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A B S T R A C T

The application of non-destructive process analytical technologies in the area of food science got a lot of attention
the past years. In this work we used hyperspectral imaging to detect mould on milk agar and cheese. Principal
component analysis is applied to hyperspectral data to localise and visualise mycelia on the samples’ surface. It is
also shown that the PCA loadings obtained from a set of training samples can be applied to hyperspectral data
from new test samples to detect the presence of mould on these. For both the agar and cheeselets, the first three
principal components contained more than 99 % of the total variance. The spatial projection of the second
principal component highlights the presence of mould on cheeselets. The proposed analysis methods can be
adopted in industry to detect mould on cheeselets at an early stage and with further testing this application may
also be extended to other food products.
1. Introduction

High quality food and food safety are important goals for any food
industry. Assessing the quality of dairy products is a challenge that dairy
industries face since the shelf life for such products is typically short.
Conventionally, multiple chemical and microbiological contamination
tests are carried out to assess the quality of dairy products. However,
these assessment methods typically involve destructive testing and are
time consuming (Burke et al., 2018)). Plate counting can also be used
along microbial analysis of dairy products to monitor spoilage. This
technique measures the level of microorganism in dairy products. How-
ever, a limitation in this method is that an undetectable amount of food
contaminants can still be present (Parseelan et al., 2019). Other tech-
niques such as the polymerase chain reaction (PCR) can also be used to
identify bacterial pathogens in dairy products and they were found to be
more sensitive and quicker when compared to microbial culture based
techniques (McLean et al., 2010). However, these molecular techniques
are quite expensive and highly trained scientists are required to imple-
ment such techniques.

Fast, non-invasive and non-destructive methods can make the
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assessment of dairy food product much more efficient. In particular, the
use of hyperspectral imaging for contaminant detection in food products
as this offers a quick, non expensive and non-destructive solution (Sun,
2010). Hyperspectral imaging combines spatial and spectroscopic infor-
mation providing a spectral representation for each spatial location in the
imaged area (Feng and Sun, 2012). Thus, hyperspectral imagers can
provide a data cube (or hypercube) consisting of three-dimensional data,
namely two spatial dimensions and one spectral dimension. When an
object is exposed to electromagnetic radiation, the incident radiation is
reflected, transmitted, absorbed, or scattered, depending on its chemical
composition and physical structure. When used to image food, the light
component that is reflected by the food and captured by the hyper-
spectral imager, can be used to assess the properties of the imaged food
and the presence of contaminants and their spatial distribution on the
food (Sun, 2010).

While various studies have considered the use of hyperspectral im-
aging for food contamination inspection (Barbin et al., 2013; Del Fiore
et al., 2010; Feng et al., 2018; Feng and Sun, 2013; Foca et al., 2016;
Huang et al., 2013; Jiang et al., 2016; Kamruzzaman et al., 2015; Tao
et al., 2015; Wang et al., 2014, 2015), the application of the technology
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on dairy products such as cheese has been rather limited (Gowen et al,
2009, 2011; Lei and Sun, 2019). To date no other study involving the
detection of fungal contamination in cheese using hyperspectral imaging
has been reported. A few studies have been published making use of
non-sterile model systems or commercial cheese for the assessment of
adulteration with starch or transglutaminase, for the assessment of
cheese ripening, or for cheese classification (Barreto et al., 2018; Calvini
et al., 2020; Lei et al., 2019; Shan et al., 2020). The limited use of
hyperspectral imaging with dairy products may be due to the limited
adoption of this imaging modality within the field of food science. This
modality requires further development of algorithms to detect aberra-
tions from desirable characteristics, before application to dairy products.

