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Abstract: The mechanical stability of aqueous binder and conductive composites (BCC) is the basis
of the long-term service of composite electrodes in advanced secondary batteries. To evaluate the
stress evolution of BCC in composite electrodes during electrochemical operation, we established an
electrochemical–mechanical model for multilayer spherical particles that consists of an active material
and a solid-electrolyte-interface (SEI)-enclosed BCC. The lithium-diffusion-induced stress distribution
was studied in detail by coupling the influence of SEI and the viscoelasticity of inorganic-filler-doped
polymeric bonding material. It was found that tensile hoop stress plays a critical role in determining
whether a composite electrode is damaged or not—and circumferential cracks may primarily initiate
in BCC, rather than in other electrode components. Further, the peak tensile stress of BCC is at
the interface with SEI and does not occur at full lithiation due to the relaxation nature of polymer
composite. Moreover, mechanical damage would be greatly misled if neglecting the existence of SEI.
Finally, the structure integrity of the binder and conductive system can be effectively improved by
(1) increasing the carbon black content as much as possible in the context of meeting cell capacity
requirements—it is greater than 27% and 50% for sodium alginate and the mixtures of carboxy styrene
butadiene latex and sodium carboxymethyl cellulose, respectively, for composite graphite anode;
(2) reducing the elastic modulus of SEI to less than that of BCC; (3) decreasing the lithiation rate.

Keywords: structure integrity; aqueous polymer binder; conductive carbon black; composite electrode;
lithium-ion battery

1. Introduction

With the rapid development of portable electronic devices and electric vehicles, as one of the main
choices for energy storage and energy supplied systems, lithium-ion batteries are deemed to be in
urgent need of achieving long lifetimes [1,2]. In order to fulfill this, industrial and the scientific sectors
have oriented efforts towards understanding their mechanical behavior and the underlying damage
mechanisms of battery components from active particles [3,4] to cell structures [5,6]. One has recognized
that the primary cause for capacity attenuation of rechargeable lithium batteries is that the Vegard
stress induced by the electrochemical reaction cannot only damage the active substances [7], but also
polymer bonding materials in the composite electrode [8–10]. Therefore, it is extremely significant to
study the stress distribution and mechanical stability of the electrode particle–binder system.

Conventionally, polymer materials play two pivotal roles in lithium-ion batteries. They are used
as separators to separate positive and negative electrodes, and as adhesives for binding isolated active
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particles to the current collector [11]. For the former, microporous membranes based on semi-crystalline
polyolefin materials such as polyethylene (PE), polypropylene (PP) and their blends are widely used in
liquid electrolyte lithium-ion batteries [12,13]. As for all-solid-state batteries, with great efforts made
by the scientific community, various poly(ethylene oxide) (PEO)-based solid polymer electrolytes
obtained by crosslinking [14–16], blending [17,18] or grafting [19] have been applied. For the latter,
poly(vinylidene fluoride) (PVdF) are the most commonly used and investigated binding materials
mainly because of good electrochemical stability. In the literatures, focusing on the mechanical stability
of particle–binder system, Rahani and Shenoy first studied the mechanical degradation in the graphite
anode bonded by PVdF using finite element methods. They found that the yield stress level of PVdF
determined the average stress of the composite electrode [20]. Takahashi also analyzed the stress
evolution of an isolated graphite sphere enclosed by conductive additive filled PVdF in the lithiation
process [21]. It was indicated that the polymeric and conductive composite (BCC) had certain constraints
on the lithiation deformation of active material, leading to a decrease in the tensile stress of graphite
particle. Moreover, the PVdF-based BCC is more likely to take place mechanical degradation in the
circumferential direction compared to the active materials. In addition, Singh and Bhandakkar studied
the stress evolution of a spherical electrode particle/PVdF system during galvanostatic electrochemical
cycling [22]. The viscoelasticity of polymer binders was proven to affect the diffusion induced stress
(DIS) in active material and binder and decreasing viscosity and characteristic relaxation time could
weaken DIS of the composite electrode. In contrast with above one-dimensional particle models,
Higa and Srinivasan calculated the stress of axisymmetric silicon particle sandwiched between two
cylinder of PVdF in the course of charging [23]. The simulation disclosed that most of the strain energy
of electrode system was stored by PVdF and the energy per interfacial area decreased with particle size
and binder stiffness. For this reason, the debonding between active material and BCC may be one of
the causes for the degradation of silicon electrode capacity. Lee et al., further investigated the interface
failure of a spherical graphite particle and a cylindrical PVdF binder [24]. It demonstrated that the
delamination of binders and active particles in the lithiation process was diametrically opposite to
the damage mechanism of that inside the active particle. The high lithium-concentration gradient,
caused by the large particle size and high charging rate, resulted in the increase of maximum principal
stress in the active particles. However, it could help to decrease the interface stress between the binder
and electrode material. In consideration of the complex mesostructures of electrode particles and
binders, the coupled electrochemical–mechanical simulation was carried out using the experimentally
reconstructed microstructure, which was captured by the scanning electron microscope [25] or
nanocomputed tomography (X-ray nano-CT) techniques [26]. These works well revealed the roles
of electrode geometry of active materials, binder loading and boundary conditions on its surface on
the stresses in electrode and PVdF binder under lithiation–delithiation cycling. It is noted that the
aforementioned investigations neglected the influence of solid electrolyte interface (SEI) film and
conductive agent content in BCC. However, the published reports indicated that SEI formed on the
surface of active materials during the lithiation process was strongly associated with the mechanical
stability of the electrode material [27] and the conductive additives acted upon a complicated mechanical
role when added into the polymer binders for composite electrodes [28–32].

