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While the cerebellum plays a critical role in motor coordination and control no studies have investigated its
involvement in idiopathic mobility impairment in community-dwelling elderly. In this study we tested the
hypothesis that structural changes in the cerebellar peduncles not detected by conventional magnetic reso-
nance imaging are associated with reduced mobility performance. The analysis involved eighty-five subjects
(age range: 75-90 years) who had no clinical signs of cerebellar dysfunction. Based on the short physical per-
formance battery (SPPB) score, we defined mobility status of the subjects in the study as normal (score

Keywords:
Agji/ng 11-12, n = 26), intermediate (score 9-10, n = 27) or impaired (score <9, n = 32). We acquired diffusion
Mobility tensor imaging data to obtain indices of white matter integrity: fractional anisotropy (FA), mean diffusivity

(MD), axial diffusivity (AD) and radial diffusivity (RD). Using a parcellation atlas, regional indices within
the superior, middle, and inferior cerebellar peduncles (ICP, MCP, SCP) were calculated and their associations
with mobility performance were analyzed. Subjects with impaired mobility showed reduced FA and AD
values in the ICP and SCP but not in the MCP. The ICP-FA, ICP-AD and SCP-FA indices showed a significant
association with the SPPB score. We also observed significant correlation between ICP-FA and walk time
(r= —0.311, p = 0.004), as well as between SCP-AD and self-paced maximum walking velocity (r = 0.385,
p = 0.003) and usual walking velocity (r = 0.400, p = 0.002). In logistic regression analysis ICP-FA and
ICP-AD together explained 51% of the variability in the mobility status of a sample comprising the normal and
impaired subgroups, and correctly classified more than three-quarters of those subjects. Our findings suggest
that presence of microstructural damage, likely axonal, in afferent and efferent connections of the cerebellum
contributes to the deterioration of motor performance in older people.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
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1. Introduction

Mobility impairment is a common disabling clinical problem
which occurs with aging and increases the risk of falls, injuries and

¥ This is an open-access article distributed under the terms of the Creative Commons
Attribution-NonCommercial-ShareAlike License, which permits non-commercial use, dis-
tribution, and reproduction in any medium, provided the original author and source are
credited.

* Corresponding author at: Center for Neurological Imaging, Department of Radiology,
Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Avenue, RF-398,
Boston, MA 02115, USA. Tel.: +1 617 278 0185; fax: +1 617 264 5154.

E-mail address: moscufo@bwh.harvard.edu (N. Moscufo).
1 M. Cavallari and N. Moscufo contributed equally to this work.

even death (Tinetti et al., 1988). Although there are known neu-
rologic (e.g., Parkinson's disease, stroke, peripheral neuropathy),
non-neurologic (e.g., musculoskeletal, joint diseases) and pharma-
cological (Leipzig et al., 1999) causes of impaired mobility, in a
significant fraction of older individuals the underlying etiology re-
mains unclear (idiopathic). In these subjects an association between
gait impairment and the extent of brain white matter (WM ) damage,
visible as T2-weighted white matter hyperintensities (WMH) upon
upon on magnetic resonance imaging (MRI), has been reported
(Baezner et al., 2008; Baloh and Vinters, 1995; Briley et al., 1997;
Camicioli et al,, 1999; Guttmann et al., 2000; Masdeu et al., 1989;
Sachdev et al., 2005; Starr et al., 2003; Wakefield et al., 2010). Such
abnormalities are a common finding in the elderly population and
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are thought to represent cerebro-microvascular damage (Pantoni,
2010) including abnormal permeability of the blood brain barrier
(Wardlaw et al., 2003).

While lesions in the brain stem have been reported and analyzed
in association with mobility (Starr et al., 2003) imaging studies have
thus far focused on the supratentorial white matter where WMHs
mostly occur. In addition, subjects enrolled in these studies showed
no clinical or MRI signs of cerebellar and brainstem pathology.

The cerebellar peduncles are the communication portals to and from
the cerebellum and therefore critical components of the neural network
underpinning balance and coordination in voluntary motor activity.

Diffusion tensor imaging (DTI), an established advanced in vivo
imaging technique that enables the characterization of anisotropic
water diffusion in white matter fibers (Pierpaoli et al., 1996), has
shown sensitivity to white matter changes in areas not affected by
focal WMH on T2-weighted images (Werring et al., 1999) and is
therefore well-suited to probe the microstructural integrity of these
previously unexplored but potentially informative regions. The DTI
parameters reflecting WM structural integrity are the following:
fractional anisotropy (FA), a sensitive but not specific index of over-
all white matter tracts' integrity; mean diffusivity (MD), a general
indicator of tissue water accumulation; axial diffusivity (AD),
representing diffusivity parallel to the fiber tracts and an index
regarded as a more specific marker for axonal injury; and radial
diffusivity (RD), a parameter representing diffusivity perpendicular
to the fiber tracts and considered more specific for damage to the
myelin sheath. To date, a clear interpretation of the relationship be-
tween these indices and the underlying microstructural tissue prop-
erties is still lacking and therefore it requires caution. However, there
is wide evidence in DTI literature (Alexander et al., 2007) that WM
damage, which leads to increase in water molecule diffusion, gener-
ally is reflected in local decrease of FA and increase of MD (O'Donnell
and Westin, 2011). The AD and RD indices can further help to distin-
guish between axonal degeneration (decrease of AD) or myelin loss
(increase in RD) as primary mechanism of damage to the WM tracts
(Budde et al., 2007; Song et al., 2002).

