lesterolemia,

hypertension,

healthy people

TC, TG, LDL-C,

HDL-C

3 weeks to 6 months

(12 weeks)

Cochrane

(high-quality)

Rahim et al. (28)

(Malaysia)

7 417 Brown rice NR T2DM and

pre-diabetic

FPG, HbA1c,

HDL-C, LDL-C,

SBP, DBP

6–16 weeks (12

weeks)

GRADE pro

guideline

development tool

(moderate)

Ojo et al. (13)

(UK)

11 721 Dietary fiber NR T2DM TC, TG, LDL-C,

HDL-C, TNF-α,

CRP

3–52 weeks (12

weeks)

Cochrane

(high-quality)

Mao et al. (29) (China) 22 911 Dietary fiber 3.1–28 g/d

(10 g)

T2DM FPG, FPI, HbA1c,

HOMA-IR

4–12 weeks (8

weeks)

Cochrane

(high-quality)

(Continued)
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TABLE 2 (Continued)

First author,

year (Country)

No. of primary

studies

No. of

participants in

meta-analysis

Type of

Interventions

Dosage

(median)

Health status

of Participant

Outcomes

evaluated

Duration

(median)

Quality

assessment

scale

(evidence)

Lu et al. (30)

(China)

16 706 Resistant starch 6–27 g/d

(11.75 g)

T2DM. end stage

renal disease,

chronic kidney

disease, people with

potential health

risk, healthy people

TNF-α;

CRP

4–12 weeks (8

weeks)

Jadad

(moderate)

Li et al. (31)

(China)

33 1,047 Inulin-type fructan 3–30 g/d

(11 g)

Overweight and

obese, prediabetes

and diabetes,

hyperlipidemia,

healthy people

FPG, FPI, TC,

LDL-C, HDL-C, TG

2–18 weeks (6

weeks)

The Heyland

Methodologic

Quality Score

(moderate)

Li et al. (31) (China) 11 479 Guar gum 5–30 g/d

(15 g)

T2DM TC, TG, LDL-C,

HDL-C

4 weeks to 6 months

(12 weeks)

Cochrane

(high-quality)

Haghighatdoost et al.

(32) (Iran)

8 308 Resistant starch

type 2

10–45 g/d

(20 g)

Patients with renal

disease, diabetes,

prediabetes, high

risk of T2DM, obese

and overweight

CRP,

TNF-α

4–12 weeks (8

weeks)

Delphi checklist

(high-quality)

Golzarand et al. (33)

(Iran)

13 924 Brown rice 50–450 g/d

(225 g)

MetS, overweight,

T2DM,

hypercholesterolemia,

impaired glucose

tolerance

TC, TG, HDL-C,

LDL-C, FPG, FPI,

HbA1c, HOMA-IR

4–104 weeks (10

weeks)

Cochrane

(high-quality)

Faghihimani et al. (34)

(Iran)

6 233 Inulin

type-carbohydrates

10–15 g/d

(10)

T2DM, obese

patients, Women

with breast cancer

undergoing

neoadjuvant

chemotherapy

SBP, DBP 3–8.5 weeks (6.5

weeks)

Cochrane

(high-quality)

Zhang et al. (35) (China) 9 661 Inulin 8.4–10 g/d

(10 g)

T2DM FPG, FPI, HbA1c,

HOMA-IR

6–12 weeks (8

weeks)

Cochrane

(high-quality)

(Continued)
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TABLE 2 (Continued)

First author,

year (Country)

No. of primary

studies

No. of

participants in

meta-analysis

Type of

Interventions

Dosage

(median)

Health status

of Participant

Outcomes

evaluated

Duration

(median)

Quality

assessment

scale

(evidence)

Xiao et al. (36) (China) 8 395 Psyllium 3.4–15 g/d

(9 g)

Diabetic patients TC, TG, HDL-C,

LDL-C, FPG,

HbA1c

8–20 weeks (12

weeks)

Cochrane

(high-quality)

Wang et al. (37) (China) 15 772 Resistant starch 4.5–50 g/d

(21 g)

Persons diagnosed

with T2DM and

those at risk

FPG, FPI, HbA1c,

HOMA-IR

2–48 weeks (8

weeks)

Cochrane

(high-quality)

Vahdat et al. (38) (Iran) 13 672 Resistant starch 10–45 g/d

(17 g)

Healthy and

patients with

metabolic diseases

CRP,

TNF-α

4–14 weeks (8

weeks)

Jadad Scale, and the

Downs Black

assessment tools

(moderate)

Ojo et al. (39)

(UK)

9 540 Dietary fiber NR T2DM FPG, HbA1c,

HOMA-IR

3–52 weeks (12

weeks)

Cochrane

(high-quality)

Halajzadeh et al. (40)

(Iran)

19 1,014 Resistant starch 4.5–50 g/d

(20 g)

Patients with

metabolic

syndrome and

related disorders

FPG, FPI, HbA1c,

HOMA-IR, TC, TG,

HDL-c, LDL-c,

CRP, TNF-α

21 days to 12

months (8 weeks)

Cochrane

(high-quality)

Clark et al. (41) (UK) 11 592 Psyllium 3.7–15 g/d

(10.5 g)

T2DM,

hyperlipidemia,

hypertension

SBP, DBP 4 weeks to 6 months

(8 weeks)

Jadad

(high-quality)

Wang et al. (42) (China) 13 428 Resistant starch 10–45 g/d

(30 g)

Overweight or

obese adults

FPG, FPI,

HOMA-IR, TC, TG,

HDL-C, LDL-c,

HbA1c,

2–12 weeks (4

weeks)

Effect

public health

practice project

(high quality)

Wang et al. (42) (China) 33 1,346 Inulin-type fructans 5.5–30 g/d

(10 g)

Healthy, overweight

and

obesity, prediabetes

and type 2 diabetes

populations,

non-alcoholic

steatohepatitis patients

FPG, FPI, HbA1c,

HOMA-IR

20–252 days (8

weeks)

Cochrane

(high-quality)

(Continued)
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TABLE 2 (Continued)

First author,

year (Country)

No. of primary

studies

No. of

participants in

meta-analysis

Type of

Interventions

Dosage

(median)

Health status

of Participant

Outcomes

evaluated

Duration

(median)

Quality

assessment

scale

(evidence)

Snelson et al. (14)

(Australia)

20 670 Resistant starch

type 2

8–66 g/d

(29 g)

Healthy,

overweight/obese,

MetS, prediabetes

or T2DM

FPG, HbA1c,

HOMA-IR, TC,

LDL-C, HDL-C, TG

1–12 weeks (5.5

weeks)

Cochrane

(moderate)

Rao et al. (43) (China) 11 634 Inulin-Type

Carbohydrates

2.7–10 g/d

(10 g)

