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Abstract

Drug-drug interactions are preventable causes of medical injuries and often result in doctor

and emergency room visits. Computational techniques can be used to predict potential

drug-drug interactions. We approach the drug-drug interaction prediction problem as a

link prediction problem and present two novel methods for drug-drug interaction prediction

based on artificial neural networks and factor propagation over graph nodes: adjacency

matrix factorization (AMF) and adjacency matrix factorization with propagation (AMFP).

We conduct a retrospective analysis by training our models on a previous release of the

DrugBank database with 1,141 drugs and 45,296 drug-drug interactions and evaluate the

results on a later version of DrugBank with 1,440 drugs and 248,146 drug-drug interactions.

Additionally, we perform a holdout analysis using DrugBank. We report an area under the

receiver operating characteristic curve score of 0.807 and 0.990 for the retrospective and

holdout analyses respectively. Finally, we create an ensemble-based classifier using AMF,

AMFP, and existing link prediction methods and obtain an area under the receiver operating

characteristic curve of 0.814 and 0.991 for the retrospective and the holdout analyses. We

demonstrate that AMF and AMFP provide state of the art results compared to existing meth-

ods and that the ensemble-based classifier improves the performance by combining various

predictors. Additionally, we compare our methods with multi-source data-based predictors

using cross-validation. In the multi-source data comparison, our methods outperform vari-

ous ensembles created using 29 different predictors based on several data sources. These

results suggest that AMF, AMFP, and the proposed ensemble-based classifier can provide

important information during drug development and regarding drug prescription given only

partial or noisy data. Additionally, the results indicate that the interaction network (known

DDIs) is the most useful data source for identifying potential DDIs and that our methods take

advantage of it better than the other methods investigated. The methods we present can

also be used to solve other link prediction problems. Drug embeddings (compressed repre-

sentations) created when training our models using the interaction network have been made

public.
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Introduction

Adverse drug events are often preventable causes of medical injuries, and adverse drug reac-

tions (ADRs) are estimated to be the fourth leading cause of death in the U.S., ahead of pulmo-

nary disease, diabetes, AIDS, pneumonia, accidents, and automobile fatalities [1]. The cost

attributed to ADRs is estimated to be over $1,000 per patient per year in the US [2]. Estimates

of the number of patients harmed due to drug interactions range from 3-5% of all medication

errors within hospitals. Additionally, drug interactions are the cause of many patient visits to

physicians and emergency units [3, 4]. Thirty-six percent of older adults in the U.S. regularly

use five or more medications or supplements, and 15% are potentially at risk for a major drug-

drug interaction (DDI) [5]. The American Geriatrics Society has identified the consideration

of drug-disease and drug-drug interactions as a key element of optimal care for older adults

with multimorbidity [6]. DDI prediction during the clinical experiments conducted in order

to approve a new drug is difficult [7]. Clinical trials for new drugs don’t address the issue of

DDI directly, and potential DDIs are often not discovered until the third phase of a clinical

trial or once the drug is already on the market. The most practical way to explore the large

number of drug combinations for detecting interacting drugs is through in silico drug-

drug interaction detection, and in this paper, we propose a computational method for DDI

detection.

In recent years, the detection of potential DDIs using computational techniques has gained

attention; previous research has used techniques based on drug-drug interaction similarities

[8], side effect similarities [9], structural similarities [10], or a combination of various similar-

ity measures [11–14]. TMFUF is a method for predicting drug-drug interaction for new drugs

based on triple matrix factorization, it uses side-effects for this task [15]. Other works use natu-

ral language processing (NLP) techniques to train word embedding using document collec-

tions such as PubMed, PMC, MEDLINE, and Wikipedia; the embeddings are later used to

predict DDIs [16]. Computational methods often require a large amount of data for optimiza-

tion. For example, when evaluating a new drug using structural-based similarity methods, the

method will require data showing a strong, well established history for structurally similar

drugs in order to accurately detect drug interactions. Side effect similarity-based methods

require data for drugs with similar side effects, etc. We compare our proposed methods with

other methods which were created using various data types, and the results indicate that the

interaction network (known DDIs) is the most useful data source for identifying potential

DDIs. Like other data sources, the interaction network has limitations. For example, when

evaluating a new drug with no known interactions, the DDI network will not be helpful.

Therefore, the drug-drug interaction prediction problem should be investigated using various

data types.

DDI detection can be seen as a special case of link prediction in a graph. In a link prediction

problem, we seek to accurately predict the edges (interactions) between nodes (drugs) that will

be added to the network. We approach the DDI prediction problem as a link prediction prob-

lem. Perhaps the most basic approach is to rank edges based on the idea that two nodes x and y
are more likely to form a link if their sets of neighbors have a large overlap; this follows the nat-

ural intuition that such nodes x and y represent drugs with many interacting drugs in com-

mon, and hence are more likely to interact. Matrix factorization is another approach for

resolving link prediction problems. Matrix factorization (MF) is the factorization of a matrix

into a product of matrices; this technique is widely used for dimensionality reduction, specifi-

cally in the field of recommender systems. In recent years, successful attempts have been made

to factorize a matrix using deep neural networks [17–19]. Figs 1 and 2 demonstrate how the

DDI prediction problem can be solved by factorizing and reducing the dimensionality of the

Drug-drug interaction detection as a link prediction problem
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adjacency matrix representing the drug-drug interaction graph. For clarity, in Fig 2 the predic-

tion matrix is made symmetric by averaging opposite cells. The figures also demonstrate the

drawbacks of matrix factorization addressed by this research: first, the decomposition is not

symmetric. Since the row vectors and column vectors of the adjacency matrix are identical, the

transpose of the columns matrix should be equal to the rows matrix. The second drawback is

that the score is not bound, it can be limited to the range [0, 1].

