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Abstract Seasonal variation in the age distribution of influenza A cases suggests that factors

other than age shape susceptibility to medically attended infection. We ask whether these

differences can be partly explained by protection conferred by childhood influenza infection, which

has lasting impacts on immune responses to influenza and protection against new influenza A

subtypes (phenomena known as original antigenic sin and immune imprinting). Fitting a statistical

model to data from studies of influenza vaccine effectiveness (VE), we find that primary infection

appears to reduce the risk of medically attended infection with that subtype throughout life. This

effect is stronger for H1N1 compared to H3N2. Additionally, we find evidence that VE varies with

both age and birth year, suggesting that VE is sensitive to early exposures. Our findings may

improve estimates of age-specific risk and VE in similarly vaccinated populations and thus improve

forecasting and vaccination strategies to combat seasonal influenza.

Introduction
Seasonal influenza is a serious public health concern, resulting in approximately 100,000–600,000

hospitalizations and 5000–27,000 deaths per year in the United States despite extensive annual vac-

cination campaigns (Reed et al., 2015). The rapid evolution of the virus to escape preexisting immu-

nity contributes to the relatively high incidence of influenza, including in previously infected older

children and adults. How susceptibility arises and changes over time in the host population has been

difficult to quantify.

A pathogen’s rate of antigenic evolution should affect the mean age of the hosts it infects, and

differences in the rate of antigenic evolution have been proposed to explain differences in the age

distributions of the two subtypes of influenza A. Compared to H3N2, H1N1 disproportionately

infects children (Gagnon et al., 2018b; Caini et al., 2018; Khiabanian et al., 2009). It also evolves

antigenically more slowly (Bedford et al., 2015). Thus, compared to H3N2, H1N1 is slower to

escape immunity in individuals who have experienced prior infection (namely older children and

adults), making them less susceptible to reinfection (Bedford et al., 2015; Beauté et al., 2015;

Caini et al., 2018; Khiabanian et al., 2009). H3N2, in contrast, exhibits well known changes in anti-

genic phenotype that are expected to drive cases toward adults (Smith et al., 2004; Cobey and

Hensley, 2017). Under this simple model, hosts previously infected with a subtype face equal risk of

reinfection (on challenge) with an antigenic variant of that subtype.

The age distributions of influenza cases in exceptional circumstances—pandemics and spillovers

of avian influenza—have shown unexpected variation that suggests important effects of prior infec-

tion. Excess mortality in some adult cohorts during the 1918 and 2009 H1N1 pandemics correlates

with childhood infection with other subtypes (Gagnon et al., 2013; Worobey et al., 2014;

Gagnon et al., 2018a). In the post-2009 pandemic period, excess mortality and hospitalization were

observed among cohorts first exposed to H2N2 or H3N2 during H1N1pdm-dominated seasons

(Budd et al., 2019). Similarly, the subtypes circulating in childhood predict individuals’ susceptibility
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to severe zoonotic infections with avian H5N1 and H7N9, regardless of later exposure to other sea-

sonal subtypes (Gostic et al., 2016). These patterns suggest that early influenza infections, and not

prior infection per se, strongly shape susceptibility.

Early infections might also affect the protection conferred by influenza vaccination. Foundational

work on the theory of original antigenic sin demonstrated that an individual’s immune response to

influenza vaccination is biased toward antigens similar to those encountered in childhood

(Davenport and Hennessy, 1956). In some cases, this may result in a narrow antibody response

focused on a single epitope (Davis et al., 2018). This phenomenon has been suggested to explain

an unexpected decrease in vaccine effectiveness (VE) in the middle-aged in the 2015–2016 influenza

season (Skowronski et al., 2017b; Flannery et al., 2018). More generally, it has been hypothesized

that biases in immune memory can arise from both past infections and vaccinations and lead to vari-

ation in VE that is sensitive to the precise history of exposures (Smith et al., 1999;

Skowronski et al., 2017a).

To measure the effect of early exposures on medically attended infection risk and VE, we fitted

statistical models to 3493 PCR-confirmed influenza cases identified through seasonal studies of influ-

enza VE from the 2007–2008 to 2017–2018 seasons in the Marshfield Epidemiologic Study Area

(MESA) in Marshfield, Wisconsin (Belongia et al., 2009; Belongia et al., 2011; Griffin et al., 2011;

Treanor et al., 2012; Ohmit et al., 2016; McLean et al., 2014; Gaglani et al., 2016;

Zimmerman et al., 2016; Jackson et al., 2017; Flannery et al., 2018, Figure 1—figure supple-

ment 1). Each influenza season, individuals in a defined community cohort were recruited and tested

for influenza when seeking outpatient care for acute respiratory infection. Eligibility was restricted to

individuals >6 months of age living in MESA who received routine care from the Marshfield Clinic

and who presented in an outpatient setting.