T2DM FPG, FPI, HbA1c,

HOMA-IR

6–12 weeks (8

weeks)

Cochrane

(high-quality)

Jovanovski et al. (44)

(Canada)

27 1,394 Viscous fiber 2.55–21.0 g/d

(13.1 g)

T2DM FPG, FPI, HbA1c,

HOMA-IR

3–52 weeks (8

weeks)

Cochrane

(high-quality)

Gao et al. (45) (China) 14 515 Resistant starch 6.51–40 g/d (18.5g) Patients with T2DM

and simple obesity

FPG, FPI,

HOMA-IR

4–52 weeks (8

weeks)

Cochrane

(high-quality)

Khan et al. (46) (Canada) 22 1,430 Viscous soluble

fiber

1.45–30 g/d

(8.7 g)

Overweight SBP, DBP 4–24 weeks (7

weeks)

Cochrane

(moderate)

Jovanovski et al. (47)

(Canada)

28 1,924 Psyllium 7–15 g/d

(10.2 g)

Individuals with

hyperlipidemia,

healthy individuals,

diabetes, MS

LDL-C 3–52 weeks (8

weeks)

Cochrane

(high-quality)

Thompson et al. (48)

(USA)

12 609 Isolated soluble

fiber

3–30 g/d

(8.75 g)

Adults with

overweight and

obesity

FPG, FPI,

HOMA-IR

2–17 weeks (12

weeks)

The Heyland

Methodologic

Quality Score, and

Cochrane

(high-quality)

Liu et al. (49) (China) 20 607 Inulin-type fructans 7.4–30 g/d

(10.6 g)

Healthy,

dyslipidemia,

overweight or

obese, T2DM

FPG, FPI, HDL-C,

LDL-C, TC, TG

20 days to 6 months

(6 weeks)

Cochrane

(high-quality)

Hoang et al. (50)

(Canada)

12 370 Konjac

glucomannan

2.0–15.1 g/d

(3.3 g)

hypercholesterolemic

individuals,

overweight/obese,

insulin-resistant,

healthy, others

LDL-C 3–12 weeks (6

weeks)

The Heyland

Methodologic

Quality Score, and

Cochrane

(high-quality)

(Continued)
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TABLE 2 (Continued)

First author,

year (Country)

No. of primary

studies

No. of

participants in

meta-analysis

Type of

Interventions

Dosage

(median)

Health status

of Participant

Outcomes

evaluated

Duration

(median)

Quality

assessment

scale

(evidence)

Shen et al. (51) (China) 4 350 Oat β-glucan 2.5–3.5 g/d

(3 g)

T2DM FPG, FPI, HbA1c 3–8 weeks (4 weeks) Cochrane

(high-quality)

Ho et al. (52) (Canada) 14 615 Barley β-glucan 1.5–12 g/d

(6.5 g)

Hypercholesterolemic

individuals, others

LDL-C 3–12 weeks (4

weeks)

The Heyland

Methodologic

Quality Score, and

Cochrane

(high-quality)

Ho et al. (52) (Canada) 56 3,974 Oat β-glucan 0.9–10.3 g/d

(3.5g)

Slightly overweight,

overweight/obese,

hypercholesterolemic

individuals

LDL-C 3–12 weeks (6

weeks)

The Heyland

Methodologic

Quality Score, and

Cochrane

(high-quality)

He et al. (53) (China) 18 1,024 Oat β-glucan 3–10 g/d

(5 g)

T2DM, moderate

hyperlipidaemic

subjects, overweight

FPG, FPI, 4 weeks to 3 months

(8 weeks)

Cochrane

(high-quality)

Zou et al. (54) (China) 12 603 Oat and barley

β-glucan

2.8–8.1 g/d

(4.5 g)

Mild or mild to

moderate

hyperlipidemia

FPG, FPI 4–12 weeks (5.5

weeks)

Jadad, and

Cochrane

(high-quality)

Zhu et al. (55) (China) 17 916 Oat and barley

β-glucan

2.8–10.3 g/d

(5 g)

Hypercholesterolemic

subjects

TC, TG, HDL-C,

LDL-C, FPG

4–12 weeks (7

weeks)

Jadad, and

Cochrane

(high-quality)

Jiao et al. (56) (China) 14 728 Dietary fiber 1.0–17.8 g/d

(8 g)

Overweight and

obese adults

CRP 3–16 weeks (12

weeks)

Jadad

(moderate)

Evans et al. (57) (UK) 28 1,690 Dietary fiber (6 g/d) Healthy, mild

hypertension,

overweight or obese

SBP, DBP 6 weeks to 14

months (12 weeks)

Cochrane

(high-quality)

Whitehead et al. (58)

(Canada)

28 2,519 Oat β-glucan 3.0–12.4 g/d

(5 g)

Healthy,

hypercholesterolemia,

T2DM

TC, TG, HDL-C,

LDL-C

2–12 weeks (5.5

weeks)

Cochrane

(high-quality)

Silva et al. (59) (Brazil) 11 605 Dietary fiber 3.5–16.5 g/d

(15 g)

T2DM FPG, HbA1c 8–24 weeks (12

weeks)

Cochrane

(high-quality)

(Continued)
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TABLE 2 (Continued)

First author,

year (Country)

No. of primary

studies

No. of

participants in

meta-analysis

Type of

Interventions

Dosage

(median)

Health status

of Participant

Outcomes

evaluated

Duration

(median)

Quality

assessment

scale

(evidence)

Post et al. (60) (USA) 13 400 Dietary fiber 4–40 g/d

(18.3 g)

T2DM FPG, HbA1c NR Cochrane

(high-quality)

Tiwari et al. (61)

(Ireland)

30 1,250 Oat and barley

β-glucan

2–14 g/d

(4.5 g)

Healthy,

cholesterolemic

individuals, diabetic

and non-diabetic

TC, HDL-c, LDL-c 3–12 weeks (5

weeks)

NR

AbuMweis et al. (62)

(Canada)

11 591 barley β-glucan 3–12 g/d

(5 g)

Healthy but not

after myocardial

infarction

TC, TG, HDL-C,

LDL-C

4–12 weeks (5

weeks)

A custom-built tool

in collaboration

with Health Canada

(NR)

Sood et al. (63) (South

Africa)

14 531 Glucomannan 1.2–15.1 g/d

(3.4 g)

MS, T2DM,

impaired glucose

tolerance,

hyperlipidemia,

hypertension,

obesity

TC, TG, HDL-C,

LDL-C, FPG, SBP,

DBP

3–16 weeks (5.5

weeks)

NR

Brighenti et al. (64)

(Italy)

15 290 Inulin-type fructans 4–32 g/d

(14.2 g)

Dyslipidemia,

T2DM, NAFLD,

healthy

TG 21–64 days (4

weeks)

NR

Whelton et al. (65)

(USA)