Due to the popular PVdF binder contains toxic organic solvent, sodium alginate (SA) [33–35],
polyacrylic acid (PAA) [36,37], sodium carboxymethyl cellulose (CMC) [38], styrene–butadiene rubber
(SBR) [39], which use water as solution, may be regarded as the potential constitutes in composite
electrode for advanced secondary battery. Considerable efforts have been devoted to clarifying the
influence of binder nature on the cycle stability and rate performance of cell. Owing to high bonding
strength of aqueous polymer binders, high-capacity electrodes also exhibited mechanical stability,
good capacity retentions and rate capabilities [36,37]. It is noticed that the cohesion properties of
PAA binder acted a pivotal role on the mechanical integrity and electrochemical stability during
charging–discharging process. Recently, Li et al., compared the influence of binder stiffness on bending
deformation and DIS in Si anodes with SA, Nafion and PVdF with the results suggesting that the binder
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plays an important role in lithiation-induced deformation and the cracking of composite electrodes [40].
Wang et al., further observed that the elastic modulus and hardness of Si composite electrodes were
mainly related to the mechanical properties of water-soluble binders, instead of the adhesion between
binders and active particles. These findings may help to understand how the aqueous polymer
adhesive system impacts the mechanical stability of electrode materials and vigorously promote the
development of high performance and durable composite electrodes. Nevertheless, due to the lack
of mechanical properties of conductive agent filled water soluble polymer composite under liquid
electrolyte, the fracture mechanism is still not clear for the kind of binder and conductive materials in the
composite electrodes. To date, there has been little exploration into the structural integrity of electrode
particles system with SEI film, which is enclosed by the binder and conductive composite (BCC).

In this study, we establish an electrochemical-mechanical model for the multilayer spherical
particles that consist of an active material, SEI and BCC. The lithium concentration and diffusion
induced stress distribution in the electrode system have been emphatically discussed by coupling
the effects of SEI and the viscoelasticity of polymer binder. In order to clarify the mechanical failure
mechanism of aqueous BCC under realistic condition, the evolution of peak stress in BCC is investigated
systematically under different water–based polymer binders, loading of conductive carbon black,
elastic modulus and thickness of SEI, as well as charging rates. In contrast to the single-particle or
particle-BCC coating structures, we found—possibly for the first time—that the circumferential cracks
induced by lithiation may primarily initiate in BCC rather than in other electrode components.