In this paper, we introduce AMF and AMFP, two novel methods for predicting DDIs based

on artificial neural networks and the implementation of factor propagation over the interac-

tion network. Unlike some of the methods presented in previous research, AMF and AMFP

use only known drug interactions as input and predict currently unknown drug interactions.

Additionally, most of the previous studies based their work on similarity measures, but AMF

and AMFP are based on machine learning techniques, specifically on neural networks. We

Fig 1. Tackling the DDI prediction problem as a link prediction problem. A) A DDI graph is created: nodes

represent drugs, and edges represent interactions. B) The DDI graph is represented by an adjacency matrix, rows and

columns represent drugs, and a value of one in the matrix indicates an existing interaction; for example, the cell in the

first row and the last column represents the interaction between D1 and D5. In a link prediction problem, a score is

calculated to every non-existing interaction.

https://doi.org/10.1371/journal.pone.0219796.g001

Fig 2. Link prediction using matrix factorization for DDI prediction. The dimension of the adjacency matrix is reduced by factorizing it into two lower ranked

matrices. By multiplying the matrices a score is calculated for every existing and non-existing interaction. In this case, an interaction between D5 and D3 is very likely

to exist. A score is also given to existing links: the interaction between D1 and D4 is stronger than the interaction between D1 and D5.

https://doi.org/10.1371/journal.pone.0219796.g002
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compare AMF and AMFP to existing methods which are based on multiple data sources and

create an ensemble-based classifier using AMF, AMFP, and other well-known link prediction

methods. Compared with existing methods, our methods produce better performances using

only known DDIs as the data source, and the statistical analysis demonstrates that the perfor-

mance improvements achieved by our method are statistically significant. In this paper, we

make three key contributions: (1) we formulate a new artificial neural network-based method

for link prediction, (2) we demonstrate its effectiveness for the drug-drug interaction predic-

tion challenge, conducting extensive evaluations with real data to show the superiority of the

interaction network (known DDIs) as a data source; to show the superiority of our method, we

create drug embeddings for all available drugs, and (3) we create an ensemble-based classifier

to demonstrate the benefit of combining existing high-performing classifiers. The preprocess-

ing, methods, and drug embeddings developed, calculated, and used in this research were

implemented and have been made public: https://github.com/goolig/DDI_prediction.

Materials and methods

Problem formulation

We approach the drug-drug interaction prediction problem as a link prediction problem. Sup-

pose we have an undirected drug interaction network G = (V, E) in which each edge e = (u, i)
2 E represents an interaction between drugs u and i. Note that throughout the paper we use

the terms graph node and drug interchangeably. We use two versions of the drug interactions

graph: G and G0. For two time snapshots t< t0 let G denote the graph constructed using the

known interactions at time t, and G0 denote the constructed graph using the known interac-

tions at time t0. This is a concrete formulation of the drug-drug interaction prediction prob-

lem: we give an algorithm access to network G, and it must then output a list of edges not

present in G, which are predicted to appear in network G0. We refer to t as the training release

date and t0 as the test release date. Of course, drug interaction networks grow through the addi-

tion of nodes (drugs) as well as edges. The training process uses only existing interactions to

predict unknown ones. It is not sensible to seek predictions for edges whose endpoints are not

present in the training interval, as such a prediction will be based on partial information in

terms of link prediction. We use the adjacency matrix to represent G and G0, and the matrices

are used to train AMF and AMFP: Let M denote the number of drugs. We define the drug-

drug interaction matrix Y 2 RMXM
as follows:

yi;j ¼

(
1; if interaction exits between drugs i; j;

0; otherwise:
ð1Þ

Here, a value of one for yi,j indicates an existing interaction between drugs i and j, however a

value of zero does not mean that an interaction does not exist—it could be that the interaction

has not yet been discovered.

Adjacency matrix factorization

Traditionally, matrix factorization associates each row element i and column element j with a

corresponding latent vector pi and qj. The estimate of the corresponding cell yi,j of the matrix

is given by the inner product of the vectors:

ŷi;j ¼
Xk

w¼1

piwqjw; ð2Þ

Drug-drug interaction detection as a link prediction problem
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where the vectors pi and qj are the latent factors, sometimes also referred to as representations,

because they can be used as an alternative representation of the original row and column

objects. The space size k is a parameter, usually set to a much lower value than the original

space size. Using an extremely low k value might lead to underfitting; on the other hand,

extremely high values might lead to overfitting. MF is sometimes improved by using a bias

value corresponding to the row and column elements:

ŷi;j ¼ mþ bi þ bj þ
Xk

w¼1

piwqjw; ð3Þ

where μ is the average value over the whole matrix, and bi and bj are the bias values for the row

and column elements, correspondingly. The parameters are typically learned using optimiza-

tion techniques such as stochastic gradient decent. Regularization techniques are often used

during the optimization process. AMF (adjacency matrix factorization) performs matrix fac-

torization on the adjacency matrix of G. Because the graph G is undirected, the adjacency

matrix M is symmetric. Therefore, it is sufficient to use a single vector and bias value shared

between the rows and columns to estimate M’s cells. To allow precise DDI prediction, we use

an artificial neural network-based model that encompasses the linear structure of the interac-

tion network. The method is based on optimizing the latent factors of each drug in the net-

work; the latent factor is an k-dimensional vector. Fig 3 provides an overview of AMF’s

architecture. AMF takes a one-hot encoding representation of the two nodes under consider-

ation as input. The output of AMF is binary; one indicates an existing interaction, and zero

indicates no interaction between the two input nodes. Note that only an existing drug interac-

tion network is required to train the proposed neural network. No other domain-specific

information is required.

The use of a simple inner product to estimate complex drug-drug interactions in the

low-dimensional latent space might be oversimplistic. The complexity of this model can be

increased by increasing the embedding layer size, however that might cause overfitting. The

space size k should be carefully tuned during the training phase. Matrix factorization and AMF

are closely related to singular value decomposition (SVD). AMF’s main improvements in the

optimization stage compared to matrix factorization and SVD are: (1) sharing the latent vec-

tors of the rows and columns, and (2) optimizing the weights of the element-wise multiplica-

tion and the bias, rather than just using a dot product and adding the biases. AMF is optimized

using the adaptive moment estimation (Adam) optimization algorithm [20] which adjusts the

learning rate for each parameter using estimates of the first and second moments of the gradi-

ents. MF and SVD are aimed at minimizing the mean square error; for a classification task

such as a link prediction problem, binary cross-entropy is more appropriate. Hence, the loss

function used in AMF is binary cross-entropy, defined as follows:

L ¼
X

i;j2Y

� yi;j log ŷi;j � ð1 � yi;jÞ log ð1 � ŷi;jÞ; ð4Þ

where Y is the set of instances (drug pairs), yi,j is the true label which represents the existence

or absence of an interaction, and ŷi;j is the predicted value. Y is created using negative sam-

pling, where all positive samples are used (existing drug interactions), and a relative number

of negative samples are drawn randomly in each epoch; the number of negative samples to be

sampled is a hyperparameter of the model that should be tuned. In this research we sample

one negative sample for each given positive sample.

Drug-drug interaction detection as a link prediction problem
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Adjacency matrix factorization with propagation

AMF excels in the holdout analysis where data is randomly sampled for the testing set (see

Results section for more details). Nevertheless, despite all of the regularization techniques

applied to it, AMF’s generalization ability and performance are poor in the retrospective

analysis where a new unseen version of the dataset is used. The underlying mechanism that

causes an interaction to be discovered and added to the database is not random—it depends

on mediators such as new interactions discovered between substances contained in the

drugs, the drug’s prevalence, and more. To perform well in the retrospective analysis,

higher generalization ability is required from the model. Adjacency matrix factorization

with propagation (AMFP) is an extension of AMF. In AMFP, the same model used in AMF

is used, but an additional step is performed: propagating the latent factors of each drug to

its interacting drugs; latent factor propagation is controlled by a propagation factor, which

controls the weight of the original latent factor (which was optimized in the previous step)

compared to the weight of the latent factor of the interacting drugs. Algorithm 1 describes

the propagation procedure. Each node’s latent factor is shared with the node’s neighbor-

hood. The parameter α is the propagation factor, which controls how much information

will be passed from the neighboring nodes. The value of α should be optimized during the

training process.

Fig 3. Overview of AMF’s architecture. Drugs are represented as nodes; embedding layers (which act as latent

factors) and biases are shared between input nodes. Dropout is used as a regularization mechanism for preventing

overfitting.

https://doi.org/10.1371/journal.pone.0219796.g003
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Algorithm 1 Latent factor propagation
1: procedure PROPAGATE_FACTORS Graph G = (V, E), Latent factors P, Propaga-

tion factor α)
2: P0  empty list // holds the new latent factors
3: for vertex v1 in G do
4: Q  empty latent factor
5: for vertex v2 in Γ(v1) do
6: Q Qþ 1

jGðv1Þj � Pv2

7: end for
8: P0v1  a � Qþ ð1 � aÞ � Pv1

9: end for
10: return P0

11: end procedure
Given a node v 2 V; the neighborhood of v is defined by Γ(v) and represented by the set of

v’s interacting drugs. The lists P and P0 contain the original latent factors (embeddings) and

the latent factors resulting from the propagation process correspondingly. Each list contains

vectors (each vector has k elements) representing the latent factor of the nodes. α is the propa-

gation factor; when α reaches a value of one, the original latent factor of each node is dis-

carded, and a new latent factor is created based on the neighborhood of the node. On the other

extreme, when α reaches a value of zero, the latent factors created in the previous step are

used, and the propagation step does not change the model. When α’s value is equal to zero, the

results of AMPF and AMF are equivalent. Propagating the factors is expected to improve the

generalization ability of the model by combining the factors of interacting drugs. This logic fol-

lows the assumption that interacting drugs share some common characteristics.