Cerebellum plays a major role in voluntary motor control and its
three peduncles are a relevant and anatomically well-defined target
for assessing with DTI the integrity of critical parts of the neural
networks, i.e. afferent and efferent connections, involving the cerebel-
lum. The cerebellar peduncles have been investigated using DTI in
various clinical conditions affecting motor functions such as ataxia
(Alcauter et al., 2011; Della Nave et al., 2011), Parkinsonian syndromes
(Nicoletti et al., 2006, 2008) and multiple sclerosis (Anderson et al.,
2011). However, to our knowledge there are no similar studies on the
idiopathic mobility impairment in community-dwelling older subjects.

In this report we describe the findings of a cross-sectional study
we undertook with the goal of assessing the relationship between
poor performance in mobility tests and reduced microstructural in-
tegrity of the cerebellar peduncles.

2. Methods
2.1. Subjects and study design

The subjects included in this analysis represent a subset from a
cohort of ninety-nine elderly subjects enrolled in a 4-year prospective
study on the relationship between brain changes, cardiovascular risk
factors and mobility on which we have reported previously (Moscufo
et al,, 2011; Wakefield et al., 2010; White et al.,, 2011). Data for the
present cross-sectional analysis included eighty-five subjects who
had DTI data of sufficient quality acquired at baseline. Recruitment
methods and eligibility criteria have been described in Wakefield et
al. (2010). Subjects were included if they were 75 to 90 years old
and were enrolled according to a balanced 3 x 3 matrix based on
age (75-79, 80-84, >85) and mobility (short physical performance

battery (Guralnik et al., 1994), SPPB scores: 11-12 =normal; 9-10 =
intermediate; <9 = impaired). Briefly, the following exclusion criteria
were applied: systemic conditions (e.g., severe arthritis) or neuro-
logic disease (e.g., neuropathy, Parkinson's disease) compromising
mobility, medication impairing motor function, cognitive impair-
ment (Mini-Mental State Examination, MMSE <24), corrected distance
vision <20/70, unstable cardiovascular disease (e.g., myocardial infarc-
tion within 6 months, unstable angina), pulmonary disease requiring
oxygen, inability to walk 10 m independently in <50 s, and evidence
of cerebral infarction or intracranial mass lesions on MRI. All the subjects
were evaluated with a battery of mobility performance tests and MRI of
the brain. The following variables, as indicators of cerebrovascular risk,
were included in our analyses: history of hypertension and/or diabetes
mellitus, average 24-h systolic (SBP) and diastolic blood pressure
(DBP), and serum lipoproteins (total, HDL, LDL cholesterol). The 24-h
ambulatory blood pressure monitoring was conducted with the Oscar
I BP device (Suntech Medical Instruments, Morrisville, NC) and
obtained every 15 min from 6 AM to 10 PM and every 30 min from
10 PM to 6 AM (Campbell et al., 2010); the data were analyzed as
previously described (White et al., 2011). Neurologic examination was
performed on each subject by the senior investigator (LW) in order
to determine the presence of diseases compromising mobility (study
exclusion criteria). The exam included evaluation of sensory function
(touch, pin position sense and vibration) and motor function (strength,
tone, coordinated/rapid alternating hand movements, finger to nose,
heel-knee-shin tests and observation of gait/balance). Although minor
findings were occasionally encountered, there was no consistent clini-
cal evidence of cerebellar dysfunction. The review board of the involved
institutions approved the study protocol, which included a written in-
formed consent.

2.2. Mobility assessment

Mobility assessment was carried out at the Balance and Gait Eval-
uation Laboratory, University of Connecticut Health Center, by trained
expert investigators (Panzer et al., 2011). SPPB, Tinetti and mobility
lab testing were done on different days for most subjects. Instruction
and demonstration were provided prior to testing and subjects prac-
ticed and rested as needed then performed the requested tasks. The
assessment included the SPPB (Guralnik et al., 1994), usual walking
velocity (velocity, meters/second) and self-paced maximum walking
velocity (SPMV, meters/second) (Panzer et al., 2011), as well as
Tinetti gait and balance (Tinetti, 1986). The SPPB is a composite score
representing the quartile distribution (worse = 1, best = 4) of the
mobility performance on the following three timed sub-scores: time
to walk a course of 2.5 m (walk time, seconds); five chair rises from
an erect sitting position on an unpadded armless chair set at 41 cm
(average height in the community) with arms crossed below the ster-
num to a stand up position with knees and hips fully extended; standing
balance consisted in side-by-side, semi-tandem, and tandem stands for
ten seconds each. On the basis of the total SPPB score, subjects were
assigned to the following three categories defining mobility status: nor-
mal (SPPB score = 11-12, n = 26), intermediate (SPPB score = 9-10,
n = 27) or impaired (SPPB score < 9,n = 32). To obtain the gait veloc-
ity, subjects were asked to walk at preferred (‘usual’'—performed twice)
or as-fast-as possible (‘max’—once) pace. The test was performed from
a static start on a force-measuring platform (AMTI, Waltham, MA; sam-
ple rate 200 Hz) on an enclosed walkway (out and back, 8.1 m total,
with turn). Average velocity was calculated for each performance and
the faster of the two preferred pace performances (usual velocity) and
the single self-paced max pace (SPMV) values were used for the analy-
ses (Panzer et al, 2011) (for methodology review see Graham et al.
(2008)). Tinetti gait and balance scores are from the Performance-
Oriented Mobility Assessment (Tinetti, 1986). Tinetti gait testing in-
cluded initiation of gait, step height, step length, step symmetry, step
continuity, path deviation, trunk stability, walk stance, and turning
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while walking. Each item scored 1 if normal or 0 if abnormal. Tinetti bal-
ance testing included sitting balance, arising from chair, immediate
standing, standing balance, balance with eyes closed, turning balance,
neck turning, back extension, one-leg standing, push test, reaching
up, bending down, and sitting down. Each item scored 1 (normal) or O
(abnormal) with some items having an additional scored intermediate
classification, i.e., 'adaptive'. For SPPB, usual velocity, SPMV, Tinetti
gait and Tinetti balance better mobility performance corresponds to
higher value. For walk time (seconds) the relationship is reversed,
i.e. the better mobility performance takes fewer seconds.