This study investigated the use of hyperspectral imaging for the
detection of contamination in cheeselets. Penicillium chrysogenum, a
contaminant found in commercial cheese, was used as the food
contaminant. P. chrysogenum or P. notatum (formerly) is commonly iso-
lated from temperate and subtropical environments and can grow on
salted food products (Samson et al., 2010). It is often isolated in indoor
environments, in particularly damp or water-damaged buildings
(Andersen et al., 2011). The environment in which certain artisanal
cheeses are made often have high humidity levels. Therefore,
P. chrysogenum lends itself to being a persistent contaminant of com-
mercial cheese as its growth is conducive to a salty food matrix like
cheese, which is aged in an indoor environment under humid conditions.
Moreover, a recent study found that 27% of all hard and 17% of all soft
sheeps’ milk cheese to be contaminated with the Penicillium genera,
which further validates this choice of food contaminant (Griffin et al.,
2020). Apart from tests on actual cheeselets, a number of tests were
carried out on milk agar samples. The milk agar was used as a controlled
model system before assessment of cheeselets. The milk agar contained
ampicillin, which stops the growth of other micro-organisms and serves
as a surface for the P. chrysogenum to grow on as it would on cheese. The
surface of the milk agar is smooth and uniformwhen compared to cheese,
which makes the identification of contaminants easier. The milk agar
experiment served as a proof of concept for the use of the hyperspectral
imaging method to identify fungal contaminants on the samples, before
proceeding to the more complex food matrix of cheeselets.

A range of methods have been used to analyse hyperspectral data to
detect fungi on different food. These include principal component anal-
ysis (PCA), partial least squares regression (PLSR), non-linear regression
method of back propagation neural network (BPNN), linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA)and factorial
discriminant analysis (FDA) (Feng and Sun, 2013; Jiang et al., 2016; Del
Fiore et al., 2010; MA et al., 2014).

In this study, PCA was used to analyse the hyperspectral imaging data
obtained for the milk agar and cheeselets. Hyperspectral data is often
analysed and processed using PCA in order to reduce the dimensionality
of the data. The method allows for the extraction of a limited set of
features that are representative of salient characteristics in the data, such
as an optimal set of wavelengths (Del Fiore et al., 2010; MA et al., 2014;
Feng et al., 2018; Jiang et al., 2016; Munir et al., 2018). In contrast with
methods that adopt a supervised approach for model learning, PCA
provides an unsupervised data-driven approach that thus does not
require the use of any prior training data. In this work, PCA was applied
to the hyperspectral data from the milk agar and cheeselets in order to
spatially localise and visualise mycelia at the pixel level. The visual-
isation of the resulting principal components allowed for the early
detection of contaminated regions on cheeselets.

2. Materials and methods

2.1. Sample preparation

In total 13 agar samples and 12 cheeselets were prepared for hyper-
spectral imaging and analysis. The purpose of this study was to challenge
the PCA testing model. A known proportion of samples were
19
contaminated with known contaminant. The end point result was a
dichotomous one that is contaminated or uncontaminated. Thus, for this
reason the number of samples used for this study was sufficient to achieve
such aim. The details of the preparationmethods for both themilk agar as
well as the cheeselets is provided in the following sections.

2.1.1. Preparation of agar samples
A 500 mL Duran bottle containing 100 mL of a 15% (w/v) agar-agar

(Scharlau, Spain) solution was sterilised by autoclaving at 121�C for 15
min. Raw sheep's milk was sterilised and aseptically added to the 100 mL
of 15% (w/v) agar-agar solution to give a 1.5% (w/v) milk agar in which
(0.5 mL of 100 mg/mL) ampicillin (HiMedia, India) stock solution was
added. Milk agar discs were then made in 5 cm petri dishes. A sterility
test was performed by storing three milk agar plates in a 25�C incubator
for 5 days.