2. Model Description

The multilayer electrode particle system composed of active material, SEI film and BCC as shown
in Figure 1 are considered. It is assumed that the particles are spherical in structure, SEI and BCC are
uniformly deposited and coated on them, and the corresponding radii are a, b and c, respectively. Due to
high porosity in the graphite electrode composite, the mechanical interaction among the active particles
may be negligible. This is to say, there are no external forces on the exposed particle surface. Similar
boundary condition at outer surface were adopted for determining the stress evolution of electrode
particle system in many published investigations [21–24]. Therefore, the spherically symmetric particle
with free traction at the outer surface of the BCC is applied to depict the composite graphite electrode.
Based on the hypothesis, the thickness of SEI is hSEI = b− a, while the thickness of BCC is hBCC = c− b.

Figure 1. Schematic plot of a multilayer spherical electrode particle system.

Under the spherical coordinates, the diffusion of lithium in active particles is determined by the
following equation:

∂c
∂t

+
1
r2

∂
(
r2J

)
∂r

= 0 (1)
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Here, c
(
mol/m3

)
is the molar concentration of lithium and J = Dc∇µ/

(
RgT

)
is the related lithium

flux, where D
(
m2/s

)
, µ (J/mol), Rg (J/K/mol) and T (K) represent the diffusion coefficient of lithium,

chemical potential, universal gas constant and temperature, respectively. Taking the influence of
mechanical energy caused by stress on chemical potential into consideration, the chemo-mechanical
potential µ can be further expressed as:

µ = µ0 + RgT ln c−Ωσh (2)

where µ0 is the an invariant reference potential, Ω (m3/mol) is the partial molar volume of lithium and
σh is the hydrostatic stress, which can be calculated by radial stress σr and circumferential stress σθ
under the spherical coordinates, i.e., σh = (σr + 2σθ)/3.

The following governing equation of lithium diffusion can be obtained through substituting
Equation (2) into Equation (1).

∂c
∂t

=
1
r2
∂
∂r

{
Dr2

(
∂c
∂r
−

Ωc
RgT

∂σh
∂r

)}
(3)

Driven by the gradient of chemical potential, the lithiation and delithiation on the surface of the
particles are assumed to take place at galvanostatic or potentiostatic conditions and the corresponding
initial and boundary conditions are expressed as [41–43]:

c = c0(t = 0)
−n · J|r=0 = 0, −n · J|r=a =

in
F for galvanostatic operation

−n · J|r=0 = 0, c |r=a = cb for potentiostatic operation
(4)

where c0 is initial molar concentration of lithium, n is the surface normal vector, F = 96,485.3 C/mol
represents the Faraday’s constant, in

(
A/m2

)
is the surface current density of active particles and cb is

the boundary molar concentration of lithium under constant voltage operation.
For convenience, the state of charge (SOC) is introduced to intuitively reflect the lithiation state of

active material, which can be acquired by the following equation:

SOC = caverage/cmax =

∫ a
0 4πr2cdr

4πa3cmax/3
=

3
a3cmax

∫ a

0
r2cdr (5)

When the active material is lithiated, the lithiation deformation will generate the Vegard stress,
which then triggers the strain in surrounded SEI and BCC. The structural stress may endanger the
mechanical integrity of the electrode particle system and ultimately results in the degradation of battery
performance. Regarding the graphite particles that are considered here, it is assumed that both the
active materials and SEI are linear elastic materials and thus the corresponding relationship between
stress and strain can be expressed as:

σr =
E

1+v

(
v

1−2vθ+ εr
)
−

1
3

EΩc
1−2v

σθ = E
1+v

(
v

1−2vθ+ εθ
)
−

1
3

EΩc
1−2v

(6)

where E (GPa) and v are the elastic modulus and Poisson’s ratio of the lithium compounds, respectively.
θ = εr + 2εθ is the volumetric strain. εr and εθ are the radial and hoop strains. The first term on the
right side of Equation (6) is the mechanical elastic stress, while the latter term is related to the lithium
concentration and represents the stress induced by atomic diffusion. It is noticeable that only active
materials are lithiated during lithium solid-phase diffusion, and thus the above equation is only valid
for active particles. For SEI, the term of diffusion induced stress in Equation (6) must be omitted.