2.3. Magnetic resonance imaging (MRI) and image analysis

Brain MR images for the subjects included in this study were ac-
quired over a 12-month period on a 3-Tesla Siemens Allegra scanner
(Erlangen, Germany) following mobility assessment (average time
interval between mobility testing and MRI: 52 4+ 30 days). Parame-
ters of the conventional sequences were: 3D-T1-weighted Magneti-
zation Prepared Rapid Gradient Echo (MPRAGE) (176 contiguous
1-mm thick axial slices, relaxation time/echo time (TR/TE) =
2500/2.74 ms, TI = 900 ms, matrix size = 256 x 208, nominal in-
plane pixel dimensions = 1 mm x 1 mm); 3D-Fast Spin Echo (T2)
(176 contiguous 1-mm thick sagittal slices, TR/TE = 2500/353 ms,
matrix size = 256 x 220, nominal in-plane pixel dimensions =
1 mm x 1 mm), and 3D-Fluid Attenuated Inversion Recovery (FLAIR)
(128 contiguous 1.3-mm thick sagittal slices, TR/TE = 6000/353 ms,
TI = 2200 ms, matrix size = 256 x 208, nominal in-plane pixel
dimensions = 1 mm x 1 mm). Pre-processing included correction of
magnetic field-related signal inhomogeneities (Sled et al., 1998) and
linear affine registration of FLAIR and T2 images to the MPRAGE images
(Jenkinson and Smith, 2001). DTI was performed using a standard
twice-refocused EPI sequence with TR/TE = 5800/87 ms, FOV =
20 cm, acquisition and reconstruction matrices = 128 x 96 and
128 x 128, diffusion sensitizing orientations in 12 directions with one
BO, and 8 averages for each direction at b = 1000 s/mm?. Forty-five
contiguous axial slices with 3 mm section thickness were acquired.
DTI data were checked for excessive background noise, motion and
other artifacts; significant artifacts resulted in subject exclusion.
FSL software (MMRIB software library (www.fmrib.ox.ac.uk/fsl)) was
used for standard analysis including motion and eddy current correc-
tions. All DTI images were co-registered to the BO image, with gradient
directions corrected for the applied rotation. To enhance reproducibility
and ensure overlap of narrow white matter (WM) structures between
subjects, Tract Based Spatial Statistics (TBSS) (Smith et al., 2006) were
utilized. This approach defines a WM skeleton from the DTI data (one
for the whole study population, using all data) by finding continuous
tracts of local FA maxima. Each subject's FA, MD, AD and RD maps
were then propagated to this skeleton to ensure that narrow WM tracts,
which may not precisely overlap after whole brain co-registration, are
projected to the same WM skeleton. To reproducibly and efficiently
identify the cerebellar peduncles we used the white matter parcellation
atlas (WMPA) from the International Consortium of Brain Mapping
(Mori et al.,, 2008). The DTI maps and WM skeleton from the TBSS meth-
od were aligned to the WMPA by means of affine registration (12 de-
grees of freedom). The FA, MD, AD, and RD in the cerebellar peduncles
for each subject were obtained by using the WMPA and the WM
skeleton as masks to select only the skeleton WM pixels within the
three peduncles (Fig. 1). These regional indices were expressed as
mean values. Total WMH burden and the brain parenchymal fraction
(BPF) were determined as previously described and expressed as per-
centage of the intracranial volume (Moscufo et al., 2011).

2.4. Statistical analysis

Statistical analysis was performed using SPSS v.13 (SPSS Inc.,
Chicago, Illinois). Normal distribution of the data was assessed with

Kolmogorov-Smirnov Test. Since most of the mobility variables had
a non-normal distribution, all statistical analyses were performed
using non-parametric tests. Differences in DTI metrics between the
three mobility groups (i.e., normal, intermediate, impaired) were an-
alyzed by Kruskal-Wallis or Mann-Whitney tests as indicated. We
measured association by calculating the Spearman's rho correlation
coefficient. In order to assess predictive value we performed logistic
regression as follows. In univariate logistic regression the DTI indices
for each peduncle and the other variables (age, gender, BMI, BPF,
WMH, 24 h-SBP, 24 h-DBP) were tested individually as potential ex-
planatory variables of the categorical response variable representing
normal or impaired mobility (binary values assigned: 0 and 1, respec-
tively). In order to maximize the predictive power of the test we fo-
cused on the two subgroups with clear functional differences and
thus subjects falling in the intermediate mobility group with an
SPPB score = 9-10 were excluded from the logistic regression analy-
sis. In a subsequent step the variables that had a significant predictive
value in univariate testing above were entered together in a multivari-
ate forward stepwise logistic regression model and the best predictor/s
of mobility status was identified. The significance threshold for statisti-
cal testing was <0.05. However, to minimize the identification of false
positive associations (type I error) when multiple comparisons were
performed, a lower p-value was calculated according to the Bonferroni
correction method, i.e. we divided the p-value above (0.05) by the num-
ber of tests that included the variable being tested.