2.1.2. Preparation of cheeselets

A cheese model was developed using raw sheep's milk provided by a
local farmer. Themilk was used to make a 1% (w/v) NaCl solution, which
was sterilised by heating to 78�C for 2 min, then rapidly cooled to 40�C
by submersion into an ice bath. The sterilised milk:salt solution was
inoculated with 0.05% (w/v) rennet and commercial Lactobacillus spp
cultures and incubated for 1 h at ambient temperature, allowing the milk
to form curds. The curds were transferred to sterile cheese moulds under
aseptic conditions and allowed to drain in a laminar flow cabinet for 1 h.
The cheese moulds containing the drained curds were submerged to a
sterile 28% (w/v) NaCl salt bath aseptically and incubation for 2 min at
ambient temperature. They were then removed from the salt bath asep-
tically and drained for a further 24 h in a laminar flow cabinet. The
cheese was removed from the moulds and transferred aseptically to a
sterile container and inoculated before further use.

2.1.3. Preparation of fungal stock

A contaminated commercial sample was used for the isolation of the
fungal contaminate of Maltese cheese “ _gbejna”. The contaminated cheese
was weighed aseptically in a BagMixer bag and four volumes of Ringer's
solution were transferred to it for homogenisation in a BagMixer for 180
s.

The cheese homogenate was serially diluted in Ringer's solution, 100
μl inoculated on plated out on Sabouraud's dextrose agar (SDA) and
incubated at 25�C for five days. A single fungal colony was isolated on
SDA and used to generate a glycerol spore stock in a sterile 40% (v/v)
glycerol solution, which was stored at�20�C until further use. The fungal
contaminant isolated from the commercial cheese was later identified as
P. chrysogenum by 18S rRNA gene sequencing.

2.1.4. Sample inoculation
The spore stock was quantified using a counting chamber and diluted

to 106 CFU.mL-1 in 40% (v/v) glycerol solution to create a working spore
stock. Milk agar plates were inoculated with 25 μl of the working spore
stock, which was spread using a sterile spreader. The model cheese was
inoculated with 10 μl of the same working spore stock in duplicate on the
opposite sides of the cheeselets. The same stock was used for both agar
and cheese. Different volumes of spore stock were used as to prevent the
surface of the cheeselets to be completely covered with mould, to
represent the type of contamination present on commercial cheese.
Inoculated milk agar and model cheese were incubated at 25�C until
required for hyperspectral analysis. Sterile 40% (v/v) glycerol solution
was used as a negative control for contamination. Ten milk agar discs
were inoculated with the working spore stock, whereas three discs were
used for the negative control. Similarly, ten model cheese were inocu-
lated with the working spore stock and two samples were used as a
negative control. The samples were incubated at 25�C and imaged daily
with an interval of 24 h.
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2.2. Experimental setup and data acquisition

A SPECIM IQ portable hyperspectral camera covering a spectral band
of 400–1000 nm with a spectral resolution of 7 nm was used for this
study. The imaging of the samples was done in a dark room. Controlled
lighting provided by four halogen lamps was used for a homogeneous
illumination of the sample of interest and to avoid shadows or specular
reflections.

Images of all milk agar and cheeselets were taken on consecutive days
to monitor the progression of P. chrysogenum growth on samples. The size
of the acquired raw hyperspectral datacube was of 512 � 512 � 204
(samples � lines � bands).

Hyperspectral images of the inoculated and control agar samples were
acquired over a period of four consecutive days. Specifically a single
image for each of the 13 agar samples (3 control and 10 inoculated
samples) was acquired every 24 h, for a total of 52 images. On the second
day of imaging, mycelia was present on the agar surface and the inocu-
lated samples became sporulated on the third and fourth day of imaging.

Hyperspectral images of the inoculated and control cheeselets were
acquired over a period of two consecutive days. A single image for each of
the 12 cheeselets (2 control and 10 inoculated samples) was acquired
every 24 h, for a total of 24 images. On the first day of imaging, mycelia
was present on the cheeselets and these samples became sporulated on
the second day of imaging.
2.3. Hyperspectral data analysis

2.3.1. Preprocessing
The dark current effect of the camera was removed by covering the

lens of the camera, acquiring a dark image, and subtracting the hyper-
spectral data for the dark image from the hyperspectral data acquired
from the target of interest. A white diffuse reflectance target was used to
obtain a white reference image.