Link prediction similarity measures

Link prediction similarity measures can be viewed as pre-engineered features which leverage

domain knowledge for link prediction in graphs. This subsection is devoted to formulating

and explaining the motivation behind the similarity measures used in this research for creating

an ensemble-based classifier and evaluation.

The common neighbors between two given nodes u, v 2 V refers to the size of the set of

common neighbors that both u and v possess. The formal common neighbors definition is:

SCNðu; vÞ ¼ jGðvÞ \ GðuÞj: ð5Þ

The relevance of the common neighbors feature is very intuitive. It is expected that the larger

the size of the common neighborhood, the higher the chances are that both vertices will be

connected. The common neighbors feature has been widely used in past work on link predic-

tion on several datasets and was found to be very helpful [21]. Using the common neighbors

measure, we formulate the average common neighbors for two nodes:

eSACNðu; vÞ ¼
1

jGðvÞj

X

w2GðvÞ

SCNðw; uÞ: ð6Þ

The average common neighbors measure provided above is not symmetric, due to the normal-

izing factor |Γ(v)|; we formulate it as a symmetric measure by averaging its two possible values

for a pair of nodes:

SACNðu; vÞ ¼
eSACNðu; vÞ þ eSACNðv; uÞ

2
: ð7Þ

The Jaccard coefficient is a well-known similarity measure, widely used for link prediction

Drug-drug interaction detection as a link prediction problem
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[21]. For two nodes u, v 2 V the Jaccard coefficient is defined as follows:

SJaccardðu; vÞ ¼
jGðvÞ \ GðuÞj
jGðvÞ [ GðuÞj

: ð8Þ

As with common neighbors, we formulate the average Jaccard coefficient for two vertices as

follows:

eSAJðu; vÞ ¼
1

jGðvÞj

X

w2GðvÞ

SJaccardðw; uÞ; ð9Þ

and its symmetric version is given as follows:

SAJðu; vÞ ¼
eSAJðu; vÞ þ eSAJðv; uÞ

2
: ð10Þ

The Adamic/Adar index [22] is a similarity measure used to predict links in social networks:

SAAðu; vÞ ¼
X

w2GðvÞ\GðuÞ

1

log jGðwÞj
: ð11Þ

Lastly, we present Katzb which exponentially sums the number of shortest paths of different

lengths between two nodes:

Katzbðu; vÞ ¼ S1
‘¼1
b
‘
� jpathsj<‘>u;v ; ð12Þ

where jpathsj<‘>u;v is the number of paths between u and v of length ℓ, and β is a parameter con-

trolling the weight given to shorter paths compared to the weight given to longer ones. In prac-

tice, a truncated Katz measure is usually used:

Katzbðu; vÞ ¼ Sb
‘¼1
b
‘
� jpathsj<‘>u;v : ð13Þ

In this research, we use b = 3 due to resource limitations. Katzb was found to be very helpful

for link prediction in previous works [23]. The final list of link prediction similarity measures

used in this research consists of: average common neighbors, average Jaccard coefficient,

Adamic/Adar, and Katzb. The similarity measures between two nodes used by Fire et al. [24],

such as the shortest path length between nodes, cosine distance between nodes, and dividing

the graph into communities and then comparing two nodes’ communities were tested and dis-

carded due to poor performance.

Creating an ensemble-based classifier

Ensembles are meta-algorithms used to combine various classifiers. They can reduce the var-

iance and bias of the base models and improve the predictions in general. One such ensemble

method is XGBoost [25] which achieved state of the art results in multiple tasks and competi-

tions. XGBoost employs gradient boosting where models are created stage wise using weak

predictors, usually using prediction trees. In each stage, the model seeks to improve the per-

formance of the model created in the previous stage. We train an ensemble classifier using

XGBoost, based on the link prediction similarity measures presented above: average com-

mon neighbors, average Jaccard coefficient, Adamic/Adar, and Katzb. Additionally AMF or

AMFP (the method that performs better) and the method proposed by Vilar et al. [8] are fed

to the ensemble classifier. This meta-algorithm can be easily extended to include additional

features.

Drug-drug interaction detection as a link prediction problem
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Evaluation

In this section, we present experiments with the aim of evaluating AMF, AMFP, and the

ensemble-based classifier. Our evaluation is based on two evaluation schemes: a retrospective

analysis using approved drugs from three versions of the DrugBank database [26] and a hold-

out analysis using a current version of the database. We use state of the art benchmarks.

Fig 4 illustrates the validation and testing scheme for the retrospective analysis using three

versions of the DrugBank database. Major changes were made between the versions—specifi-

cally, a large number of interactions were added to the more recent version. For the validation

process, we aligned versions 4.1.0 and 5.0.0 by only using drugs which appear in both versions.

The same was done for versions 5.0.0 and 5.1.1 when training and testing the final model.

Version 4.1.0 from December 2014 contains 11,284 interactions, and versions 5.0.0 from June

2016 and 5.1.1 from July 2018 contain 45,296 and 248,146 interactions respectively. Versions

4.1.0, 5.0.0, and 5.1.1 respectively contain 1,141, 1,440, and 2,149 drugs. To test whether our

model could predict pharmacodynamic as well as pharmacokinetic interactions, we adopt a

similar evaluation scheme to the one used by Vilar et al. [8]. We use DrugBank annotations to

identify any interactions between drugs with shared metabolism by a cytochrome p450 (CYP)

metabolizing enzyme (1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5 and 3A7). Such interac-

tions are removed from the test set (release 5.1.1), and the rest of the retrospective analysis is

executed normally.