3. Results

Study subjects' characteristics are summarized in Table 1 for the
entire cohort (n = 85) and for the SPPB-based mobility groups,
i.e. normal (n = 26), intermediate (n = 27) and impaired (n = 32).
While the impaired group showed on average higher BMI, larger
WMH burden, more frequent diabetes and hypertension, and lower
MMSE and BPF, the difference among the groups was statistically signif-
icant only for BPF. Mobility characteristics are reported in Table 2. The
DTI metrics of the peduncles and their differences among the mobility
groups are illustrated in Fig. 2. A statistically significant difference in
the mean values of the DTI parameters among the three peduncles
was noted, particularly the lower ICP-FA and ICP-AD values compared
to those of the SCP. Both FA and AD indices of ICP and SCP were lower
(p < 0.007) in the impaired than in the normal mobility group. Consis-
tent with this finding decreased FA and AD (both indicative of damaged
WM) correlated with poorer mobility (i.e. SPPB, as well as individual
mobility measures such as walk time, SPMV, usual velocity and Tinetti
balance, Table 3). Correlation analysis results with the three SPPB
sub-scores, i.e. walk time, chair rise, and standing balance, show that
subjects who performed poorly in these mobility tests (lower score)
are more likely to have lower AD values (indicative of WM damage)
in ICP and SCP (Supplementary Table 1).

To uncover clues regarding possible cause-effect mechanisms, we
tested the relationship of DTI markers with age, as a factor known to
influence DTI characteristics (Inano et al., 2011), and available indica-
tors of cardiovascular risk, i.e. cholesterol, blood pressure, or neuro-
degenerative risk, i.e. brain atrophy (BPF), WMH burden. The results
are shown in Table 4. We found that age is consistently related with
the FA, MD and RD indices in the three peduncles. However, only
the correlation with ICP-RD remained significant after Bonferroni
correction for multiple testing. No relationship with levels of serum
lipoproteins was observed. While both 24-h average SBP and DBP
measurements showed some degree of association with DTI metrics
of the cerebellar peduncles, DBP showed slightly more widespread
correlations of which the most significant were those with ICP-RD,
MCP-MD and MCP-AD. BPF showed the strongest correlation with
the peduncles' FA and to a lower extent with RD in ICP, MCP and
SCP; and with AD in ICP and SCP. We found that WMH burden corre-
lated weakly with FA, MD and RD in all three peduncles (Table 4).
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Fig. 1. The figure illustrates the location of the inferior (red), middle (green) and superior (yellow) cerebellar peduncles. The 3D model reconstructions of the peduncles are
superimposed on the standard DTI-FA (fractional anisotropy) skeleton map (A-F) or on the structural T1-weighted magnetic resonance images of a study subject (G-I). The cer-
ebellar peduncles are shown individually in A-C and all together in D-1. Columns left to right show sagittal, axial and coronal orientations, respectively. Models of the peduncles are
made transparent to show layering of the models as well as part of the skeleton from which average values were calculated from the respective fractional anisotropy (FA), mean
diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) maps. The lettering at bottom left of the panels G, H and I, indicate the orientation of the corresponding panels in

the column (S: superior; A: anterior; P: posterior; I: inferior; L: left; R: right).

WMH burden correlated with SPPB walk time (r = 0.385, p = 0.0003)
and Tinetti gait (r = —0.381, p = 0.002).

Presence of WM lesions in the brain stem has been reported in a
previous study on mobility and MR T2-weighted brain WM abnor-
malities in a sample of elderly subjects 78-79 years of age (Starr et
al.,, 2003). We confirmed the absence of focal morphological abnor-
malities in the peduncles of the subjects included in this study by
careful review of the structural MR images (performed by MC, a neu-
rologist with image analysis expertise). However, fourteen subjects
presented with MR signal inhomogeneities in the pontine areas
neighboring the superior and middle cerebellar peduncles (ten and
four subjects, respectively). In addition one subject showed small bi-
lateral slight hyperintensity in the SCP. These fifteen subjects did not
cluster in a particular mobility group (five in the normal, six in the in-
termediate and four in the impaired group) and exclusion from the
analysis did not significantly change the observed correlation results.