The relative reflectance (R) of the hyperspectral data was then ob-
tained from:

R¼ Is � Id
Iw � Id

� 100% (1)

where Is is the raw hyperspectral data, Id is the dark image and Iw is the
white reference image.

An elliptical spatial region of interest (ROI) was selected from the
hyperspectral data for futher processing. The ROI consisted of the whole
sample's surface excluding the background and the samples' border.
Fig. 1 shows a representation of this.

The hyperspectral data from the ROI was then further processed using
PCA and the resulting components were evaluated to determine the
spectral characteristics and spatial distribution of the agar and cheeselet
Fig. 1. An example of an agar sample (left) and a cheeselet (right) with the ROI (re
legend, the reader is referred to the Web version of this article.)
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contaminants. The details of the PCA implementation in this application
are next presented.

2.3.2. Principal component analysis of hyperspectral data
PCA yields an orthogonal transformation that converts a set of ob-

servations from a set of potentially correlated variables into a set of
linearly uncorrelated variables referred to as principal components (PC).
The transformed PCs are ordered in such a way that the first one accounts
for the highest variability in the data and each subsequent component
contains the remaining amount of variance in descending order. All of the
PCs are orthogonal to each other.

In this work, PCA was applied directly to the pixel data from the
hyperspectral imaging process. As a preprocessing step the hyperspectral
data cube was restructured as shown in Fig. 2. The pixels of the ROI can
be considered as a set of correlated variables to which PCA was applied.
The score matrix Z is given by:

Z ¼ XW (2)

where the rows of the input matrix X 2 RK�L represent the spectral values
for K¼M�N pixels over L spectral bands. W2 RL�P is the loading matrix,
the columns of which represent the eigenvectors of the covariance matrix
of X. The columns of W provide the transformation functions that map
the pixel spectral vectors into P PCs. The columns of Z 2 RK�P represent
the PC scores which are the representations of X in the PC space. Each PC
image is the product between the pixel spectral vectors of X and a column
of W. Each PC image is obtained by reshaping each PC making up Z, to a
two dimensional representation.

PCA was applied directly to the hyperspectral data obtained from all
agar and cheeselets (considering all control and contaminated samples).
For each of these, the score images together with their corresponding
spectra were computed to detect and identify mycelial growth and spores
on the milk agar and cheeselets. Additionally, spectral signatures of the
areas containing mycelial growth and uncontaminated areas for the ten
contaminated cheeselets were computed and investigated. All processing
and analysis was carried out using MATLAB.

2.3.3. Predetermined principal component loadings
Apart from applying PCA to each individual sample, an investigation

was also carried out to determinewhether the transformation coefficients
obtained from one sample could effectively be applied to another sample
for contamination detection. This investigation was meant to determine
if the transformation coefficients obtained from a set of contaminated
samples used for training can be used to identify the presence of mould in
unseen test samples.

The PCA was first trained on five agar samples containing only mould
at mycelial growth. The transformation coefficients for the first five PC
scores were determined for each trained sample. The transformation
d ellipse) selected. (For interpretation of the references to colour in this figure



Fig. 2. Reshaping of the hyperspectral data cube as
input for PCA. xi represents the spatial column i ¼ f1,
2, …, Ng, yj represents the spatial row j ¼ f1, 2, …,
Mg, and λl represents the lth spectral band where l ¼
f1, 2, …, Lg. The data cube is reshaped to form a K �
L matrix where K ¼ M � N. After PCA is applied to X,
a score and a loading matrix are obtained. The score
is given by a K � P matrix and loading is defined by
an L � P matrix. P is the number of PCs. Score data
can be reshaped to obtain a maximum of P PC
images.
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coefficients obtained from the samples used for training were also
applied to the rawmatrix X2 RK�L of other samples having the same type
of mould as the trained samples. The resulting images from the PC scores
were visually inspected and compared to the score images of the same
samples as a result of the direct application of PCA on the raw data to
assess whether the same contaminants were highlighted at the same spot.
The trained sample which showed the most consistent spectral loadings
as the other samples for the five PCs was selected. Its transformation
coefficients were tested on new samples. The projected score images of
the PC scores were visually inspected to determine if any regions high-
lighted in these images actually reflected the presence of sporulated areas
which eventually showed up.