Previously, we carried out the tensile stress relaxation experiments on SA and CMC/SBR doped
by Super-S carbon black at the weight ratio of 0%, 20%, 35%, 50% and 60% in 1.1-M LiPF6-EC/DMC,
respectively. In terms of the evolution of normalized stress versus time, it was found all curves
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exhibited typical linear viscoelastic behavior (time-dependent stress reduction), but with different
degrees of relaxation [32]. To this end, the deformation response of BCC is thereby characterized in
term of a rheological model composed of two Maxwell elements and a spring in parallel (see Figure 2).
The corresponding constitute equations are given by σBCC

vol = 3KBCCεBCC
vol

σBCC
dev = 2

∫ t
0 Γ(t− t′)

∂εBCC
dev
∂t′ dt′

(7)

where σ and ε represent stress and strain, respectively. KBCC is the volume modulus and Γ(t) is
the function of relaxation modulus. The subscript ‘vol’ and ‘dev’ indicate the spherical tensors and
deviator tensors, respectively. The superscript BCC means that this parameter corresponds to the
binder and conductive composite. The function of the relaxation modulus can be written in terms of
the Pony series:

Γ(t) = G0 + G1 exp
(
−

t
τ1

)
+ G2 exp

(
−

t
τ2

)
(8)

where G0, G1 and G2 represent the shear modulus of springs in the Maxwell model, respectively. τ1 and
τ2 are the relaxation time values of corresponding dashpot.

Figure 2. Rheological model for binder and conductive composite (BCC) composed of two Maxwell
elements and a spring in parallel.

According to the tensile stress relaxation curves of Super-S carbon black (SS) filled SA and
CMC/SBR films [32] and Equation (8), the relaxation modulus and characteristic time are obtained by
1stOpt® nonlinear regression software (7D-soft high technology incorporation, Beijing, China), and its
evolution against SS content are separately listed in Tables 1 and 2.

Table 1. Viscoelasticity parameters of sodium alginate (SA) with different carbon black contents.

SS Contents (wt%) G0 (MPa) G1 (MPa) τ1 (min) G2 (MPa) τ2 (min)

0 320.3 195.3 51.85 132.67 2.1
20 163.6 140.11 28.26 94.9 1.6
35 84.2 103.87 24.13 69.24 1.33
50 27.9 57.56 19.57 35.04 1.18

Table 2. Viscoelasticity parameters of sodium carboxymethyl cellulose (CMC)/styrene–butadiene
rubber (SBR) with different carbon black contents.

SS Contents (wt%) G0 (MPa) G1 (MPa) τ1 (min) G2 (MPa) τ2 (min)

0 247.4 110.44 295.6 73.62 3.18
20 176.2 74.42 253.16 56.03 1.89
35 104.2 68.06 174.45 45.38 1.72
50 51.6 43.81 130.55 21.8 0.59
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Neglecting the body force, the equilibrium equation in spherical coordinates can be presented as:

dσr

dr
+

2
r
(σr − σθ) = 0 (9)

On condition that the lithiation deformation is in the infinitesimal range, the radial strain εr and
hoop strain εθ can be expressed as functions of radial displacement u:

εr = dur/dr, εθ = ur/r (10)

As to the spherical symmetric structure under consideration, the radial displacement at the center
of the sphere is inevitably zero in the deformation process, as the Equation (11). In the following
equations, superscripts A, SEI and BCC represent the active materials, solid electrolyte interface and
carbon black-filled aqueous polymer binder materials, respectively.

uA
r |r=0 = 0 (11)