In addition to the retrospective analysis, we perform a holdout evaluation using release

5.1.1, the latest release available during this research. The setup of the holdout evaluation is as

follows: 30% of randomly selected existing and non-existing interactions are used as a test set,

and the rest of the data is used as a training set, 10% of the data is used for validation (parame-

ter tuning) during training. For both evaluation techniques, the model is retrained after the

validation process, with the combined training and validation data, using the tuned parame-

ters. In a holdout evaluation, the interactions are randomly selected, while in reality some

interactions are more likely to be found earlier depending on the popularity of the drug, the

prevalence of the interaction, etc. For these reasons, the retrospective analysis is a stronger

evaluation scheme, however we perform a holdout evaluation for comprehensiveness and to

comply with previous research.

Metrics

The primary evaluation metric we use is the area under the ROC curve (AUROC). We also

assess the area under the precision-recall curve (AUPR), because it was argued to be relevant

Fig 4. Retrospective evaluation scheme. Parameter tuning is performed using DrugBank release 4.1.0 and 5.0.0. The

previous release is used to train the model, and the latter is used to validate the results. The final model is trained using

the parameters obtained in the validation stage with the data from release 5.0.0 (which contains the data from release

4.1.0 with some additions and changes) and tested using release 5.1.1.

https://doi.org/10.1371/journal.pone.0219796.g004
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for link prediction problems [27]. We plot the ROC curve and the average precision @ n,

where the precision of each drug’s prediction is averaged at different values of n. Lastly, we

plot precision @ n which evaluates the top n most confident predictions of the model. We

acknowledge the importance of precision over recall in the DDI problem, therefore we plot the

two precision graphs in addition to the other metrics.

Baselines

We compare our proposed method with the following methods:

• The method suggested by Vilar et al. [8]. This method is based on drug interaction profile

fingerprints (IPFs). The model uses IPFs to measure the similarity of pairs of drugs and gen-

erates new putative drug-drug interactions from the non-intersecting interactions of a pair.

Their method uses the same input data used by the method proposed in this paper.

• The link prediction similarity measures presented earlier: average common neighbors, aver-

age Jaccard coefficient, Adamic/Adar, and Katzb.

• An XGBoost model trained using all of the models described in the previous bullets and

AMF or AMFP (we use the model which performs better). This model is used to demon-

strate the power of combining several strong methods, rather than being used in comparison

with the other methods mentioned above, as a comparison between a regular model and an

ensemble is inappropriate.

• The methods used by Zhang et al. [12]. The following multi-source data is used: substructure

data, drug target data, drug enzyme data, drug transporter data, drug pathway data, drug

indication data, drug side effect data, and known drug-drug interactions. The neighbor rec-

ommender method and random walk method are used to create DDI prediction models.

Using 29 prediction models, including 28 similarity-based models and one perturbation

matrix model, three ensembles are created based on logistic regression with L1 and L2 regu-

larization and a genetic algorithm. The ensembles are compared to two existing methods

presented by Vilar et al. [8, 28] and three methods presented by Zhang et al. [9], our methods

are compared indirectly with these methods by using this baseline and the same dataset. The

authors include data from different sources, creating a diverse dataset. Unfortunately, the

dataset is available for just a single point in time, which does not allow a retrospective analy-

sis. To compare the methods presented by Zhang et al. [12] to ours, we adopt the cross-vali-

dation scheme used in the original research. We use three and five-fold cross-validation,

repeat each experiment five times and use pairwise t-test on the results.

We implemented AMF and AMFP using Keras [29]. The method suggested by Vilar et al.

was implemented in Python; we used the original implementation and data for the methods

suggested by Zhang et al. For Adamic/Adar and several other methods we used the NetworkX

implementation [30]. Other methods, such as Katzb, were implemented in Python. For

XGBoost, the implementation proposed by the authors was used. We assess the AUROC score

of AMF, AMFP, and each of the baselines for significance with a paired test using the algo-

rithm described by Sun and Xu [31].

Parameter tuning

To determine the hyperparameters of AMF and AMFP, we used the procedure described

above. All weights are randomly initialized using the Glorot normal initializer [32]. The fol-

lowing batch sizes were used: 128, 256, 512, and 1024, and learning rates in the range of 0.1—

0.0001 were tested. We evaluate the following number of factors (embedding sizes): 32, 64,
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128, 256, 512, and 1024, dropout levels in the range of 0-0.9, the number of epochs in the

range of 1-50, and propagation factors in the range of 0.0-1.0. For XGBoost, the parameters

were optimized using randomized grid search, where combinations of parameters were drawn

randomly from a given list and evaluated.

Results

In this section, we report the results of AMF, AMFP, and the baselines using the evaluation

techniques described in the previous section.