The transformation coefficients obtained from the samples used for
training were also applied to the control samples to assess whether the
presence of mould would show up in these cases.

The same procedures was repeated for the cheeselets. However, in
this case the PCA was trained on ten cheeselets containing mycelia.

3. Results

3.1. PCA results on agar samples

The first three PCs represented more than 99% of the variance for the
control agar samples, agar samples that contain mycelia (samples imaged
on day 2) and agar samples that contain sporulated areas (samples
imaged on day 4).

Fig. 3a shows an RGB representation of the agar samples considered,
together with the first three PCs loadings (Fig. 3b, d and 3f) and the
corresponding spatial projections (Fig. 3c, e and 3g) that result when
applying PCA to the corresponding hyperspectral data. The agar sample
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imaged on day 2 contained mycelia whilst the same agar sample imaged
on day 4 became sporulated. All 10 samples that contained mycelia
showed a similar spectral representation across the whole spectrum in
the first three PCs. The same can be said for the agar samples containing
sporulated areas. When comparing the first PC (Fig. 3b) of the three
different cases of agar, one can note that there are significant difference
in the 400 nm–500 nm range and in the 900 nm–1000 nm range. The
spectral representation of the second PC (Fig. 3d) for the control sample
and the sample containing mycelia is similar in the 400 nm–900 nm
range but shows distinct differences in the 900 nm–1000 nm range.
There are amplitude value differences when comparing the second PC
loadings of the sample containing sporulated areas to the control sample
(Fig. 3d). The spectral representation of the third PC is different for the
three different cases of agar.

The score images (Fig. 3c) associated with the first PC show the
general illumination gradient effect of the agar samples including the
presence of any shadows and bright spots. On the other hand, the score
images associated with the second PC (Fig. 3e) highlight mouldy areas on
the samples and it is more sensitive for mycelial growth. For the agar
samples, the score images associated with third PC (Fig. 3g) highlight the
texture of the mould on the samples. These characteristics in the score
images were observed in all agar samples.

3.2. PCA results on cheeselets

The first three PCs for cheese samples (all contamination cases) also
explained more than 99 % of the total variance. Fig. 4 presents an RGB
representation (Fig. 4a) of the cheeselets considered, together with the
first three PCs loadings (Fig. 4b, d and 4f) and their corresponding spatial
projections (Fig. 4c, e and 4g) that result when applying PCA to the



Fig. 3. Three stages (control, mould at mycelial growth and sporulation) of an agar sample showing the raw image (a), the first three PCs (b), (d) and (f) with the
corresponding score image (c), (e) and (g) below each component.

J. Farrugia et al. Current Research in Food Science 4 (2021) 18–27
corresponding hyperspectral data. The cheeselet images taken on day 1
and day 2 contain mycelial growth and sporulated areas respectively.

Similarly to the agar samples, all 10 samples that had mycelial growth
or sporulated areas showed a similar spectral representation across the
whole spectrum in the first three PCs. The first PC spectral representation
for the control sample and the sample containing mycelia is very similar
throughout the whole spectrum. However, the first PC spectral repre-
sentation for the sample containing sporulated areas is different in the
400 nm–500 nm range and in the 800 nm–1000 nm range (Fig. 4b). The
22
spectral representation of the second PC plots for the sample with
mycelial growth is totally different when compared to the control sample
and samples having sporulated areas (Fig. 4d). The spectral representa-
tion for the third PC loading values for the three cases of cheeselet is more
of an oscillatory one.