The active material–SEI interface and SEI–BCC interface meet the corresponding displacement
and stress continuity conditions as presented by Equation (12):

uA
r |r=a =uSEI

r |r=a , σA
r |r=a =σSEI

r |r=a

uSEI
r |r=b =uBCC

r |r=b , σSEI
r |r=b =σ

BCC
r |r=b

(12)

Finally, the boundary condition at the BCC surface is expressed as:

σBCC
r |r=c = 0 (13)

To numerically drive the aforementioned model in the following simulations, one can perform
coupled analysis in commercial numerical software COMSOL. Here, noting that the stress within the
isotropic active particle is obtained via the analogy between thermal stresses and diffusion induced
stresses, the partial derivative of hydrostatic stress versus lithium concentration depends only on
the material constant, i.e., ∂σh/∂c = −2EΩ/[9(1− v)]. The lithium concentration can thus be solved
beforehand by substituting it into the governing Equation (3) and applying the corresponding initial
and boundary conditions shown in Equation (4). Through the above processing, the two-way coupling
between lithium diffusion and mechanical stress can be decoupled. Hence, the problem degenerates
into a traditional viscoelastic problem, which is defined by Equations (6)–(13), and it can be easily
solved by numerical methods everywhere [44].

3. Results and Discussion

3.1. Distribution of Lithium Concentration and Stress in Electrode Particle System

First of all, lithium diffusion and the induced stress in graphite particle, SEI film and BCC are
analyzed, respectively. The viscoelasticity parameters of BCC are shown in Tables 1 and 2 and material
constants of graphite particle are listed in Table 3. The modulus and thickness of SEI are set as 1 GPa
and 50 nm [6], respectively. The ratio of graphite radius, SEI thickness and BCC thickness is initially
set as 1:0.01:0.1. The influence of thickness ratio and Young’s modulus on the structural stress will be
discussed separately later.

Taking 20%-SS-doped CMC/SBR as an example of BCC, we have calculated the distribution of
lithium concentration in graphite particle and obtained the radial and hoop stress of the spherical
electrode system under different state of charging. A charging procedure that constant current (CC) first
followed by constant voltage (CV) is used to make the active material full lithiation. The first stage is
galvanostatic charging (1C rate) until the lithium concentration at the boundary reaches the saturation,
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it then turns to the potentiostatic operation as the second stage, with the boundary concentration
being cb = cmax. As can be seen in Figure 3a, since the lithiation starts from the sphere surface to the
inside, the lithium concentration is low at the center while high on its surface during the lithiation
process, which is distributed in a radial gradient. The lithium concentration increases with the increase
of SOC and eventually reaches the complete lithiation. In the meantime, Figure 3b,c shows that the
stress in the graphite particle also presents nonlinear changes under the influence of structure and
lithium-concentration gradient. Furthermore, as the radial stress gradient (dσr/dr) is negative and
decreases from zero along the radius direction, it reaches the minimum value on the surface of the
active material. Therefore, during the lithiation process, the hoop stress value gets the minimum at
r = a and the maximum value exists at the sphere center. At the center of the sphere, the hoop stress
is identically equal to its radial stress due to dσr/dr = 0. The above results are consistent with those
of Cheng et al. [45] and He et al. [44]. It can be seen from Figure 3b,c that the stress of SEI is derived
from the lithiation deformation of active particle, so that the maximum stress occurs at the moment
of full lithiation (SOC = 100%). As for BCC, its radial stress can be determined by the continuity
condition (Equation (12)) and the boundary condition (Equation (13)). The stress continuity condition
is satisfied at the SEI–BCC interface, while the value in BCC surface is 0, which is in line with the
result in Figure 3b. The hoop stress is different at the SEI–BCC interface due to the changes of material
properties. It also presents a gradient variation similar to the hoop stress of SEI that is large near the
particle center and small when far from the center. This ascribes to the structural deformation of the
multilayer electrode.

Table 3. Material parameters of graphite particles [21].