25 1,477 Dietary fiber 3.8–125 g/d (10.7 g) NR SBP, DBP 2–26 weeks (8

weeks)

NR

Streppel et al. (66)

(Netherlands)

24 1,404 Dietary fiber 3.5–42.6 g/d

(7 g)

People

with/without

hypertension

SBP, BP 2–24 weeks (8

weeks)

Quantified by

scoring of

blinding toward the

type of treatment

(low-quality)

Brown et al. (67) (USA) 67 2,990 Dietary fiber (9.5 g/d) Healthy,

hyperlipidemic,

diabetic

TC, LDL-C, TG,

HDL-C

7 weeks NR

Olson et al. (68) (USA) 12 404 Psyllium-enriched

cereal

3.0–12 g/d

(9.9 g)

Hypercholesterolemic

adults

TC, LDL-C, HDL-C 14–56 days (6

weeks)

NR

FPG, fasting plasma glucose; FPI, fasting plasma insulin; HOMA-IR, homeostasis model assessment of insulin resistance; HbA1c, glycosylated hemoglobin; TC, total cholesterol; TG, triglyceride; HDL-C, High density lipoprotein cholesterol; LDL-C, low

density lipoprotein cholesterol; TNF-α, Tumor necrosis factor-alpha; CRP, C-reactive protein; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; NR, not reported; T2DM, type 2 diabetes mellitus; MS, metabolic syndrome; NAFLD, nonalcoholic

fatty liver disease; GRADE, grading of recommendations, assessment, development, and evaluation.
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TABLE 3 Subgroup analysis of dietary fiber intake in glycaemic control.

Fasting plasma glucose Fasting plasma insulin

No. of

studies

ES

(95% CI)

Heterogeneity No. of

studies

ES (95% CI) Heterogeneity

P P

Country

China 16 −0.69

(−0.92,−0.45)

98.20 <0.001 14 −1.202

(−1.615,−0.789)

56.36 0.005

Iran 3 −0.66

(−3.41, 2.09)

87.44 <0.001 2 −1.172

(−2.491, 0.147)

68.96 0.073

USA 2 −0.48

(−1.15, 0.18)

90.54 0.001 1 ∼ ∼ ∼

Other 6 −0.26

(−0.61, 0.09)

75.32 0.001 1 ∼ ∼ ∼

Study population

Diabetics 14 −1.52

(−2.08,−0.97)

98.46 <0.001 9 −1.619

(−2.492,−0.746)

68.01 0.002

Dyslipidemia 2 −0.04

(−0.09, 0.01)

0 0.587 1 ∼ ∼ ∼

MS 1 ∼ ∼ ∼ 1 ∼ ∼ ∼

Other 10 −0.13

(−0. 21,−0.05)

62.55 0.004 7 −0.980

(−1.439,−0.522)

46.17 0.084

Type of effect size

WMD 13 −0.17

(−0.28,−0.06)

80.90 <0.001 9 −1.303

(−1.616,−0.991)

38.04 0.115

SMD 2 −0.42

(−0.70,−0.13)

71.58 0.061 3 −0.588

(−0.835,−0.341)

0 0.397

MD 12 −1.20

(−1.64,−0.77)

98.63 <0.001 6 −1.947

(−2.917,−0.976)

43.95 0.112

Type of intervention

RS 6 −0.094

(−0.185,−0.004)

61.68 0.023 5 −1.618

(−2.503,−0.732)

69.02 0.012

β-glucan 4 −0.056

(−0.102,−0.011)

49.62 0.114 3 0.186

(−2.303, 2.675)

34.19 0.219

ITF 5 −2.807

(−3.741,−1.874)

99.48 <0.001 5 −1.277

(−1.672,−0.881)

0 0.811

Others 12 −0.499

(−0.831,−0.168)

83.54 <0.001 5 −0.961

(−1.872,−0.051)

69.94 0.010

Sample size

n < 300 5 −0.628

(−1.181,−0.076)

73.66 0.004 5 −1.701

(−2.766,−0.636)

50.27 0.09

300≤ n < 600 13 −0.89

(−1.23,−0.54)

98.48 <0.001 9 −1.293

(−1.934,−0.651)

54.96 0.023

n ≥ 600 9 −0.26

(−0.41,−0.13)

86.34 <0.001 4 −1.094

(−1.689,−0.500)

74.70 0.008

Dosage

n < 5 6 −0.103

(−0.212, 0.006)

64.92 0.014 3 −0.186

(−2.306, 2.675)

34.19 0.219

(Continued)
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TABLE 3 (Continued)

Fasting plasma glucose Fasting plasma insulin

No. of

studies

ES

(95% CI)

Heterogeneity No. of

studies

ES (95% CI) Heterogeneity

P P

5 ≤ n < 10 7 −2.843

(−3.843,−1.843)

99.23 <0.001 6 −1.257

(−2.048,−0.465)

68.50 0.007

n ≥ 10 12 −0.161

(−0.256,−0.067)

74.06 <0.001 8 −1.448

(−2.029,−0.867)

56.31 0.025

Duration

n < 7 8 −0.086

(−0.140,−0.032)

52.86 0.038 6 −0.902

(−1.218,−0.586)

0 0.457

7≤ n < 11 13 −1.363

(−1.856,−0.869)

98.55 <0.001 11 −1.452

(−2.037,−0.867)

67.78 0.001

n ≥ 12 5 −0.175

(−0.598, 0.249)

797.52 0.001 1 ∼ ∼ ∼

HOMA-IR HbA1c

Country

China 9 −0.490

(−0.611,−0.369)

21.31 0.254 10 −0.442

(−0.627,−0.258)

91.51 <0.001

Iran 2 −0.174

(−0.375, 0.027)

0 0.451 2 −0.293

(−0.910, 0.324)

85.60 0.008

USA 1 ∼ ∼ ∼ 1 ∼ ∼ ∼

Other 3 −0.245

(−0.844, 0.354)

67.05 0.048 5 −0.289

(−0.447,−0.130)

56.37 0.057

Study population

Diabetics 9 −0.522

(−0.774, 0.270)

54.78 0.024 13 −0.393

(−0.535,−0.251)

89.31 <0.001

Dyslipidemia 0 ∼ ∼ ∼ 0 ∼ ∼ ∼

MS 1 ∼ ∼ ∼ 1 ∼ ∼ ∼

Other 5 −0.348

(−0.610,−0.086)

56.80 0.055 4 −0.297

(−0.447,−0.146)

32.17 0.219

Type of effect size

WMD 6 −0.345

(−0.463,−0.228)

51.25 0.068 8 −0.361

(−0.549,−0.173)

88.13 <0.001

SMD 3 −0.618

(−0.874,−0.362)

0 0.829 2 −0.596

(−0.779,−0.412)

43.81 0.182

MD 6 −0.458

(−0.899,−0.017)