Holdout analysis

Holdout analysis is performed by using 70% of the data in DrugBank release 5.1.1 to train the

models; the rest of the existing and non-existing interactions are used for evaluation. Fig 5A

shows the ROC curve for AMF and each of the baselines. Table 1 presents the AUROC and

AUPR values for each model. The AUROC of each pair of models was tested for significance;

we report a p − value< 10−4 for all tests. Fig 5B shows the average precision @ n (per drug),

where n ranges from one to five, and Fig 5C shows the precision @ n, where n ranges from one

to 100. The optimal value for AMFP’s α is zero, hence its performance is equivalent to that of

AMF. Therefore, we do not present its results in the holdout analysis, and it is not used in the

XGBoost model trained using the holdout data.

Retrospective analysis

Retrospective analysis is performed by training the models on an older version of DrugBank

and evaluating the models using a more recent version of DrugBank. Fig 6A shows the ROC

curve for AMF, AMFP, and each of the baselines. Table 2 presents the AUROC and AUPR val-

ues for each model. The AUROC of each pair of models was tested for significance; we report

a p − value< 10−4 for all tests. Fig 6B shows the average precision @ n (per drug), where n
ranges from one to five, for the first interaction (n = 1), the accuracy is about 56% for both

AMFP and the XGBoost ensemble. Fig 6C shows the precision @ n, where n ranges from

one to 100. XGBoost was trained using AMFP’s predictions and without AMF’s predictions

because of their superiority. XGBoost has the best performance in terms of the AUROC and

AUPR curves, followed by AMFP. The average precision @ n and precision @ n graphs dem-

onstrate the XGBoost model superiority, it performs best for almost all values of n. To test

whether our model could predict pharmacodynamic as well as pharmacokinetic interactions,

we removed any interactions between drugs with shared metabolism by a cytochrome p450

(see Evaluation section). A total of 56,874 interactions were removed (37.7% of the interac-

tions). We report an AUROC of 0.775 for AMFP and 0.705 for AMP, a performance reduction

of 0.032 and 0.043 respectively. For reference, the performance reduction is 0.044 for the

method developed by Vilar et al. [8]. These results suggests that AMF and AMFP take different

pharmacological effects caused by pharmacokinetic and pharmacodynamic characteristics of

the drugs into account. While the relative performance between the retrospective analysis and

the holdout analysis is somewhat similar for all models, the absolute differences are obvious.

This phenomena can be explained by the fact that each DrugBank release is a closed system of

interactions known at a given time, sometimes derived from interactions between substances

contained in different drugs. The absolute differences between results demonstrate the weak-

ness of holdout evaluation and its difficulty in simulating real-world scenarios compared to

retrospective evaluation.
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Fig 5. Holdout analysis results. A) Receiver operating characteristic curves; B) Per drug average precision @ n; C)

Precision @ n.

https://doi.org/10.1371/journal.pone.0219796.g005
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Comparison to multi-source data-based predictors

In this subsection, we report the results of AMF, AMFP, the XGBoost classifier, and the meth-

ods presented by Zhang et al. [12], adopting the cross-validation evaluation used by Zhang

et al. Tables 3 and 4 present the results for three and five-fold cross-validation. The optimal

value for AMFP’s α is zero, hence its performance is equivalent to that of AMF. Therefore, we

do not present its results in the tables. As can be seen, AMF outperforms all of the methods,

including the ensembles proposed by Zhang et al. and the XGBoost ensemble. Furthermore,

when adding AMF to the ensembles proposed by Zhang et al. the performance of the ensem-

bles is still lower than that of AMF on its own. The difference between AMF and the other

methods presented in Tables 3 and 4 are statistically significant. The differences are also statis-

tically significant when comparing the XGBoost ensemble to the other methods presented in

the tables. We report a p − value< 10−4 for all tests. These results which indicate that methods

based on interaction networks (known DDIs) perform better than methods based on other

data types align with the results presented by Zhang et al. Unfortunately, we are unable to com-

pare the methods using retrospective analysis due to data unavailability. Cross-validation is

very similar to hold-out analysis; in both cases, interactions are selected randomly and used as

a test set. The differences between our hold-out analysis and our retrospective analysis indicate

that if the multi-source data-based predictors and the methods we propose were compared

using retrospective analysis, the differences would be even greater.

Discussion

Drug interactions are the cause of many patient visits to physicians and emergency units. Esti-

mates of the number of patients harmed due to drug interactions range from 3-5% of all medi-

cation errors within hospitals [3, 4]. Potential DDIs are often not discovered until the third

phase of a clinical trial or in many cases, only after the drug has already been on the market for

some time. In silico drug-drug interaction prediction methods, such as the methods proposed

in the current research, are the most practical way of detecting DDIs. We introduced AMF

and AMFP, two new methods for in silico drug-drug interaction prediction and used Drug-

Bank to demonstrate the superiority of the proposed methods compared to existing methods

for the following metrics: AUROC and AUPR curves, precision @ n, and average precision @

n per drug. The improvement was demonstrated by predicting the interactions for a new ver-

sion of DrugBank and when using a holdout evaluation scheme. We demonstrate that our

methods are capable of handling both pharmacokinetic and pharmacodynamic DDIs. In addi-

tion, our results indicate that the interaction network (known DDIs) is the most useful data

source for identifying potential DDIs. An ensemble method trained using XGBoost obtained

better results than AMF and AMFP in most metrics and evaluation schemes. Potentially, the

XGBoost ensemble can be further improved by adding more models or including domain

Table 1. Area under the ROC and precision-recall curves for the holdout analysis.