To estimate the ability of the DTI indices to predict mobility status
we performed a logistic regression analysis using normal versus
impaired status as categorical response variable. For this analysis we in-
cluded only subjects in the normal (SPPB score = 11-12) and impaired
(SPPB score < 9) mobility groups (see Methods). Age, BMI, BPF, WMH

burden, and blood pressure were also analyzed as factors potentially
relevant in mobility performance. When we tested the variables indi-
vidually we found that age, BMI, BPF, ICP-FA, ICP-AD, SCP-FA, SCP-AD
and SCP-RD were significant explanatory variables of mobility status
(Table 5). To identify the best predictor/s we included all the significant
variables above in a multivariate logistic regression model analyzed
with the forward stepwise method. The ICP-FA and ICP-AD were the
only two variables retained in the final model. Together they explained
51% of the variability in the mobility status (Nagelkerke-r> = 0.510)
(Table 5) and resulted in correct overall classification of 77.6% of the
subjects in the two mobility groups.

4. Discussion

We investigated the relationship between mobility performance
and indices of microstructural integrity of the cerebellar peduncles
in elderly subjects who had no clinical evidence of cerebellar dysfunc-
tion. We found that impaired mobility associated with decreased FA
and AD within the inferior and superior peduncles. These findings
likely reflect the presence of microstructural alterations in tracts
connecting the cerebellum with structures that participate in motor
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Table 1
Characteristics of the study subjects.
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Mobility Groups

All subjects Normal Intermediate Impaired p

(n = 85) (n = 26) (n =27) (n = 32)
Age (years) 83+ 4 82+ 4 84 + 4 84 + 4 0.09°
Gender (F/M) 47/38 14/12 15/12 18/14 0.98"
BMI (kg/m?) 26 + 4 2443 26+ 3 27+ 5 0.12¢
Hypertension, n (%) 59 (69%) 17 (65%) 16 (59%) 26 (81%) 0.16"
24 h-SBP (mm Hg) 131.5 £ 13.1 1323 £ 12 1314 4+ 146 1308 + 13 0.91°
24 h-DBP (mm Hg) 675+ 7.1 67.8 + 7.1 67 +£ 5.9 67.7 £ 82 0.97°
Diabetes, n (%) 7 (8.2%) 1(1.2%) 1(1.2%) 5 (5.9%) 0.16°
Total cholesterol (mg/dL) 196.6 & 40.4 192.7 &+ 359 202 4 38.7 195.7 4+ 47.1 0.81°
LDL (mg/dL) 123.8 + 36 121.1 £+ 31.1 126.9 + 35.2 1237 + 424 0.63°
HDL (mg/dL) 56.4 4+ 15.3 56.5 4+ 12.8 61.2 + 16.3 52 + 16.1 0.10*
MMSE 28 £ 1 29 £ 1 29 4+ 2 28 +£ 1 0.09°
WMH (% ICC) 0.97 4+ .89 0.84 4+ .85 0.76 + .53 1.25 £+ 1.09 0.19°
BPF (% ICC) 70.7 + 34 723 + 34 70.6 + 3.6 69.6 + 2.9 0.008°

Values are expressed as mean =+ standard deviation.

Abbreviations: body mass index (BMI), systolic blood pressure (SPB), diastolic blood pressure (DPB), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol
(HDL), mini-mental state examination (MMSE), white matter hyperintensities (WMH), intracranial cavity volume (ICC), brain parenchymal fraction (BPF).

Group differences:
@ Kruskal-Wallis test.
b Chi-squared test.

control (i.e. spinal cord, vestibular system, and thalamus). It is plausi-
ble that these alterations decrease the efficiency of processing and in-
tegration of sensory and motor information by the cerebellum.

The ICP includes both cerebellar efferent and afferent fibers to and
from the vestibular nuclei (vestibulocerebellar tracts) that carry infor-
mation about eye movements, and the orientation of head and body
as well as afferent spinal fibers (spinocerebellar tracts) carrying ipsi-
lateral proprioceptive information important for posture, locomotion
and muscle tone control (Thach and Bastian, 2004). The MCP contains
exclusively tracts from the pontine nuclei to the cerebellum convey-
ing information from the cerebral cortex, mostly motor and somato-
sensory areas. The SCP is constituted predominantly by efferent
fibers (pontocerebellar tracts) carrying information related to skilled
limb movements (Fitzgerald, 1992) and, in small proportion, by affer-
ent vestibulocerebellar tracts from the inferior midbrain colliculi
and spinocerebellar fibers from the spinal cord, involved in reflex
eye movements and locomotion, respectively (Kandel et al., 2000;
Nieuwenhuys et al.,, 1981). The results in supplementary Table 1
showing that the most highly significant correlations are observed
between SCP and walk score and between ICP and chair rise score
seem consistent with the above physiological description. The com-
plex network architecture likely relates to the differences in the DTI
indices of the peduncles, particularly between the ICP and SCP, we ob-
served in the whole study sample (Fig. 2). While we did not

Table 2
Mobility characteristics of the study population.

investigate further this result being outside the scope of our analysis,
we interpret it as being related to the presence of fanning fibers and/
or axon-to-myelin ratio differences among the three peduncles
(Stieltjes et al., 2001). The coexistence of both efferent and afferent
type of fibers with various bend and trajectories within the inferior
and superior peduncles is consistent with this explanation.

While our interpretation is limited by the fact that afferent and ef-
ferent projections cannot be distinguished on DTI, the finding that
ICP-FA and ICP-AD indices are the best predictors of impaired mobil-
ity among the variables tested suggests that our study population is
more sensitive to alterations in spinal proprioceptive afferents rather
than to alterations in the SCP pontocerebellar efferents. None of the
DTI indices in the MCP showed significant correlation with mobility
performance. One may speculate from these findings that mobility
is relatively less sensitive to microstructural damage in the
pontocerebellar connections of the MCP due to the functional com-
pensatory reserve potential provided by the abundance of fibers in
this peduncle (Tomasch, 1969).