63.33 0.018 8 −0.345

(−0.489,−0.202)

71.82 0.001

Type of intervention

RS 6 −0.311

(−0.450,−0.173)

0 0.827 5 −0.225

(−0.384,−0.065)

81.69 <0.001

β-glucan 0 ∼ ∼ ∼ 1 ∼ ∼ ∼

ITF 3 −0.648

(−0.882,−0.415)

0 0.446 3 −0.589

(−0.730,−0.448)

38.07 0.199

Others 6 −0.507

(−0.928,−0.086)

72.86 0.002 9 −0.408

(−0.587,−0.229)

77.90 <0.001

(Continued)
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TABLE 3 (Continued)

Fasting plasma glucose Fasting plasma insulin

No. of

studies

ES

(95% CI)

Heterogeneity No. of

studies

ES (95% CI) Heterogeneity

P P

Sample size

n < 300 6 −0.347

(−0.506,−0.189)

48.15 0.086 6 −0.388

(−0.649,−0.128)

89.89 <0.001

300≤ n < 600 5 −0.353

(−0.567,−0.139)

41.90 0.142 7 −0.312

(−0.466,−0.157)

80.40 <0.001

n ≥ 600 4 −0.483

(−0.820,−0.147)

74.96 0.007 5 −0.493

(−0.726,−0.260)

62.83 0.029

Dosage

n < 5 0 ∼ ∼ ∼ 1 ∼ ∼ ∼

5 ≤ n < 10 6 −0.653

(−0.829,−0.477)

0 0.510 6 −0.631

(−0.740,−0.521)

8.87 0.359

n ≥ 10 7 −0.324

(−0.462,−0.186)

1.02 0.416 8 −0.304

(−0.456,−0.151)

82.34 <0.001

Duration

n < 7 3 −0.298

(−0.451,−0.144)

0 0.398 4 −0.196

(−0.380,−0.013)

73.43 0.010

7≤ n < 11 10 −0.540

(−0.760,−0.320)

54.06 0.021 9 −0.474

(−0.682,−0.266)

85.80 <0.001

n ≥12 2 −0.374

(−1.762,−1.013)

64.43 0.094 4 −0.379

(−0.645,−0.113)

79.96 0.002

ES, effect size; MS, metabolic syndrome; RS, resistant starch; ITF, inulin-type fructans; WMD, weight mean difference; SMD, standardized mean difference; MD, mean difference.

one used low-quality studies (shown in Supplementary Files,

Supplementary Table S3).

The results of the AMSTAR 2 scale indicated that the

present umbrella meta-analysis included 30 meta-analyses with

moderate overall confidence, nine meta-analyses with high

overall confidence, and eight and five with low and critically

low overall confidence, respectively (Table 3). In summary,

we concluded that the current umbrella meta-analysis could

provide an accurate summary of the results based on the

available studies that were included in the review. The results

of the GRADE working group classification can be seen in

Supplementary Files, Supplementary Table S4.

E�ects of dietary fiber intake on glycemic
control

Fasting plasma glucose

Overall, 27 meta-analyses with a total sample size of 15,464

participants showed that dietary fiber interventions resulted in a

significant reduction in FPG (ES=−0.55, 95%CI:−0.73,−0.38,

P < 0.001; Figure 2A). However, we observed considerable

heterogeneity between these studies (I2 = 97.08, P < 0.001).

A subgroup analysis by the type of intervention presented a

moderate decrease in heterogeneity. On the other hand, the

asymmetric distribution of the funnel plot showed the presence

of publication bias (Egger’s regression test P = 0.01). However,

the “trim and fill” analysis with three imputed studies suggested

that the effects of dietary fiber on FPG were still significant (ES

=−0.72, 95% CI:−0.93,−0.52, P = 0.001; Figure 2B).

Fasting plasma insulin

The pooled effect of dietary fiber intake on FPI was obtained

from 18 meta-analyses with 7,808 subjects; it indicated a notable

decrease in FPI in subjects who supplemented dietary fiber

compared to those in the control group, although this finding

was accompanied by significant heterogeneity (ES=−1.22, 95%

CI: −1.63, −0.82, P < 0.001; I2 = 58.21, P = 0.001; Figure 3A).

When a subgroup analysis by the type of effect size was carried

out, the between-study heterogeneity became non-significant.

Despite the presence of the small-study effect (Egger’s regression

test P = 0.003), the “trim and fill” analysis with five imputed

studies suggested that FPI remained unchanged with dietary
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FIGURE 2

Forest plot of the e�ect of dietary fiber intake on FPG (A), assessment of publication bias and “trim and fill” analysis for FPG (B); *Each black

circle represents one imputed study.
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FIGURE 3

Forest plot of the e�ect of dietary fiber intake on FPI (A), assessment of publication bias and “trim and fill” analysis for FPI (B); *Each black circle

represents one imputed study.

Frontiers inNutrition 15 frontiersin.org

https://doi.org/10.3389/fnut.2022.972399
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Fu et al. 10.3389/fnut.2022.972399

FIGURE 4

Forest plot of the e�ect of dietary fiber intake on HOMA-IR (A), assessment of publication bias and “trim and fill” analysis for HOMA-IR (B); *Each

black circle represents one imputed study.
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fiber intake (ES = −1.17, 95% CI: −1.60, −0.75, P < 0.001;

Figure 3B).

Homeostasis model assessment of insulin
resistance

Data on the effects of dietary fiber intake on HOMA-IR were

recorded from 6,236 participants based on 15 meta-analyses.

We found a significant reduction in HOMA-IR following the

intake of dietary fiber (ES = −0.43, 95% CI: −0.60, −0.27, P

< 0.001; Figure 4A) as well as significant heterogeneity (I2 =

51.31, P = 0.011). The heterogeneity decreased when focusing

on subgroup analyses by the type of intervention, sample size,

and dosage. Similarly, the visual inspection of the funnel plot

showed an asymmetric distribution (Egger’s regression test P =

0.036), while the further “trim and fill” analysis with five imputed

studies showed that the conclusion observed for HOMA-IR

was reliable (ES = −0.33, 95% CI: −0.51, −0.16, P < 0.001;

Figure 4B).

Glycosylated hemoglobin (HbA1c)

Overall, HbA1c concentration was assessed as an outcome

measure in 8,966 participants from 18 meta-analyses. The

current umbrella meta-analysis provided evidence for the

positive effect of dietary fiber intake on HbA1c levels (ES =

−0.38, 95% CI: −0.50, −0.26, P < 0.001; Figure 5A), but with a

high level of heterogeneity (I2 = 86.80, P < 0.001). A subgroup

analysis by the type of intervention showed a mild decrease

in between-study heterogeneity. The exploration of publication

bias using funnel plots and egger’s regression test showed

evidence of the small-study effect in the present umbrella meta-

analysis (P< 0.001). However, the results from the “trim and fill”

analysis with five imputed studies showed that the overall effects

were not significantly confounded by the bias (ES=−0.26, 95%

CI:−0.37,−0.15, P < 0.001; Figure 5B).