Algorithm AUROC curve AUPR curve

XGBoost 0.991 0.960

AMF 0.990 0.950

Vilar et al. [8] 0.952 0.784

Average common neighbors 0.938 0.738

Average Jaccard coefficient 0.967 0.840

Adamic/Adar 0.933 0.728

Katzb 0.924 0.675

https://doi.org/10.1371/journal.pone.0219796.t001
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Fig 6. Retrospective analysis results. A) Receiver operating characteristic curves; B) Per-drug average precision @ n;

C) Precision @ n.

https://doi.org/10.1371/journal.pone.0219796.g006
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Table 2. Area under the ROC and precision-recall curves for retrospective analysis.

Algorithm AUROC curve AUPR curve

XGBoost 0.814 0.425

AMFP 0.807 0.417

AMF 0.748 0.304

Vilar et al. [8] 0.787 0.38

Average common neighbors 0.802 0.385

Average Jaccard coefficient 0.804 0.370

Adamic/Adar 0.791 0.388

Katzb 0.798 0.395

https://doi.org/10.1371/journal.pone.0219796.t002

Table 3. Area under the ROC and precision-recall curves for multi-source data comparison, three-fold cross-validation.

Method Similarity AUROC curve AUPR curve

AMF 0.9561 0.846

XGB 0.9544 0.8239

Neighbor recommender Substructure 0.9355 0.8079

Target 0.8068 0.4245

Transporter 0.7135 0.405

Enzyme 0.753 0.4367

Pathway 0.8102 0.6242

Indication 0.9034 0.64

Label 0.935 0.8034

Off label 0.9389 0.8153

CN 0.9403 0.8161

AA 0.9407 0.8165

RA 0.9423 0.8187

Katz 0.9327 0.7815

ACT 0.9099 0.7953

RWR 0.9395 0.8139

Random walk Substructure 0.9349 0.8068

Target 0.8442 0.6083

Transporter 0.7124 0.4364

Enzyme 0.7603 0.533

Pathway 0.8102 0.6477

Indication 0.9396 0.821

Label 0.9357 0.8091

Off label 0.9367 0.8116

CN 0.9371 0.8071

AA 0.9369 0.806

RA 0.9356 0.7992

Katz 0.9363 0.8012

ACT 0.9077 0.7681

RWR 0.9383 0.8128

Matrix perturbation method 0.941 0.8133

Weighted average ensemble 0.9469 0.8329

Ensemble classifier (L1) 0.9537 0.8408

Ensemble classifier (L2) 0.952 0.8391

https://doi.org/10.1371/journal.pone.0219796.t003
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specific information (e.g., structural data), however this may come at the cost of much longer

training time. Additionally, as the multi-source data-based predictors comparison demon-

strates, more data sources do not necessarily improve the performance.

In this section, we present a more in depth analysis on the propagation factor of AMFP,

testing different values for the validation and test sets to investigate whether there is a strong

correlation between the two. Fig 7 presents AMFP’s propagation factor analysis for the hold-

out and retrospective analysis. A big difference can be seen between the two evaluation

schemes. For the retrospective scheme the optimal values are 0.5 and 0.8 respectively for the

validation and test sets. The effect of different propagation factor values on the AUROC of

the validation and test sets is similar. For the holdout evaluation scheme the effect of different

propagation factor values on the AUROC of the validation and test sets is very similar; smaller

Table 4. Area under the ROC and precision-recall curves for multi-source data comparison, five-fold cross-validation.

Method Similarity AUROC curve AUPR curve

AMF 0.9591 0.8108

XGB 0.9588 0.8017

Neighbor recommender Substructure 0.9362 0.7593

Target 0.8197 0.3642

Transporter 0.7143 0.3288

Enzyme 0.7562 0.3774

Pathway 0.812 0.5714

Indication 0.9119 0.5992

Label 0.9359 0.7537

Off label 0.9397 0.768

CN 0.9411 0.7671

AA 0.9414 0.7676

RA 0.9432 0.7704

Katz 0.9373 0.7352

ACT 0.9044 0.7239

RWR 0.9409 0.7666

Random walk Substructure 0.9356 0.7578

Target 0.8518 0.5599

Transporter 0.7127 0.3627

Enzyme 0.7609 0.4701

Pathway 0.8108 0.5943

Indication 0.9409 0.7771

Label 0.9364 0.7606

Off label 0.9374 0.7636

CN 0.938 0.7568

AA 0.9379 0.7556

RA 0.9367 0.7481

Katz 0.9374 0.7504

ACT 0.9007 0.7085

RWR 0.9392 0.7644

Matrix perturbation method 0.9484 0.7818

Weighted average ensemble 0.9507 0.7955

Ensemble classifier (L1) 0.9571 0.8073

Ensemble classifier (L2) 0.9562 0.806

https://doi.org/10.1371/journal.pone.0219796.t004
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values are preferred, and zero is the optimal value. This means that no propagation is required

for the validation or test sets. This difference could be the result of the difference in the test

set distributions. As stated in the Evaluation section, retrospective analysis is preferred as it is

more true to life and necessitates that the model generalizes better than the holdout analysis.