The novelty of our observations is in the detection of changes in brain
white matter regions that appear normal in conventional T2-weighted
MRI and that were not analyzed previously in elderly with idiopathic
mobility impairment. Cerebellar dysfunction in the study subjects was
excluded by neurological examination at enrollment. The impact of mac-
roscopic damage in the brainstem and peduncles on motor functions is

Mobility Groups

All subjects Normal Intermediate Impaired p
(n = 85) (n = 26) (n=27) (n=32)
SPPB (score) 8.95 + 2.29 11.23 4+ 043 9.67 + 048 6.50 + 1.70 NA
WS (score) 3.40 + 0.76 3.96 + 0.20 3.70 + 047 2.69 + 0.69 <107°
CR (score) 215+ 1.13 3.27 £ 045 2.30 + 0.78 1.13 £ 0.79 <10-¢
SB (score) 339 £ 1.01 3.96 £+ 0.20 3.67 £ 0.56 269 +1.28 <10~°
Walk time (s) 325 + 1.16 2.58 + 0.343 2.99 + 038 4.01 £+ 1.56 <107°
Velocity (m/s) 0.66 + 0.16 0.77 + 0.13 0.69 + 0.13 0.52 + 0.11 2x107°
SPMV (m/s) 0.71 £ 0.17 0.83 £ 0.13 0.74 £+ 0.15 0.56 + 0.11 3x10°°
Tinetti gait (score) 11.23 4+ 1.26 11.73 4+ 0.55 1126 + 1.73 10.65 4+ 1.09 0.001
Tinetti balance (score) 14.95 + 1.54 15.68 4+ 0.72 15.21 4+ 1.18 13.95 4+ 1.94 0.001

Values are expressed as mean 4 standard deviation.

Group comparison: p-values (Kruskal-Wallis test) indicate level of significance among the three mobility groups.
Abbreviations: short physical performance battery (SPPB); walk time (WS); chair rise (CR); standing balance (SB); velocity and self-paced maximum velocity (SPMV) are expressed
in meters/second (m/s); walk time represents the time to walk a distance of 2.5 m; WS, CR and SB are the SPPB sub-scores.
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Fig. 2. Boxplots show the values and distributions of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) in the inferior, middle and
superior cerebellar peduncles in the normal (NOR: SPPB = 11-12, n = 26), intermediate (INT: SPPB = 9-10, n = 27) and impaired (IMP: SPPB < 9, n = 32) mobility groups. The
p-values of post-hoc comparison analysis (Mann-Whitney) between the two specified groups are reported. Thick lines inside the boxes indicate the median value. The whiskers
indicate the top and bottom quartiles; circles are outliers; stars are extreme outliers. FA is a normalized index with values between 0 and 1; MD, AD, and RD are expressed as pmz/s.

also unlikely since we confirmed the absence of focal abnormalities in
the peduncles on structural MR images. The findings therefore support
a link between decreased mobility and microstructural damage in the
cerebellar peduncles. Previous studies on inherited cerebellar disorders
in subjects with spinocerebellar or Friedreich's ataxia have reported de-
creased FA in the ICP and/or SCP (Alcauter et al., 2011; Della Nave et al.,
2008; Mandelli et al., 2007) thus showing that DTI metrics can reveal
diffuse changes in the cerebellar peduncles that have evident clinical im-
pact on motor skills.

The pathophysiological significance of the DTI indices is still
uncertain and we are cautious in deciphering the findings from
our study. Evidence from DTI literature and results from human
studies help in the interpretation of the different DTI indices and
the implications for underlying white matter pathology. The FA pa-
rameter is a sensitive but not specific index of white matter tracts'
overall integrity reflecting one or several factors including axonal
degeneration, myelin damage and extracellular/intracellular water

distribution (O'Donnell and Westin, 2011). The AD index is
regarded as a more specific marker for axonal injury (Budde et al.,
2007; Song et al., 2002). RD is considered more specific for damage
to the myelin sheath (Song et al., 2002) while the MD is a general in-
dicator of tissue water accumulation (Alexander et al., 2007). Based
on the above criteria we interpret the observed associations of im-
paired mobility with FA and AD, but not with MD or RD, as
supporting axonal damage rather than other types of fiber injury
as the underlying mechanism. The association of mobility impair-
ment with decreased axonal integrity index is independent from
the effect of age. In fact, no correlation between age and AD was ob-
served. In contrast, we found that age correlated with the other DTI
markers, particularly RD, consistent with evidence from other stud-
ies showing that normal aging is predominantly associated with re-
duced myelin integrity (Inano et al., 2011; Salat et al., 2005).

As seen with age, cerebellar peduncles AD was not related to
supratentorial WMH burden, which is only minimally related to the
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Table 3
Correlation of diffusion tensor imaging (DTI) indices of the cerebellar peduncles with
mobility performance.

Table 5
Logistic Regression — variables tested as predictors of mobility status (normal = 0 or
impaired = 1).