E�ects of dietary fiber intake on lipid
profiles

Total cholesterol

As shown in Figure 6, dietary fiber intake significantly

decreased the serum TC level in the pooled results of 18 meta-

analyses (15,529 participants) (ES = −0.28, 95% CI: −0.39,

−0.16, P < 0.001; Figure 6A). The amount of heterogeneity

was high (I2 = 96.09, P < 0.001), and the type of intervention

was recognized as a potential source of this heterogeneity.

Significant small-study effects were observed when conducting

Egger’s regression test (P < 0.001). Consequently, the “trim and

fill” analysis was performed with five imputed studies, and the

results showed that the corrected ES was still significant (ES =

−0.26, 95% CI:−0.39,−0.13, P < 0.001; Figure 6B).

Triglycerides

Overall, 18 meta-analyses involving 14,493 subjects

investigated the effect of dietary fiber intake on TG level,

and the pooled ES was not significant when compared with

control group (ES = −0.001, 95% CI: −0.006, 0.004, P = 0.759;

Figure 7A). In addition, the heterogeneity between studies

was moderate (I2 = 46.10, P = 0.017). Factors such as the

type of effect size, type of intervention, and dosage may have

been possible sources of heterogeneity. The results of Egger’s

regression test showed the presence of publication bias (P =

0.003). Therefore, a “trim and fill” analysis was conducted with

six imputed studies, and the results remained non-significant

even after the amendment of the small-study effect (ES = 0.000,

95% CI:−0.005, 0.004, P < 0.001; Figure 7B).

High-density lipoprotein cholesterol

The effects of dietary fiber intake on serum HDL-C

concentration were evaluated in 13,913 participants from 19

meta-analyses. The combined ES demonstrated that dietary fiber

had no significant effect on the HDL-C level (ES = −0.002,

95% CI:−0.004, 0.000, P = 0.087; Figure 8A). In addition, there

was no obvious between-study heterogeneity (I2 = 26.85, P =

0.136) or small-study effect (Egger’s regression test P = 0.296,

Figure 8B).

Low-density lipoprotein cholesterol

Twenty-three meta-analyses involving 21,887 participants

reported the effect of dietary fiber intake on serum LDL-C level,

and the pooled ES suggested a significant decrease in LDL-C

(ES = −0.25, 95% CI: −0.34, −0.16, P < 0.001; Figure 9A).

There was significant heterogeneity between studies (I2 = 96.59,

P < 0.001), which was reduced with a subgroup analysis by the

type of intervention. Notably, a significant small-study effect was

observed when performing Egger’s regression test (P < 0.001).

The results of the “trim and fill” analysis with five imputed

studies showed a robust effect after considering the publication

bias (ES=−0.23, 95% CI:−0.32, 0.14, P < 0.001; Figure 9B).

E�ects of dietary fiber intake on
inflammatory factors and blood pressure

Tumor necrosis factor-alpha

There were six meta-analyses involving 1,647 subjects that

presented the pooled effect of dietary fiber intake on the levels

of TNF-α. A significant reduction in TNF-α was noted after the

intake of dietary fiber (ES = −0.78, 95% CI: −1.39, −0.16, P

= 0.013; Figure 10A). The heterogeneity between studies was

high (I2 = 85.39, P < 0.001), and there was a moderate small-

study effect (Egger’s regression test P= 0.056). However, further

“trim and fill” analysis with one imputed study indicated that the
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FIGURE 5

Forest plot of the e�ect of dietary fiber intake on HbA1c (A), assessment of publication bias and “trim and fill” analysis for HbA1c (B); *Each black

circle represents one imputed study.
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FIGURE 6

Forest plot of the e�ect of dietary fiber intake on TC (A), assessment of publication bias and “trim and fill” analysis for TC (B); *Each black circle

represents one imputed study.
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FIGURE 7

Forest plot of the e�ect of dietary fiber intake on TG (A), assessment of publication bias and “trim and fill” analysis for TG (B); *Each black circle

represents one imputed study.
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FIGURE 8

Forest plot of the e�ect of dietary fiber intake on HDL-C (A), assessment of publication bias and “trim and fill” analysis for HDL-C (B); *Each black

circle represents one imputed study.
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FIGURE 9

Forest plot of the e�ect of dietary fiber intake on LDL-C (A), assessment of publication bias and “trim and fill” analysis for LDL-C (B); *Each black

circle represents one imputed study.
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FIGURE 10

Forest plot of the e�ect of dietary fiber intake on TNF-α (A), assessment of publication bias and “trim and fill” analysis for TNF-α (B); *Each black

circle represents one imputed study.

corrected ES for the effect of dietary fiber on TNF-α remained

the same (ES = −0.78, 95% CI: −1.39, −0.16, P = 0.013;

Figure 10B).

C-reactive protein

The pooled effect of dietary fiber intake on the serum

levels of CRP was examined in seven meta-analyses (2,780

participants). Overall, the present umbrella meta-analysis

showed that compared to the control group, dietary fiber

intake did not lead to a significant decrease in serum CRP

concentration (ES = −0.14, 95% CI: −0.33, 0.05, P =

0.156; Figure 11A). In addition, no obvious between-study

heterogeneity (I2 = 46.59, P= 0.081) or publication bias (Egger’s

regression test P = 0.532; Figure 11B) were observed.

Systolic blood pressure

The effect of dietary fiber intake on SBP was assessed in eight

meta-analyses (6,827 subjects). The results revealed a significant

reduction in SBP after dietary fiber intake (ES=−1.72, 95% CI:

−2.13, −1.30, P < 0.001; Figure 12A) and no heterogeneity (I2

= 0, P= 0.480). However, the visual inspection of the funnel plot

indicated an asymmetric distribution (Egger’s regression test P

= 0.040). Therefore, we conducted a “trim and fill” analysis with

two imputed studies, and the corrected result showed that the
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FIGURE 11

Forest plot of the e�ect of dietary fiber intake on CRP (A), assessment of publication bias and “trim and fill” analysis for CRP (B); *Each black

circle represents one imputed study.

beneficial effect of dietary fiber on SBP was stable (ES = −1.76,

95% CI:−2.17,−1.35, P < 0.001; Figure 12B).

Diastolic blood pressure

Similar to SBP, a total of eight meta-analyses involving 6,827

participants were evaluated to obtain the pooled ES for dietary

fiber intake on DBP. The results presented an obvious decrease

in DBP following dietary fiber intake (ES = −0.67, 95% CI:

−0.96, −0.37, P < 0.001; Figure 13A). Moderate between-study

heterogeneity was observed (I2 = 31.62, P= 0.176). In addition,

no evidence of publication bias was found (Egger’s regression

test P = 0.346; Figure 13B).