We sought to explain the variation in the age distribution of these cases by subtype and over

time. Our model predicted the relative number of cases of influenza in each birth year each season

as a function of the age structure of the population, age-specific differences in the risk of medically

attended influenza A infection, early influenza infection, and vaccination. Despite the extensive anti-

genic evolution in both subtypes over the study period, we found strong evidence of protection

from the subtype to which a birth cohort was likely first infected (the imprinting subtype) and varia-

tion in VE by birth cohort.

Materials and methods

Study cohort
Cases of PCR-confirmed, medically attended influenza were identified from annual community

cohorts based on residency in MESA. MESA is a contiguous geographic area surrounding Marsh-

field, Wisconsin, where nearly all 61,000 residents receive outpatient and inpatient care from the

Marshfield Clinic Health System (Kieke et al., 2015). For each influenza season from 2007 to 2008

through 2017–2018, we identified MESA residents >6 months of age who received routine care from

the Marshfield Clinic. These individuals were eligible for recruitment into that season’s VE study if

they sought care for acute respiratory infection. Trained research coordinators recruited patients

during clinical encounters in primary care departments, including urgent care, pediatrics, combined

internal medicine and pediatrics, internal medicine, and family practice. Patients were enrolled on

weekdays, evenings, and weekends when clinical services were provided. Research staff used an

electronic appointment system to screen the chief complaints for respiratory or febrile illness.

Patients were then approached in-person to assess eligibility based on specific respiratory symptoms

and duration of illness. The proportion of patients with medically attended acute respiratory infec-

tion (MAARI) who were screened for enrollment varied by season and was largely determined by the

volume of patients each day and staffing capacity. Only symptoms and illness duration were used to

determine eligibility among those patients who were in the predefined cohort. Patients were also

assessed for the presence of medical conditions that put them at high risk for complications from

influenza infection, as defined by the Advisory Committee on Immunization Practice (Smith et al.,

2006). These conditions included cardiovascular disease, diabetes, pulmonary disease, cancer, kid-

ney disease, liver disease, blood disorders, immunosuppressive disorders, metabolic disorders, and

neurological/musculoskeletal disorders. We considered subjects vaccinated if they received that
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season’s influenza vaccine �14 days before enrollment. For the 2009–2010 season, we only consid-

ered receipt of the 2009 monovalent vaccine. The Marshfield Clinic generally does not capture

MAARI in nursing facilities with dedicated medical staff, causing undersampling of the oldest age

groups. We adjusted for this (Appendix 1: ‘Age-specific rates of approachment, enrollment, and

nursing home residence’).

Each season, recruitment began when influenza activity was detected in the community and usu-

ally continued for 12–15 weeks. Symptom eligibility criteria varied by season but included fever/

feverishness or cough during most seasons. We retroactively standardized symptom eligibility crite-

ria to only require cough as a symptom. Individuals with illness duration >7 days or presenting in an

inpatient (hospital) setting were excluded. After obtaining informed consent, a mid-turbinate swab

was obtained for influenza detection. RT-PCR was performed using CDC primers and probes to

identify influenza cases, including type and subtype.

Calculating differences in the age distribution between seasons
We defined the age distribution of each season as the number of cases of the dominant (more com-

mon) subtype in each of nine age groups (0–4 year-olds, 5–9 year-olds, 10–14 year-olds, 15–19 year-

olds, 20–29 year-olds, 30–39 year-olds, 40–49 year-olds, 50–64 year-olds, and �65 years old). We

excluded the subdominant subtype in each season due to concerns that short-term interference

between the subtypes (Laurie et al., 2015; Goldstein et al., 2011) would affect the age distribution

of the rarer subtype. The G-test of independence was used to measure differences in seasons’ age

distributions.