Poisson’s ratio 0.3
Young’s modulus (GPa) 10.0

Partial molar volume of Li (m3/mol) 3.17 × 10−6

Li diffusion coefficient (m2/s) 4.9 × 10−14

Saturated Li concentration (mol/m3) 3.05 × 104

It is worth noting that, influenced by the viscoelasticity of polymer binder, the peak value of
hoop stress in BCC during the lithiation does not occur in the state of complete lithiation. Instead,
as shown in Figure 3c, it increases in the beginning and then decreases, which is the coupling effect of
electrochemical loading and material relaxation. To further illustrate the situation, Figure 4 shows
that the hoop stress of BCC at the SEI–BCC interface evolves with lithiation process. Meanwhile,
it compares the stress in elastic BCC with that in viscoelastic BCC. It is observed that the interface
hoop stress increases linearly in the constant current (CC) charging, decreases after increasing during
the potentiostatic lithiation and the peak value (σpeak

θ
) appears in the initial stage of constant voltage

(CV), which is about 26.1 MPa for viscoelastic 20% SS-CMC/SBR as seen Figure 4a. However, when the
viscoelasticity of BCC is disregarded, it is clear from Figure 4b that the interface stress rises continuously
as charging time increases. At the complete lithiation, it reaches the peak value, 36.0 MPa, which is
about 1.4 times of that in viscoelastic case. It means that the relaxation effect of BCC cannot be ignored
when evaluating the stress in composite electrode.

Noticeably, as seen in Figure 3, the peak tensile hoop stress of active particle and SEI are 4.1 MPa
and 43.0 MPa, respectively, which are less compared to the tensile strength of the corresponding
materials (σgraphite

b = 20 − 100 MPa [46] and σSEI
b = 45 MPa [47]). However, above-mentioned 20%

SS–CMC/SBR in the lithiation has subjected to very high tensile deformation and σpeak
θ

is up to 165%
larger compared to the tensile strength of BCC (15.8 MPa [32]). It would lead to circumferential
cracking in BCC and affect the structural integrity. Therefore, it is necessary to explore the effects of
aqueous binder type, conductive agent content, SEI properties and charging condition on the peak
stress in BCC.
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Figure 3. Distribution of Li concentration and stress in electrode system under different states of charge
(SOC) (1C rate). (a) Lithium concentration in graphite particle; (b) radial stress; (c) hoop stress.
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Figure 4. Evolution of hoop stress at solid electrolyte interface (SEI)-BCC interface (r = b) over time in
the lithiation process.

3.2. Effects of Carbon Black Contents and Polymer Type on Peak Stress in BCC

Next comes the discussion of σpeak
θ

in BCC with the different mass fractions of SS carbon black.
The lithiation condition remains unchanged and the simulation results of peak hoop stress are shown
in Figure 5.

Figure 5. Effect of carbon black contents (wSS) and polymer type on peak hoop stress (σpeak
θ

) in BCC.

As seen in Figure 5, with the increase of SS loading from 0% to 50%, the hoop stress in BCC of both
the SA and CMC/SBR matrices decreases and its distribution gets more uniforms. For SS-SA, the value
of σpeak

θ
in BCC decreases by 90%, which is from the initial 47.0 to 4.8 MPa. As to the SS-CMC/SBR,

the peak stress decreases by 76%, from 37.2 to 8.8 MPa. The engineering stress-strain (σ ∼ ε) curves of
neat CMC/SBR and SA-based BCC films display the features of brittle polymers, however, when the
carbon black is added, it gradually tends to show more features of ductile polymers [32]. As such,
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the variation of σpeak
θ

in BCC is mainly a consequence of the decline of elastic modulus caused by the
transition from brittleness to ductility and the rapid structure relaxation. Remarkably, virgin SA has
sustained a much higher hoop stress compared to CMC/SBR. Nevertheless, σpeak

θ
in SS-SA rapidly

decreases as SS loading increases from 20% to 50%, and it is gradually lower than that in SS-CMC/SBR
at the same content of carbon black [32]. This is ascribed to the effect of conductive agent addition
on the reduction of stiffness and relaxation time that is relatively noticeable for SA matrix as seen in
Tables 1 and 2.