Sensitivity analysis

A sensitivity analysis, which is carried out by sequentially

removing each eligible meta-analysis and then repeating the

umbrella meta-analysis, was also applied to assess the effect

of single meta-analysis on the overall ESs. The results showed

that the overall ESs did not change by excluding any individual

meta-analysis (data are not shown).
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FIGURE 12

Forest plot of the e�ect of dietary fiber intake on SBP (A), assessment of publication bias and “trim and fill” analysis for SBP (B); *Each black circle

represents one imputed study.

Subgroup analysis of dietary fiber intake
on glucose metabolism

We also conducted subgroup analyses on studies that

used dietary fiber for the four glycemic parameters stratified

based on seven specific factors, including country, study

population, type of effect size, type of intervention, sample

size, dosage, and duration. It seemed that the beneficial effects

of dietary fiber on glycemic control were more pronounced

in patients with diabetes than in the rest of the population

(Table 3). In addition, the type of dietary fiber may have caused

different effects on glucose metabolism, where inulin-type

fructans supplementation obviously presented more reductions

in indicators involved with glucose control than resistant starch

and β-glucan (Table 3) as well as lower heterogeneity. In terms

of sample size, the subgroup analysis suggested that meta-

analyses with a sample size of > 600 led to the largest decline

in HOMA-IR and HbA1c. However, we did not find a positive

association between a higher dosage of dietary fiber intake or

a longer duration of dietary fiber intervention and a greater

decrease in glucose parameters; moreover, the between-study

heterogeneity did not present a significant decrease, indicating

that dosage and duration may not have been the sources

of heterogeneity.
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FIGURE 13

Forest plot of the e�ect of dietary fiber intake on DBP (A), assessment of publication bias for DBP (B).

Subgroup analysis of dietary fiber intake
on lipid profiles

Similar to the subgroup analysis above, we also performed a

subgroup analysis of the effect of dietary fiber on lipid profiles.

Firstly, we noted that the effect of dietary fiber intake on serum

TC became non-significant in patients with diabetes, which was

contradictory to patients with dyslipidemia (Table 4). Next, a

subgroup analysis based on the type of intervention showed

that resistant starch and β-glucan possessed a greater efficacy in

lowering serum TC and LDL-C concentration than inulin-type

fructans; furthermore, it seemed that β-glucan could lead to a

mild but significant decrease in serumTG level (Table 4). Finally,

we failed to find any evidence recognizing dosage and duration

as sources of heterogeneity (Table 4).

Since the number of meta-analyses reporting the effect

of dietary fiber intake on systematic inflammation and blood

pressure is scarce, we did not think it was necessary to perform

further subgroup analyses.

Discussion

Despite the critical role of dietary fiber intake in the

management of CVDs, a consistent conclusion between studies

has yet to be reached. Our purpose in this work was to provide
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TABLE 4 Subgroup analysis of dietary fiber intake in lipides profiles.

Total cholesterol Triglyceride

No. of

studies

ES

(95% CI)

Heterogeneity No. of

studies

ES (95% CI) Heterogeneity

P P

Country

China 8 −0.254

(−0.418,−0.089)

89.16 <0.001 8 −0.034

(−0.071, 0.003)

42.51 0.095

Canada 2 −0.300

(−0.344,−0.256)

0 0.999 2 −0.032

(−0.063, 0.000)

0 0.358

USA 2 −0.168

(−0.443, 0.106)

98.77 <0.001 1 ∼ ∼ ∼

Other 6 −1.329

(−2.297,−0.361)

93.75 <0.001 7 −0.069

(−0.153,−0.015)

18.34 0.290

Study population

Diabetics 3 −9.630

(−23.499, 4.238)

93.80 <0.001 3 −7.743

(−21.351, 5.865)

78.83 0.009

Dyslipidemia 3 −0.282

(−0.318,−0.246)

0 0.504 2 −0.025

(−0.082, 0.032)

0 0.862

Other 12 −0.254

(−0.399,−0.110)

95.42 <0.001 13 −0.001

(−0.006, 0.004)

43.02 0.049

Type of effect size

WMD 7 −0.909

(−1.601,−0.216)

93.95 <0.001 7 −0.056

(−0.214, 0.101)

56.62 0.032

SMD 3 −0.628

(−1.146,−0.110)

88.43 <0.001 4 −0.083

(−0.172, 0.007)

15.03 0.317

MD 8 −0.196

(−0.325,−0.067)

97.21 <0.001 7 0.000

(−0.005, 0.005)

14.84 0.317

Type of intervention

RS 3 −0.100

(−0.358, 0.159)

67.437 0.046 3 −0.043

(−0.162, 0.075)

0 0.426

β-glucan 5 −0.288

(−0.320,−0.257)

42.86 0.136 5 −0.032

(−0.059,−0.006)

0 0.853

ITF 2 −0.084

(−0.169, 0.001)

34.76 0.216 3 −0.056

(−0.103,−0.009)

35.89 0.210

Others 8 −0.622

(−0.977,−0.267)

96.44 <0.001 7 0.015

(−0.210, 0.239)

56.36 0.033

Sample size

n < 500 7 −0.449

(−0.701,−0.197)

88.28 <0.001 6 −0.026

(−0.173, 0.122)

64.63 0.015

500≤ n < 1,000 6 −0.230

(−0.576, 0.116)

93.59 <0.001 8 −0.028

(−0.070, 0.013)

0 0.560

n ≥ 1,000 5 −0.248

(−0.416,−0.081)

97.81 <0.001 4 −0.020

(−0.051, 0.012)

52.93 0.095

Dosage

n < 5 7 −0.382

(−0.524,−0.241)

91.81 <0.001 7 −0.032

(−0.059,−0.006)

0 0.501

(Continued)
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TABLE 4 (Continued)

Total cholesterol Triglyceride

No. of

studies

ES

(95% CI)

Heterogeneity No. of

studies

ES (95% CI) Heterogeneity

P P

5 ≤ n < 10 3 −0.173

(−0.448, 0.103)

97.60 <0.001 2 −8.52

(−27.19, 10.16)

88.80 0.003

n ≥10 6 −0.130

(−0.378, 0.117)

88.32 <0.001 7 −0.054

(−0.098,−0.010)

0 0.503

Duration

n < 6 6 −0.304

(−0.522,−0.086)

93.74 <0.001 7 −0.039

(−0.068,−0.011)

36.79 0.148

6≤ n < 12 7 −0.181

(−0.316,−0.046)

96.68 <0.001 6 0.000

(−0.005, 0.005)

1.43 0.407

n ≥ 12 5 −3.643

(−6.231,−1.056)

87.65 <0.001 5 −0.027

(−0.759, 0.705)