Calculating relative risk
To evaluate relative infection risk in different age groups, we measured their relative risk of infection

in the first versus second half of each season. This risk is a combination of the chance of infection,

conditional on infection (susceptibility), and the rate of contact with infected people. Attack rates

should be higher in populations that experience more risk, and therefore these populations should

be infected earlier in the epidemic (Worby et al., 2015). To calculate relative risk we used an

approach similar to Worby et al., 2015. We defined the midpoint of each season as the week in

which the cumulative number of cases of the dominant subtype among all people exceeded half the

total for that season. Weeks before and after this point were assigned to the first and second half of

the season, respectively. We assigned each case to one of the five age groups used by

Worby et al., 2015 (0-4 year-olds, 5–17 year-olds, 18–49 year-olds, 50–64 year olds, and �65 years

old). For each age group g, we defined relative risk as

Cfirst;t;g

Csecond;t;g

; (1)

where Cfirst;t;g and Csecond;t;g are the fraction of cases of the dominant subtype during influenza season

t that occurred during the first or second half of the season, respectively. A relative risk >1 indicates

that cases in an age group were more likely to occur during the first half of the season.

Calculating imprinting probabilities
We hypothesized that the subtype of a person’s first influenza A infection affects their future suscep-

tibility to that subtype. Testing this hypothesis requires knowing the probability that a person’s pri-

mary influenza A infection was with a particular subtype. To calculate these probabilities, we

emulated the approach of Gostic et al., 2016, which assumes these probabilities are determined by

a person’s year of birth and subsequent exposure to each subtype.

First, we calculated the probability that an individual born in year y received their first influenza A

exposure in influenza season t. Assuming a constant per-season rate of infection i0, the probability of

infection in one season (i.e., the attack rate) is given by

Prðinfection in single seasonÞ ¼ 1� e�i0
: (2)

By assuming that the average probability that a naive individual is infected in a single season is

0.28 (Bodewes et al., 2011; Gostic et al., 2016), we calculated the expected per-season infection

rate (i0) as
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0:28¼ 1� e�i0
;

i0 ¼�lnð0:72Þ:
(3)

However, because the intensity of epidemics varies between seasons (It, Appendix 1: ‘Seasonal

intensity’) and the fraction of the epidemic experienced by a person depends on their birth year (gy;t,

Appendix 1: ‘Fraction of season experienced’), we considered the time-varying per-season infection

rate,

iy;t ¼ i0Itgy;t: (4)

Therefore, the probability that a naive individual born in year y is infected in season t is

ay;t ¼ 1� e�iy;t
: (5)

We used ay;t to calculate the fraction of a birth cohort y that received their first influenza A infec-

tion in season t. Let Uy;t be the fraction of people born in year y who were unexposed at the begin-

ning of season t (Appendix 1: ‘Calculating the fraction unexposed’). The probability that a person

born in year y has their first infection in season t is

Prðfirst exposure in season tÞ ¼ PrðinfectedjunexposedÞPrðunexposedÞ ¼ ay;tUy;t (6)

We calculated ms;t;y, the probability that a person born in year y had their first influenza A infection

with subtype s in season t, by multiplying ay;tUy;t by the frequency of subtype s in season t, ls;t (Fig-

ure 3—figure supplement 1),

ms;t;y ¼ ls;tay;tUy;t: (7)

Modeling approach
We aimed to predict ps;t;y;v, the fraction of cases of subtype s in season t among people born in year

y with vaccination status v. Our models assume that this is proportional to a combination of the fol-

lowing factors:

1. Demography. The age distribution of our study cohort is not static over the study period. All
models adjusted for the changing fractions of the population in each birth cohort and season
(Figure 1—figure supplement 2; Mathematical expressions for model components:
‘Demography’).

2. Age-specific effects. We considered that age itself may be associated with differences in medi-
cally attended influenza A infection risk stemming from differences in susceptibility and/or
rates of contact with infectious people. Additionally, we expect that age groups may intrinsi-
cally differ in their healthcare-seeking behaviors. These factors are inseparable in our data, and
all models represent their combined effects with a static age-specific parameter shared by
both subtypes that describes the risk of age-specific medically attended influenza A infection
(Mathematical expressions for model components: ‘Age-specific factors’). We assumed no
intrinsic differences in the age-specific virulence of the two subtypes. These age-specific
parameters were fitted. We also adjusted for other potential sources of age-specific bias,
including age-specific differences in study approachment and enrollment rates (Appendix 1:
‘Age-specific rates of approachment, enrollment, and nursing home residence’).