Similar to the agar samples, the score images associated with the first
PCs for the cheeselets, capture the contribution of the general illumina-
tion gradient effect of the samples, highlight shadows and bright spots
(Fig. 4c). The score images associated with the second PC highlight



Fig. 4. Three stages (control, mould at mycelial growth and sporulation) of a cheeselet showing the raw image (a), the first three PCs (b), (d) and (f) with the
corresponding score image (c), (e) and (g) below each component.
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mouldy areas on the samples especially areas containing mycelia
(Fig. 4e). The score images associated with third PC highlight the texture
of the cheeselet surface such as the dimples as well as the border of
sporulated areas (Fig. 4g). These characteristics were observed in all the
score images for the cheeselets.

Fig. 5 shows the average spectral signatures and standard deviations
of the ten contaminated cheeselets for the first three PCs. Two areas were
selected from each of the 10 samples, one containing no contaminants
and the other area containing mycelial growth. These are represented by
23
the blue plot and the red plot in Fig. 5, respectively. The spectral signa-
ture for PC2 showed the greatest differences between the background
and contaminated area when compared to the other PCs.

3.3. Results using predetermined transformation loadings

3.3.1. Testing on agar samples
Since the second component was determined to carry the most in-

formation on contaminated and uncontaminated regions of agar samples,



Fig. 5. Average spectral signatures with standard deviation of the 10 cheeselets for the first three PCs. The blue plot represents the background (uncontaminated)
cheeselet region whilst the red plot represents a region containing mycelial growth. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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this was the PC considered for further analysis.
Fig. 6 shows the second PC for the agar samples containing mycelial

growth. The blue plot shows the spectral loadings obtained from an agar
sample, which were subsequently used to detect the presence of con-
taminants on other test samples. One may observe that all samples con-
taining mycelia exhibit a similar behaviour. In the spectral
representations of the second PC, there are some variations in the 450
nm–500 nm range and in the 900 nm–1000 nm range.

The resulted transformation coefficients from the agar sample that is
highlighted in blue in Fig. 6 were multiplied to the raw data of other
contaminated samples (test samples). Projected score images were
computed to detect the presence or otherwise of mycelia. Fig. 7 shows an
example of two agar samples containing mycelial growth. Fig. 7a con-
tains the images that result when applying the predetermined trans-
formation coefficients to two test samples. Fig. 7b represents the score
images for the second PC obtained after applying the PCA directly on the
raw data.
Fig. 6. Second principal component vs wavelength for agar samples containing
mycelial growth. The blue plot represents an example of one of the fixed
loadings that has spectral representation as the other samples. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)

24
The use of transformation coefficients obtained from the training data
were found to be effective for determining the location of mycelial
growth in different test samples. A similar outcome was observed for all
agar samples containing mycelia. Furthermore, when the transformation
coefficients were applied to control samples, no false detections of
mouldy regions were obtained.

3.3.2. Testing on cheeselets
Similarly to agar samples, the second PC was determined to carry the

most information on contaminated and uncontaminated regions of
cheeselets thus, this was the PC used for further analysis. Fig. 8 shows the
second PC for the cheeselets containing mycelial growth. The blue plot
Fig. 7. The two images on the left show examples of score images for two
different agar samples resulting from the application of predetermined trans-
formation coefficients to two test samples. The two images on the right show
score images of the same two samples as a result of the direct application of PCA
on the raw data.



Fig. 8. Second principal component vs wavelength for cheeselets containing
mycelia. The blue plot represents an example of one of the fixed loadings that
has similar spectral representation as the other samples. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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shows the spectral coefficients obtained from a cheeselet which were
subsequently used to detect contaminants on other samples. One may
observe that all samples containing mycelia exhibit a similar behaviour.
The spectral representations for different cheeselets containing mycelial
growth (Fig. 8) agree better than those for agar samples (Fig. 6).