Although adding conductive carbon black into the binder contributes to the reduction of structural
stress, the previous mechanical experiment revealed that the increase of SS contents also weakens
the tensile strength (σb) of water soluble polymer-based composites [32]. Hence, in order to further
analyze the mechanical integrity of BCC under different addition amounts of carbon black, Figure 6
exhibits the variation of the ratio of σpeak

θ
in BCC to its σb against SS mass fraction. From figure, it can

be seen that with the increased concentration of carbon black, the magnitudes of σpeak
θ

/σb gradually
switch from being greater than or equal to 1 to less than 1. Such a transition manifests that the higher
the SS content, the smaller the ratio of BCC stress to its strength—and the less prone the polymer
composite is to become damaged in the circumferential direction, which is more conducive to ensuring
the mechanical integrity of BCC in the electrochemical cycling process. Importantly, the threshold
values of carbon black content are 27 wt% and 50 wt% for SS-SA and SS–CMC/SBR, respectively.
Further, at the same loading of conductive carbon black, SS-SA exhibits much better resistance to
tensile failure compared to SS-CMC/SBR. The increase of carbon black helps not only to enhance
the structure stability of BCC, but to enrich the conductive network in BCC and further improve its
electrical properties. Considering that the excess inactive material would decrease the specific capacity
of cell, 50 wt% of carbon black is a compromise constitute content in terms of the comprehensive
mechanical and electrical properties, which is in accordance with the 1:1 ratio of carbon black and
polymer binder in commercial lithium batteries.

Figure 6. Mechanical integrity of BCC with different carbon black contents and aqueous polymer.

3.3. Effect of SEI Modulus and Thickness on Peak Stress in BCC

The above research demonstrates that the tensile hoop stress in the electrode particle system is the
main cause for the damage of polymer binder and conductive composites. Zhang et al. reported that
SEI film exhibits a quite large heterogeneity in the measured modulus which varies from 10 MPa to
10 GPa [48]. How does the variation in both SEI modulus and thickness impact the structure integrity
of BCC? The following discussion aims to elucidate this problem by comparing the peak stress in BCC
under different SEI parameters.
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The peak hoop stress in BCC was simulated for the composite electrode charged by the mixed
mode (initially galvanostatic followed potentiostatic lithiation) and it varied with the change of SEI
stiffness (as shown in Figure 7). The calculation showed that σpeak

θ
in BCC with the constant film

thickness initially enlarges and then decreases as the value of ESEI/Ea increases from 0.001 to 0.1
(10–1000 MPa). When the relative elastic modulus of SEI against active particle was about 0.04, it brings
about the BCC with the highest σpeak

θ
for a group of samples. This was because—for extremely softer

SEI (ESEI ≤ 100 MPa)—the stiffening of SEI could not actually enhance the structural constraints on
the active particle, of which elastic modulus was larger than 100 times of SEI in this case, leading to
only slight effect on lithiation-induced deformation. However, it would substantially give rise to the
increased tensile radial deformation of relaxed BCC attributed to the comparative stiffness of SEI film,
as seen in Figure 8. Additionally, further hardening of SEI could effectively hamper the deformation of
active particle upon lithiation/delithiation, contributing to the linear decline in radial strain of both SEI
and BCC. Therefore, the peak hoop stress in BCC became gradually weakened and the influence was
more obvious for the thicker SEI as shown in Figure 7. In another hand, if the BCC could endure the
tensile loading at critical relative modulus of SEI respective to active material, the variation in physical
properties of passivated layer caused by electrochemical cycling would not endanger the binder and
conductive composite. In addition, it is easy to understand that the magnitudes of σpeak

θ
in BCC decay

with the increased SEI thickness owing to the stronger constraint on the deformation of electrode
system. Previous literature indicated that the factors influencing the material parameters of SEI films
were quite complex [49]. Their thickness and mechanical properties were closely related to the active
materials, liquid electrolyte and its additives, as well as the charging and discharging environment,
etc. Therefore—based on the comprehensive optimal design of the electrode material and lithiation
conditions—a suitable SEI layer appears also important to maintain mechanical stability BCC in the
composite electrode during electrochemical process. It was noted that BCC sustained a peak hoop
stress of around 4.86 MPa at hSEI = 10 nm, which was perceivably higher than that at hSEI ≥ 200 nm.
In another word, neglecting SEI would markedly mislead the structure integrity of polymer binder
and conductive composite.