3. Imprinting. We tested several hypotheses of how primary exposures could affect the risk of
medically attended infection with H1N1 and H3N2. In each version, we estimated fractional
reductions in risk of medically attended H1N1 and H3N2 infection due to primary (i.e., imprint-
ing) exposure to the same type:
. Subtype-specific imprinting: Influenza has two main antigens, hemagglutinin (HA) and neu-

raminadase (NA). Imprinting could in theory derive from responses to either or both anti-
gens. Because H1N1 is the only seasonal subtype of influenza with N1, we cannot
separate the effects of initial N1 exposure from initial H1 exposure. However, since N2
appears in both H3N2 and H2N2 viruses, we can estimate protection against H3N2 infec-
tion from initial N2 exposure separately from protection from initial H3 exposure (Mathe-
matical expressions for model components: ‘HA subtype imprinting’ and ‘N2 imprinting’).

. Group-level imprinting: Influenza A viruses fall into two groups (I and II) corresponding to
the two phylogenetic clades of HA. Gostic et al., 2016 found that primary infection by a
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virus belonging to one group protected against severe infection by another subtype in
the same group. If group-level imprinting were influential, we would see primary infection
with H2N2 conferring protection against H1N1, another group I virus, as well as H1N1
protecting against H1N1, and H3N2 against H3N2. We considered a separate class of
models that assumes group-level protection instead of subtype-specific protection (Math-
ematical expressions for model components: ‘HA group imprinting’).

4. Vaccination. Approximately 45% of the MESA population was vaccinated against influenza
each year (Figure 1—figure supplement 3; Appendix 1: ‘Vaccination coverage’). We esti-
mated cases in vaccinated and unvaccinated individuals of each birth year separately. Naively,
we expect that vaccinated individuals should seek medical attention for acute respiratory infec-
tion proportionally to the fraction of their cohort vaccinated that season. However, vaccinated
individuals may seek medical attention for acute respiratory infection more frequently than
non-vaccinees due to correlations between the decision to vaccinate, healthcare-seeking
behavior, and underlying medical conditions (Jackson et al., 2006a; Jackson et al., 2006b;
Belongia et al., 2011). Indeed, we generally observed higher rates of high-risk medical condi-
tions among vaccinated people compared to unvaccinated people (Figure 1—figure supple-
ment 4). We attempted to adjust for this by calculating the fraction of vaccinated people
among those who had MAARI and tested negative for influenza (i.e., the test-negative con-
trols, ‘Mathematical expressions for model components: Vaccination’). We found that the vac-
cinated fraction exceeds vaccination coverage for most age groups, suggesting vaccinated
individuals are overrepresented among cases for reasons unrelated to influenza (Figure 1—fig-
ure supplement 5). We also assumed that vaccination is not perfectly effective, and defined
VE as the fractional reduction in cases expected in vaccinated compared to unvaccinated indi-
viduals after controlling for the effects described above. We estimated subtype-specific VE
under five scenarios: (i) constant across age groups and seasons; (ii) constant across age
groups but season-specific; (iii) age-specific but constant across seasons; (iv) imprinting-spe-
cific; and (v) birth-cohort-specific. We assumed that vaccination affects risk only in the current
season, i.e, vaccination in a prior season confers no residual protection (Mathematical expres-
sions for model components: ‘Vaccination’; Ohmit et al., 2014; Ohmit et al., 2016;
Jackson et al., 2017; Skowronski et al., 2016; Pebody et al., 2013; McLean et al., 2018).

We defined models as specific combinations of the above factors. We tested a set of 10 models

by pairing each of the possible implementations of HA imprinting with each implementation of VE

(Figure 1). Demography, age-specific effects, and N2 imprinting were included in all these models.

To test whether more complex models truly improved model fit, we also tested a simple model with

constant VE and no effect of imprinting. We evaluated these 11 models by maximum likelihood and

compared their performance using the corrected Akaike information criterion (cAIC, ‘Model likeli-

hood’) and leave-one-out cross-validation.

Mathematical expressions for model components
Demography
We expect that the fraction of cases in each birth cohort should be proportional to the underlying

demographic birth year distribution of the population. To calculate the demographic birth year dis-

tribution, we used MESA-specific data on the age distribution for each season (Kieke et al., 2015).

Because people �90 years old were grouped into a single age class, we estimated the number of

people in each age �90 years old by assuming a geometric decline in population with age. We con-

verted the age distribution for each season into a distribution by birth year by assigning people of a

specific age into the two possible birth years of that age (Appendix 1: ‘Birth year distribution of the

study population’). Therefore,

ps;t;y;v /Dt;y; (8)

where Dt;y is the fraction of the population in season t who were born in year y .