Both evaluation techniques show better results on the test set, which is relatively unusual. For

the holdout analysis the difference is very small (about 0.02); this difference might simply be

explained by the amount of data, in that the model evaluated on the validation set is trained

using less data than the model evaluated on the test set. For the retrospective analysis where

the difference is larger, the reason is probably similar: the previous version of DrugBank used

for training during validation contains fewer interactions (11,284 interactions) than the ver-

sion used to train the final model which was used for testing (with 45,296 interactions).

We report the optimal values for the parameters used: the embedding size used are 256 and

512 for the retrospective and holdout analysis respectively. For both evaluation schemes, the

dropout is 0.3, and the learning rate is 0.01. It’s important to note that the dropout is applied

separately on the embedding layer of each of the drugs. On average the number of entries in

the embedding vector which are not affected at all by dropout during training is given by:

k � ð1 � pÞ2; ð14Þ

Fig 7. AMFP’s propagation factor analysis. A) Retrospective propagation factor analysis. The optimal value selected

during validation and used for model training is 0.5. The optimal value for the test set is 0.8. B) Holdout propagation

factor analysis. For both validation and training the optimal value is zero—weights are not propagated at all.

https://doi.org/10.1371/journal.pone.0219796.g007
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where k is the embedding size, and p is the dropout ratio. Hence, for the retrospective analysis

where the embedding size was 512 on average only 184.32 embedding entries are unaffected

by the dropout during training. The optimal number of epochs used is five and six for the ret-

rospective and holdout analysis respectively, and the batch sizes are 1024 and 256 respectively.

For the comparison to multi-source data-based predictors the optimal values for the parame-

ters used in AMF were: embedding size of 64, dropout of 0.5, forty epochs, batch size of 256

and a learning rate of 0.01. Some interesting observations can be made by comparing AMFP’s

predictions regarding each drug pair with the pair’s structural similarity. One can expect that

if two drugs share similar interactions it is likely that they have some structural similarity, how-

ever the predictions and structural similarity might be different or complementary. We com-

puted the correlation coefficient between AMFP’s predictions and the structural similarity.

For the structural similarity we used the method which was used by Ryu et al. [10]. This com-

parison showed a low correlation coefficient of 0.151 with P − value< 10−15; for comparison,

Vilar et al. [8] report a correlation coefficient of 0.167.

Practical contribution

The proposed models can be utilized to improve drug-drug interaction discovery and can be

combined with additional structural information to improve drug-drug interaction detection

performance.

In this paper, we present the top 100 predictions made by AMFP (see Supporting informa-

tion section) after training it on release 5.1.1 of DrugBank and using the parameters optimized

in the retrospective analysis; note that version 5.1.1 was the latest release available when our

research was conducted. We manually validated the first 10 predictions made by AMFP; as of

now, eight of them have been added to DrugBank. For the following five drug-drug interactions

the metabolism of one drug can change due to the drug interaction: Curcumin and Primidone,

Rifapentine and Fluvoxamine, Curcumin and Rifapentine, Lumacaftor and Fluvoxamine, and

Curcumin and Lovastatin. For the following three drug-drug interactions the serum concentra-

tion of one drug can change due to the drug interaction: Ceritinib and Fluvoxamine, Curcumin

and Clotrimazole, and Curcumin and Lumacaftor. No evidence was found for the existence of

the following two drug-drug interactions: Pentobarbital and Sulfisoxazole, and Curcumin and

Pentobarbital which might indicate two new unknown interactions predicted by our methods.

In addition, we created a list of the latent factors (embeddings) created for each drug and

made this publicly available. These factors can be used as compressed representations of the

drugs. The factors contain the structure of the interaction network and can provide a head

start on downstream tasks in the form of transfer learning. For example, the drug embeddings

created using the interaction network can be used to detect side effects.

AMF and AMFP can be scaled to support a large number of drugs and interactions; the

models do not require training using all of the positive examples (existing interactions), and

positive sampling can also be used, allowing the method to operate on very large datasets. Each

of the proposed methods presented here required no more than a few minutes to train using

a standard laptop. Hyperparameter optimization required more time, and this process can

usually be executed efficiently by an expert; AutoML methods for parameter optimization are

currently gaining interest, and such methods can dramatically reduce the time required for

optimizing hyperparameters [33].

Conclusion

In this paper, we designed two methods for drug-drug interaction prediction based on a novel

matrix factorization technique designed for adjacency matrices and developed useful in silico
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models to predict new drug interactions. Additionally, we train an XGBoost ensemble using

various predictors. The methods were implemented and made public, along with additional

resources used in this research. Our methods were systematically validated through a retro-

spective and holdout evaluation using DrugBank (release 5.1.1 which contains 1,440 drugs and

248,146 drug-drug interactions), showing state of the art results with an area under receiver

operating characteristic curve of 0.814 overall and accuracy of 56% when predicting the first

interaction for each drug. Additionally, we compare and demonstrate the superiority of our

methods over existing state-of-the-art methods, which were trained using various data sources,

using cross-validation. Our methods can be used on a large-scale and applied for link predic-

tion problems in domains other than drug-drug interaction prediction. Using the proposed

DDI predictor, a database containing the most promising drug-drug interaction candidates is

provided in the Supporting information section.

Supporting information

S1 Appendix.
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