Figure 7. Effects of modulus (ESEI) and thickness of SEI (hSEI) on peak hoop stress (σpeak
θ

) in BCC.
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Figure 8. Effect of relative modulus (ESEI/Ea) of SEI to active particle on interfacial distance.

3.4. Effects of Lithiation Rate and Thickness of BCC on its Peak Stress

The previous works demonstrate clearly that CV or CC charging at a higher rate would increase
the concentration inhomogeneity, resulting in larger stress in the active layer [50] and SEI [51]. Due to
the relaxation nature of polymer binder, it is not clear how the charging rate affects the peak stress in
BCC. In addition, the variation in the thickness of binder and conductive film can change the constraint
on the composite electrode; the corresponding influence on the mechanical integrity of viscoelastic
BCC is also worthy of in-depth investigation. Herein, we still take 50% SS-SA as an example to analyze
the evolution of σpeak

θ
in BCC with various thickness and lithiation rate.

As far as the given multilayer electrode structure, Figure 9 demonstrates that the higher the
charging rate is, the greater the peak hoop stress in BCC will be during electrode lithiation, and the
stress gradually tends to be constant as lithiation goes on. There are two major reasons. On one hand,
the lithium concentration on the surface of active particles is close to saturation when inserted by
lithium with a high current rate under galvanostatic operation. It thus converts to the potentiostatic
lithiation earlier. On the other hand, the faster the lithiation is, the slower the BCC relaxation is—and
the stiffer the polymer composite exhibits, which results in a larger σpeak

θ
of the structure. As expected,

a thinner BCC displays higher peak stress owing to the decrease in the cross-sectional area subjected to
loading as seen in Figure 9.

It is clear from the above that increasing the thickness or reducing the current intensity of lithiation
can make the peak stress in BCC lower than its tensile strength. These methods are both beneficial
to enhancing the rupture resistance of bonding material. However, a thicker BCC means a relatively
lower amount of active substance in the electrode material, leading to a reduction in the specific energy
density of the battery. As such, the content of binder and conductive agent in practical design should be
as small as possible on the premise of ensuring the structural integrity of the electrode particle system.
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Figure 9. Effects of lithiation rate and BCC thickness (hBCC) on its peak stress.

4. Conclusions

• Higher tensile hoop stress may occur for polymer binder and conductive composite (BCC) in the
electrode during charging process. As a result, the circumferential cracks primarily initiated in
these inactive materials rather than other electrode components. Further, mechanical damage
did not take place at complete lithiation on account of the polymer viscoelasticity and would be
greatly misled if neglecting the effect of SEI.

• With the increase of conductive agent content, the stress level of the bonding system decreased
significantly under the electrochemical operation. To ensure the mechanical integrity of the
graphite anode with aqueous binders, the minimum mass concentration of carbon black added
in SA and CMC/SBR should be 27% and 50%, respectively. Moreover, SA-based composite
exhibited much better rupture resistance compared to the counterparts at the same content of
conductive agent.

• On the basis of the evolution of peak stress in multilayer spherical structures, a robust composite
electrode may be obtained by: (1) reducing the elastic modulus of the SEI at least to less than that
of the BCC; (2) lithiation at lower rate; (3) increasing the both BCC and SEI as much as possible in
the context of meeting cell capacity requirements; (4) improving the tensile strength of BCC up to
larger than the peak hoop stress in BCC at critical relative stiffness of SEI to active particle.
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