Similarly to the agar samples, the transformation coefficients ob-
tained from the cheeselet highlighted in blue in Fig. 8 were multiplied to
raw data of other contaminated samples (test samples). Projected score
images were computed to detect the presence or otherwise of mycelial
growth. Fig. 9 shows an example of two cheeselets containing mycelia.
Fig. 9a contains the images that result when applying the predetermined
transformation coefficients to two test samples. Fig. 9b represents the
score images for the second PC obtained after applying the PCA directly
Fig. 9. The two images on the left show examples of score images for two differen
efficients to two test samples. The two images on the right show score images of the

25
on the raw data.
The use of transformation coefficients obtained from the training data

were found to be effective for highlighting mycelia in different cheeselet
test samples. It was also observed that the detected mycelia had similar
area (comparing Fig. 9a and b). A similar outcome was observed for all
cheeselets containing mycelial growth. Moreover, when the trans-
formation coefficients were applied to control cheeselets, no false areas
of contamination were detected.

4. Discussion

4.1. PCA on agar samples

As shown in Fig. 3b, when applied to agar samples, the first PC
loadings obtained from PCA exhibit positive coefficients for all the
samples, in contrast with the coefficients for the second PC loading
(Fig. 3d) and the third PC loadings (Fig. 3f). Comparing the spatial pro-
jection (score images) of the first PC for the uncontaminated and
contaminated agar samples, one can note that in the Day 4 sample, the
sporulated areas are clearly highlighted. The first PC loadings for spor-
ulated samples (Fig. 3b) have higher values in the 400 nm–500 nm range
when compared to the control sample.

For all agar samples containing mycelia, the second PC loading values
(Day 2, Fig. 3d) decrease in the 900 nm–1000 nm range and increase in
the 400–450 nm range when compared to those of the control agar
samples (Fig. 3d Control) and agar samples containing sporulated areas
(Fig. 3d Day 4). This indicates that the second PC loading values vary
when mycelial growth is present for the mentioned wavelength ranges.
Moreover, the pixel values for the second PC (Fig. 3e Day 2) always have
an inverted polarity for pixels containing mycelia when compared to the
remaining non-contaminated agar area.

The projected images associated with the third PC (Fig. 3g) appear to
highlight the texture of the agar surface. While Fig. 3 shows the results
obtained from one agar sample, similar results were consistently
observed across all the considered agar samples.
t cheeselets resulting from the application of predetermined transformation co-
same two samples as a result of the direct application of PCA on the raw data.
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4.2. PCA on cheeselets

Similarly to the agar samples, while the first PC loading values
(Fig. 4b) are all positive for all cheeselets, this is not the case for the
second (Fig. 4d) and third PC loadings (Fig. 4f). The first PC appears to be
associated with the general illumination effect on the cheeselet surface.
Comparing the first PC loadings for the control sample (Fig. 4b Control)
to that of the sporulated samples, higher peaks are observed in the 400
nm–500 nm range for the sporulated samples (Fig. 4b Day 4). Sporulated
areas on cheeselets are clearly visible on the first PC (Fig. 4c Day 4),
whilst the third PC highlights the different intensities within the sporu-
lated area as well as the border of the P. chrysogenum growth (Fig. 4g Day
4).

The spatial projection of the second PCs highlights areas of mycelial
growth on cheeselets (Fig. 4e Day 2). The pixel values for the PC always
have an inverted polarity for pixels containing mycelial growth when
compared to the remaining non-contaminated cheeselet area. The dif-
ference of the second PC plot for the cheeselets containing mycelia when
compared to that obtained for the control sample and the samples con-
taining sporulated areas appears to indicate that the second PC effec-
tively highlights the presence of mycelia (Fig. 4d). When considering the
three PCs and their spatial projections, only the second PC highlights
mycelial growth. In the studies done by Jiang et al. (2016) and Feng et al.
(Feng and Sun, 2013), it was also stated that the second PC contained
useful mouldy information on peanuts and chestnuts respectively. The
characteristics discussed in this section were observed across all
cheeselets.