58.06 0.049

High density lipoprotein cholesterol Low density lipoprotein cholesterol

Country

China 9 0.019

(0.001, 0.037)

10.05 0.351 8 −0.282

(−0.433,−0.131)

86.16 <0.001

Canada 2 −0.001

(−0.011, 0.009)

24.80 0.249 6 −0.266

(−0.314,−0.218)

77.15 0.001

USA 2 −0.002

(−0.004, 0.000)

0 0.922 2 −0.189

(−0.503, 0.125)

99.34 <0.001

Other 6 0.008

(−0.029, 0.046)

45.31 0.104 7 −0.378

(−0.846, 0.090)

90.50 <0.001

Study population

Diabetics 4 0.035

(−0.104, 0.175)

66.51 0.03 4 −0.774

(−1.734, 0.186)

91.78 <0.001

Dyslipidemia 3 −0.003

(−0.026, 0.020)

0 0.571 4 −0.269

(−0.329,−0.209)

79.08 0.002

Other 12 −0.002

(−0.004, 0.000)

20.02 0.247 15 −0.260

(−0.366,−0.153)

96.40 <0.001

Type of effect size

WMD 7 0.029

(0.005, 0.053)

0 0.459 7 −0.898

(−1.532,−0.264)

92.60 <0.001

SMD 3 0.009

(−0.094, 0.113)

0 0.805 3 −0.727

(−1.213,−0.240)

78.85 0.009

MD 9 −0.002

(−0.004, 0.000)

33.56 0.149 13 −0.199

(−0.289,−0.109)

97.58 <0.001

Type of intervention

RS 3 −0.008

(−0.067, 0.051)

0 0.900 3 −0.274

(−0.870, 0.322)

88.97 <0.001

β-glucan 5 −0.001

(−0.011, 0.008)

0 0.627 7 −0.242

(−0.279,−0.205)

61.35 0.017

ITF 2 0.036

(0.012, 0.060)

0 0.695 2 −0.164

(−0.262,−0.067)

0 0.762

Others 9 −0.002

(−0.004, 0.000)

32.47 0.158 11 −0.316

(−0.510,−0.122)

97.41 <0.001

(Continued)
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TABLE 4 (Continued)

Total cholesterol Triglyceride

No. of

studies

ES

(95% CI)

Heterogeneity No. of

studies

ES (95% CI) Heterogeneity

P P

Sample size

n < 500 9 0.001

(−0.009, 0.010)

31.62 0.165 11 −0.299

(−0.476,−0.123)

91.41 <0.001

500≤ n < 1,000 5 0.002

(−0.023, 0.028)

0 0.494 6 −0.209

(−0.292,−0.126)

64.03 0.016

n ≥ 1,000 5 0.007

(−0.015, 0.029)

56.42 0.057 6 −0.254

(−0.386,−0.121)

98.34 <0.001

Dosage

n < 5 7 −0.002

(−0.011, 0.008)

0 0.596 9 −0.289

(−0.370,−0.207)

87.51 <0.001

5 ≤ n < 10 3 −0.002

(−0.004, 0.000)

0 0.423 4 −0.231

(−0.456,−0.006)

98.70 <0.001

n ≥10 6 0.030

(−0.008, 0.052)

0 0.723 7 −0.223

(−0.432,−0.015)

90.38 <0.001

Duration

n < 6 6 −0.001

(−0.011, 0.008)

0 0.642 8 −0.276

(−0.385,−0.166)

88.83 <0.001

6≤ n < 12 7 −0.002

(−0.004, 0.000)

46.17 0.084 9 −0.218

(−0.335,−0.101)

97.98 <0.001

n ≥ 12 6 0.018

(−0.033, 0.070)

47.35 0.091 6 −1.062

(−1.930,−0.195)

89.88 <0.001

ES, effect size; MS, metabolic syndrome; RS, resistant starch; ITF, inulin-type fructans; WMD, weight mean difference; SMD, standardized mean difference; MD, mean difference.

a systematic overview of the current evidence and evaluate

the methodological quality of this evidence, which could be

expected to be used as dietary advice in patients at risk for CVDs.

The present umbrella meta-analysis, which consisted of 52

meta-analyses involving 47,197 participants, demonstrated that

compared to the control group, dietary fiber intake conferred a

favorable effect on glucose metabolism, improving lipid profiles

(TC and LDL-C), ameliorating inflammation factors (TNF-α),

and controlling blood pressure, indicating a strong protection

effect against cardiovascular-related diseases.

Historical evidence has indicated a negative relationship

between dietary fiber intake and the risk of diabetes mellitus

(15). In the present umbrella meta-analysis, we found that

dietary fiber intake could significantly reduce the plasma

concentrations of biomarkers involved in blood glucose

metabolism, including FPG and HbA1c, which showed some

consistency with another umbrella review and meta-analysis

conducted by Xu et al., who found similar pronounced decreases

in plasma FPG and HbA1c in a high microbiota-accessible

carbohydrates intervention group (78). Mechanistic studies have

suggested that on the one hand, dietary fiber intervention

could increase the viscosity of intestinal content, which acts

as a barrier to the absorption of glucose and the postprandial

gastric emptying rate (79); on the other hand, some types of

dietary fiber can increase the concentration of serum glucagon-

like peptide-1 (GLP-1), an enteroendocrine-derived peptide

secreted in response to nutrient ingestion that plays a crucial

role in antidiabetic action (80, 81). Indeed, one clinical trial

found that intervention with GLP-1 for 6 weeks led to a

significant improvement in blood glucose control in type 2

diabetes mellitus patients (82). Although the present results

regarding blood glucose were in agreement with those of

most of previous studies, we noted that, in the subgroup

analysis, it seemed that patients with dyslipidemia did not obtain

the beneficial effects of dietary fiber intake. We speculated

that the difference in dietary background may have caused

some bias, since a direct association between improvements in

diet quality and improvements in blood glucose control was

still under debate (83). Based on the evidence that insulin

resistance is a determining factor in the pathophysiology of

T2DM (84), our umbrella meta-analysis suggests that dietary

fiber intake effectively regulates insulin sensitivity by decreasing

Frontiers inNutrition 29 frontiersin.org

https://doi.org/10.3389/fnut.2022.972399
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Fu et al. 10.3389/fnut.2022.972399

the concentration of FPI and index of HOMA-IR. Moreover,

a meta-analysis performed by Reynolds et al. also supported

the improved effects of high-fiber diets on insulin sensitivity

(85). Emerging evidence has shown that dietary fiber can

be fermented by gut microbiota to produce short-chain fatty

acids (SCFAs), and eventually, humans, especially patients with

T2DM, can benefit from the increased level of SCFAs (86).

Furthermore, onemechanistic study indicated that the increased

processes of glucose oxidation and insulin clearance, as well as

the decreased process of fatty acid release, were the two key

actions of SCFA in improvements of insulin sensitivity (87).