Peduncle  SPPB Walk time ~ SPMV Velocity  Tinetti Tinetti
DTI-index gait balance
ICP-FA 0.415 —-0311 0.263 0.260 0.108 0.287
(0.00008) (0.004) (0.044) (0.047) (0.410) (0.024)
ICP-MD 0.097 —0.041 0.031 0.091 —0.043 —0.043
(0.376) (0.711) (0.816)  (0.494) (0.789) (0.784)
ICP-AD 0.408 —0.269 0.252 0.299 0.024 0.111
(0.0001) (0.013) (0.050) (0.021) (0.855) (0.390)
ICP-RD —0.115 0.108 —0.165 —0.118 —0.078 —0.198
(0.297) (0.327) (0.212)  (0.375)  (0.550) (0.124)
MCP-FA 0.182 —0.227 0.262 0.264 0.048 0.117
(0.095) (0.036) (0.045) (0.043) (0.714) (0.367)
MCP-MD  —0.034 0.050 —0.062 —0.053 0.057 —0.055
(0.757) (0.652) (0.642) (0.692) (0.664) (0.669)
MCP-AD 0.081 —0.100 0.117 0.116 0.125 0.051
(0.461) (0.364) (0.376)  (0.383)  (0.338) (0.696)
MCP-RD —0.146 0.179 —0.248 —0242 —00.16 —0.154
(0.184) (0.101) (0.058) (0.065)  (0.903) (0.233)
SCP-FA 0.306 —0.253 0.289 0.273 0.147 0.161
(0.004) (0.019) (0.026) (0.036) (0.258) (0.212)
SCP-MD 0.016 —0.073 0.107 0.120 0.035 0.046
(0.882) (0.509) (0.420)  (0.365)  (0.789) (0.722)
SCP-AD 0.271 —0.291 0.385 0.400 0.222 0.272
(0.012) (0.007) (0.003) (0.002) (0.085) (0.032)
SCP-RD —0.201 0.146 —0.120 —0.093 —0.097 —0.081
(0.066) (0.184) (0.365) (0.484)  (0.459) (0.531)

Associations are expressed as Spearman's rho (p). Statistical significance is indicated in
bold (p < 0.05) and in italic (p < 0.004, after Bonferroni correction for multiple
comparisons: 0.05/12). Abbreviations: self-paced maximum velocity (SPMV); short
physical performance battery (SPPB); inferior cerebellar peduncles (ICP); middle cere-
bellar peduncles (MCP); superior cerebellar peduncles (SCP); fractional anisotropy
(FA); mean diffusivity (MD); axial diffusivity (AD); radial diffusivity (RD). Velocity
and SPMV expressed in m/s; walk time: seconds to walk a distance of 2.5 m.

other DTI characteristics of the peduncles. This evidence suggests
that the observed AD reduction in the cerebellar peduncles and the
supratentorial WMH burden reflect different underlying mechanisms.
This is further supported by the lack or weak correlation of both FA
and AD in ICP and SCP with cardiovascular risk factors. Therefore

Variable 22 (p) Nagelkerke pseudo-r?
Age 3.73 (0.05) 0.08
Gender 0.03 (0.86) 0.001
BMI 5.59 (0.02) 0.12

24 h-SBP 0.187 (0.67) 0.005
24 h-DBP 410 (0.98) 0.00001
WMH 257 (0.11) 0.06
BPF 9.59 (0.005) 0.20
ICP-FA 13.39 (0.0003) 0.28
ICP-MD 0.30 (0.58) 0.01
ICP-AD 10.74 (0.001) 0.23
ICP-RD 0.62 (0.43) 001
MCP-FA 3.55 (0.06) 0.08
MCP-MD 0.025 (0.88) 0.001
MCP-AD 1.04 (0.31) 0.02
MCP-RD 0.94 (0.33) 0.02
SCP-FA 11.38 (0.001) 0.24
SCP-MD 0.025 (0.87) 0.001
SCP-AD 9.76 (0.002) 021
SCP-RD 4.33 (0.04) 0.10

Multivariate model (forward stepwise method)
Variables included: age, BMI, BPF, ICP-FA, ICP-AD, SCP-FA, SCP-AD, SCP-RD
ICP-FA + ICP-AD 27.5 (107°) 0.51

Variables individually tested in univariate logistic regression (top). The variables with
chi-square (x?) values reaching statistical significance (p < 0.05), highlighted in bold,
were all included in the multivariate model (bottom). ICP-FA and ICP-AD were the only
variables retained in the final model.

Abbreviations: body mass index (BMI), systolic blood pressure (SPB), diastolic blood
pressure (DPB), white matter hyperintensities (WMH), brain parenchymal fraction
(BPF); inferior cerebellar peduncles (ICP); middle cerebellar peduncles (MCP); superior
cerebellar peduncles (SCP); fractional anisotropy (FA); mean diffusivity (MD); axial
diffusivity (AD); radial diffusivity (RD).

while WMH is thought to reflect cerebral small vessel disease
(Pantoni, 2010; Wardlaw et al., 2003) the axonal damage we observed
in the ICP and SCP likely results from a mechanism distinct from the one
that leads to cerebral WMH. In this regard the strong association of the
peduncles’ FA with brain atrophy suggests that at least in part the