Furthermore, the spectral signatures in Fig. 5 show that the largest
differences between the PC loadings of the background area and the
contaminated area occur for PC2. As was observed in Figs. 4d and 5B also
shows that there is a greater change in activity for the shorter wave-
lengths (400 nm–500 nm range), also indicating that PC2 contains most
information on mycelial growth on cheeselets and that mycelial growth
can be identified by hyperspectral imaging.

4.3. Predetermined transformation loadings

The results presented in Sections 3.3.1 and 3.3.2 show that the
transformation coefficients determined from training samples can be
effectively used to determine the presence or otherwise of contaminants
on unseen samples. Similar results were obtained when different training
and test sets were used. This indicates that the PCA results associated
with the contaminants from the different samples are consistent.

One of the main advantages of this approach is that in practice it
would only be necessary to train the PCA on one or few samples and
subsequently use the obtained loadings to test for specific contaminants
on new samples being tested. This approach is appealing for scenarios
where it may be of interest to train on contaminated samples with
different known contaminants, obtaining predetermined loadings for
every contaminant and applying these to new samples being tested to
check for the presence, if any, of the contaminants.

The proposed PCA method in this study worked effectively in
spatially localising and visualizing mycelial growth at the pixel level on
cheeselets. While PCA has been used in a number of studies involving the
use of hyperspectral imaging for food inspection, the method has pri-
marily been employed as a preprocessing step to reduce the dimension-
ality of the considered data. In these cases PCA allowed for a considerable
reduction of the data to be considered for further processing while
retaining the most relevant information (Wang et al., 2015; MA et al.,
2014).

In some cases PCA has also been applied in a manner similar to the
one adopted in this work, either to separate foreground pixels of a sample
of interest from background pixels, and/or to determine the contami-
nation or otherwise of food products such as peanuts and maize kernels
(Jiang et al., 2016; Foca et al., 2016).

The effectiveness of a pixel-wise application of PCA for the detection
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of fungal contamination in cheeselets was shown in this study. Moreover,
it was shown that the evolution of fungal contamination can also be
determined through the resulting PCs. Since hyperspectral imaging can
provide a fine representation of the spectral signature of the product or
contaminant under investigation, it is plausible to assume that the pro-
posed approach would also be effective on different types of cheeses and
contaminants. It is also worth noting that while the spectral range of the
hyperspectral imaging equipment used in this work overlaps consider-
ably with the visible spectrum captured by standard RGB cameras, any
fine differences in the spectral signatures of the considered food products
or contaminants are expected to only be discernible thanks to the fine
spectral resolution that a hyperspectral imaging system offers. It is in fact
expected that the use of the PCA approach in conjunction with hyper-
spectral imaging, as considered in this work, would be suitable to
discriminate between contaminants even in cases of minor differences in
their spectral signatures. However, further testing would be required to
confirm this in a practical setting.

5. Conclusion

In this study, an analysis was proposed to detect the presence of
mycelial growth on milk agar and cheeselets samples. The score images
obtained from the proposed PCA procedure indicated that the second PC
of contaminated samples was consistently representative of the presence
of contaminants on the inspected sample.

It was also proposed the testing of cheeselets for contamination by
determining PCA loadings that were obtained from training samples that
could subsequently be used to determine the presence of contaminants in
test samples. This approach was found to be effective in localising the
presence of mycelia on both the agar and cheeselets.

The proposed analysis may provide a rapid, non-contact food in-
spection approach through the use of hyperspectral imaging in food
production chains. While this study focused on the detection of con-
taminants in cheeselets, the same concepts could be adapted and applied
to other solid and semi-solid food products.
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