Consistent with clinical controlled trials, the beneficial effects

of dietary fiber intervention on plasma insulin and circulating

SCFA have also been observed by researchers (88, 89). However,

it should be noted that β-glucan failed to confer a beneficial effect

on the improvement of FPI when we performed a subgroup

analysis by the type of intervention; the results were consistent

with several published meta-analyses (51, 90) but contradictory

to the meta-analysis conducted by Bao et al. (91). Since meta-

analyses evaluating β-glucan for glycemic control were scarce in

the current umbrella meta-analysis, we should explain this result

with caution.

Regarding the effect of dietary fiber intake on serum

lipid profiles, most of our results concurred with the report

from a recent meta-analysis, which showed that fiber-fortified

food consumption could significantly reduce the levels of

serum TC, TG, and LDL-C, while no significant effect was

observed in serum HDL-C concentration (92). However, in

contrast, we only found a significant decrease in the subgroup

analysis based on β-glucan intervention in the serum TG

level, but not in overall pooled ESs. Since the cholesterol-

lowering effect was highly correlated with the viscosity of

the gel-forming fiber, nonviscous soluble and insoluble fibers

might exert different health benefits (93). It is well established

that dyslipidemia is a key contributor to the development of

CVDs (94), while previous evidence has suggested that the

abnormality of serum lipids could be improved by dietary

fiber via different kinds of mechanisms. Firstly, the dietary

fiber-induced high-viscosity microenvironment within the small

intestine could prevent the absorption of dietary cholesterol

as well as promote the excretion of bile acids (synthesized

by endogenous cholesterol) from stool (95). Similarly, clinical

trials and reviews have proposed that dietary fiber intake could

stimulate an increase in the abundance of probiotics, such

as Lactobacillus and Bifidobacterium; these gut microbiota are

known to contain bile acid hydrolase-positive species, which

can accelerate the excretion of unconjugated bile acids via

deconjugation action (96, 97). Lastly, dietary fiber-fermented

SCFA, particularly propionate, could reduce plasma cholesterol

by suppressing the activity of 3-hydroxy 3-methylglutaryl co-

enzyme A reductase (HMG-Co AR), which serves as a rate

limiting enzyme during endogenous cholesterol biosynthesis

(98). In vitro studies have also shown that some types of

dietary fiber (β-glucan) can act as inhibitors of HMG-Co AR,

leading to impairment in endogenous cholesterol biosynthesis

(99, 100), whichmay also partly explain the effect observed in the

subgroup where β-glucan intake presented a more pronounced

improvement in TC and LDL-C levels than other types of

dietary fiber.

It is believed that the acceleration of arterial plaque

formation and transformation into vulnerable plaques induced

by chronic low-grade inflammation is one pathophysiology of

atherosclerotic disease (101). Indeed, a previous study proposed

that elevated levels of circulating inflammatory makers could be

recognized as a strong predictor of CVDs (102). In our present

umbrella meta-analysis, we found that dietary fiber intake

resulted in a significant decrease in the serum TNF-α level, while

its effect on serumCRP was not significant. One epidemiological

study suggested that compared to a lower intervention of dietary

fiber, women with a higher ingestion of dietary fiber had a lower

level of plasma TNF-α-R2 (receptor 2 of TNF-α); however, but

no significant association was observed between dietary fiber

and CRP (103). However, a report from the National Health

and Nutrition Examination Survey 1999–2010 indicated that

dietary fiber is negatively correlated with serum CRP level in

adults in the US (104). The consideration of the baseline values

of inflammatory biomarkers may also have important clinical

implications in evaluating dietary fiber-mediated improvements

in serum inflammatory biomarkers, which means that, if the

baseline values of pro-inflammatory cytokines in the population

are not high, a significant response to the dietary fiber intake

may be difficult to observe. Several mechanisms have been

proposed for the anti-inflammatory effects of dietary fiber. In

their study on rodents, Yang et al. found that dietary fiber

could alleviate inflammation by modulating the gut microbiota

(increasing the abundance of Barnesiella and Lactobacillus) and

inhibiting the expressions of proteins involved with the Toll-

like receptor-4/nuclear factor-kappa B (TLR-4/NF-κB) signaling

pathway (105). In addition, in an in vitro study, Hung et al.

found that guar gum, a type of dietary fiber, could increase

suppressor of cytokine signaling-1 expression through the

TLR-2 and dectin-1 pathways, resulting in anti-inflammatory

regulation in small intestinal cells (106). Currently, numerous

studies have highlighted the roles of healthy diets in preventing

chronic diseases (107, 108), the results of which also support our

current results to some extent.

Hypertension, an asymptomatic clinical condition, is an

important public health issue. Both observational studies and

meta-analyses have demonstrated graded associations between

higher SBP/DBP and increased CVDs risk (109, 110). The

blood pressure results of the current study suggested that

dietary fiber intake significantly reduced SBP and DBP, although

the reductions may not have been large enough to clinical

implications. These findings were in line with an animal study

conducted by Marques et al., who found that a high-fiber diet

could downregulate the early growth response protein 1, which
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serves as a master cardiovascular regulator that is involved in

cardiac hypertrophy, cardiorenal fibrosis, and inflammation;

the mechanism behind this may be attributed to the improved

gut microbiota and its metabolites of acetate (a SCFA) (111).

However, it should be noted that the effects of dietary fiber

on blood pressure may vary with the types of dietary fiber,

and β-glucan fiber may be the most effective dietary fiber for

the regulation of blood pressure (57). Since the number of

meta-analyses assessing the effect of dietary fiber on blood

pressure was small, we did not explore a subgroup analysis

based on the type of interventions, which should be addressed

in future works.

There are some limitations to our study that should be noted.

Firstly, dosage plays an important role in nutritional assessment,

and we failed to provide evidence for a dose–response

relationship between dietary fiber intake and improvements

in cardiovascular risk factors. In addition, it seems that most

of our funnel plots presented some asymmetries, indicating

potential publication bias in the present umbrella meta-analysis;

however, further “trim and fill” analysis delivered evidence for

the robustness of the results. Finally, we did not register the

protocol of this umbrella meta-analysis in the Cochrane Library

or PROSPERO.On the other hand, our study is the first umbrella

meta-analysis to systemically evaluate the relevant evidence and

elucidate the efficacy of dietary fiber intake on cardiovascular

risk factors. Additionally, we performed a subgroup analysis

and assessment of the study population, type of intervention,

dosage, and sample size, which could provide some strategies for

precision nutrition.

Conclusion

The results of the current umbrella meta-analysis strongly

support the beneficial effects of dietary fiber intake for

the improvement cardiovascular risk factors. However, it

should be noted that the health-promoting effects of dietary

fiber intake may differ between populations with different

metabolic diseases.
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