Table 4
Correlations of diffusion tensor imaging (DTI) indices of the cerebellar peduncles with cardiovascular and neurodegenerative risk factors.
Peduncle DTI-index Age Total cholesterol LDL HDL 24 h-SBP 24 h-DBP BPF WMH
ICP-FA —0.300 0.082 0.138 0.178 —0.124 —0.236 0.542 —0.212
(0.005) (0.527) (0.286) (0.167) (0.274) (0.036) (0.000001) (0.052)
ICP-MD 0.300 —0.067 —0.084 —0.057 0.176 0.285 —0.117 0.220
(0.005) (0.603) (0.517) (0.658) (0.122) (0.011) (0.288) (0.043)
ICP-AD 0.119 —0.030 —0.016 0.081 0.134 0.145 0.221 0.068
(0.279) (0.818) (0.904) (0.532) (0.238) (0.202) (0.042) (0.534)
ICP-RD 0.317 —0.035 —0.101 —0.170 0.210 0.330 —0.316 0.256
(0.003) (0.790) (0.436) (0.186) (0.063) (0.003) (0.003) (0.018)
MCP-FA —0.213 —0.056 —0.011 0.061 —0.100 —0.091 0453 —0.264
(0.05) (0.666) (0.930) (0.636) (0.382) (0.427) (0.00001) (0.015)
MCP-MD 0.232 0.202 0.126 —0.057 0.270 0.358 —0.111 0.125
(0.033) (0.115) (0.329) (0.660) (0.016) (0.001) (0.310) (0.255)
MCP-AD 0.136 0.210 0.147 0.012 0.249 0.389 0.061 —0.022
(0.214) (0.101) (0.253) (0.927) (0.027) (0.0004) (0.579) (0.843)
MCP-RD 0.267 0.187 0.112 —0.110 0.246 0.283 —0.264 0.237
(0.014) (0.145) (0.386) (0.395) (0.029) (0.011) (0.014) (0.029)
SCP-FA —0.282 0.157 0.062 0.228 —0.135 —0.013 0.439 —0.282
(0.009) (0.223) (0.632) (0.074) (0.235) (0.909) (0.00003) (0.009)
SCP-MD 0.228 —0.045 0.054 —0.182 0.219 0.249 —0.022 0.210
(0.036) (0.728) (0.676) (0.157) (0.052) (0.027) (0.843) (0.054)
SCP-AD —0.040 0.087 0.078 0.114 0.058 0.227 0.328 —0.037
(0.713) (0.500) (0.546) (0.377) (0.611) (0.044) (0.002) (0.739)
SCP-RD 0.289 —0.145 —0.031 —0.251 0.187 0.134 —0.289 0.323
(0.007) (0.262) (0.810) (0.049) (0.100) (0.241) (0.007) (0.003)

Data are expressed as Spearman'’s rho (p). Statistical significance is indicated in bold (p < 0.05) and in italic (p < 0.004, after Bonferroni correction for multiple comparisons: 0.05/12).
Abbreviations: body mass index (BMI), systolic blood pressure (SPB), diastolic blood pressure (DPB), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol
(HDL), white matter hyperintensities (WMH), brain parenchymal fraction (BPF); inferior cerebellar peduncles (ICP); middle cerebellar peduncles (MCP); superior cerebellar peduncles
(SCP); fractional anisotropy (FA); mean diffusivity (MD); axial diffusivity (AD); radial diffusivity (RD).
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observed changes may occur through a neurodegenerative mechanism.
Future longitudinal analysis or, alternatively, neuropathology studies
could help in shedding light on this particular aspect.

We acknowledge limitations to our study. These include the rela-
tively small sample size that may limit the general applicability of the
findings, the descriptive nature of the cross-sectional analysis, and
the limitations related to image processing. In that regard, reduced
accuracy could have potentially resulted from the relatively small
white matter regions we investigated due to the effort of the
skeletonized-WM approach to exclude non-WM pixels, and from
the calculation of specific regional indices after warping of individual
brain to standard atlas. Since we have undertaken this study with a
focus on these three regions we did not perform a comprehensive
analysis with a voxel-wise whole-brain approach. While we observed
some degree of regional specificity between mobility performance
and the micro-structural integrity of the cerebellar peduncles
(i.e., ICP > SCP > MCP) our findings do not exclude similar relation-
ship with other tract/s. Previous works demonstrated an association
of mobility impairment with specific supratentorial WM regions
(Bhadelia et al., 2009; de Laat et al., 2011; Della Nave et al., 2007;
Moscufo et al., 2011; Srikanth et al., 2010) and therefore it is likely
that associations with other relevant tracts will be observed in a
whole-brain analysis on a larger sample with sufficient statistical
power. Additional results from a limited correlation analysis (supple-
mentary Tables 2 and 3) showed that also the corticospinal tracts and
cerebral peduncles, two other tracts in the brain stem, correlated with
measures of mobility performance. Future work should dissect in
more detail the issue of specificity and interrelationship of different
WM tracts with respect to mobility impairment in the elderly. Finally,
we acknowledge that given the co-existence of different fiber bundles
within the ICP and SCP we cannot distinguish if the observed DTI
changes result from one or all the contributing fascicles, e.g. spino-
or vestibulo-cerebellar tracts in the ICP.

In conclusion the study findings confirm that DTI, a sensitive in
vivo non-invasive medical imaging tool, can detect clinically relevant
alterations in the microstructure of infratentorial white matter. Im-
portantly, damage to the cerebellar peduncles should be considered
a potential pathogenic mechanism in older individuals with idiopath-
ic mobility impairment.
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