Age-specific factors
We modeled intrinsically age-specific differences in medically attended influenza A infection risk and

healthcare-seeking behavior by using parameters that represent the relative risk of medically

attended influenza A infection in each age group. These parameters combine the effects of underly-

ing age-specific differences in influenza A medically attended infection risk as well as age-specific
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differences in healthcare-seeking behavior. We considered the same age groups as before (0–4

year-olds, 5–9 year-olds, 10–14 year-olds, 15–19 year-olds, 20–29 year-olds, 30–39 year-olds, 40–49

year-olds, 50–64 year-olds, and �65 years old). We chose 20–29 year-olds as our reference age

group. All age groups g aside from 20 to 29 year-olds had an associated parameter (Ag) that scaled

their risk of medically attended influenza A infection relative to 20–29 year-olds. These parameters

can take on any positive value.

Since our models describe the distribution of cases by birth year and not by age, we mapped the

age-group-specific parameters (Ag) to birth cohorts in each season t (At;y). We considered that each

birth cohort has two possible ages in each season (a1 and a2). Let GðaÞ be a function that specifies

the age group g of a given age a. Then At;y, the age-specific relative risk in season t of medically

attended influenza A infection for a person born in year y, is

At;y ¼ fa1;t;yAGða1Þþ fa2;t;yAGða2Þ; (9)

where fa1;t;y and fa2;t;y are the fractions of birth cohort y who are age a1 or a2 in influenza season t

(Appendix 1: ‘Fraction of birth cohort with specific age’), and AGða1Þ and AGða2Þ are the age-group-

specific parameters for a1 and a2.

Our models also included age-specific approachment rates (x0approach;t;y), enrollment rates

(x0enroll;t;y;v), and nursing home enrollment (kt;y) as covariates, all of which bias the age distribution of

medically attended influenza infections (Appendix 1: ‘Age-specific rates of approachment, enroll-

ment, and nursing home residence’). The combination of estimated age-specific effects and age-spe-

cific covariates was modeled as

ps;t;y;v / At;yx
0
approach;t;yx

0
enroll;t;y;vð1� kt;yÞ: (10)

HA subtype imprinting
We considered that imprinting to HA reduces a birth cohort’s risk of future infection from the same

HA subtype. Therefore,

ps;t;y;v / 1� hsms;t;y; (11)

Demography Age N2 imprinting

Season Age
Imprinting
subtype CohortConstant

HA
imprinting

GroupSubtype

Vaccine

effectiveness

Figure 1. Summary of models tested. Ten different models result from considering different combinations of HA imprinting and VE. We also tested one

additional model excluding the effects of N2 and HA imprinting (Materials and methods: ‘Modeling approach’).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Sample collection and final study population.

Figure supplement 2. Birth year distribution of population.

Figure supplement 3. Vaccination coverage.

Figure supplement 4. Age distribution of high-risk medical status.

Figure supplement 5. Rate of MAARI in vaccinated and unvaccinated controls.

Figure supplement 6. Repeat vaccination by age group and season.

Figure supplement 7. Vaccine type received.
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where hs is the strength of HA imprinting for subtype s and ms;t;y is the imprinting probability in sea-

son t of birth cohort y to subtype s (‘Calculating imprinting probabilities’).

HA group imprinting
We considered that imprinting to HA reduces a birth cohort’s risk of future infection with viruses

from the same HA group. Therefore,

pH1N1;t;y;v / 1� g1ðmH1N1;t;y þmH2N2;t;yÞ; (12)

pH3N2;t;y;v / 1� g2mH3N2;t;y; (13)

where g1 is the strength of HA imprinting for group one viruses; g2 is the strength of HA imprinting

for group two viruses; and mH1N1;t;y, mH2N2;t;y, and mH3N2;t;y are the imprinting probabilities in season t

of birth cohort y to H1N1, H2N2, and H3N2.

N2 imprinting
We considered that imprinting to N2 reduces a birth cohort’s risk of H3N2 infection. Therefore,

pH3N2;t;y;v / 1� nmðmH3N2;t;y þmH2N2;t;yÞ; (14)

where nm is the strength of N2 imprinting, and mH3N2;t;y and mH2N2;t;y are the imprinting probabilities

of birth cohort y in season t to H3N2 and H2N2.

Vaccination
We assumed that vaccination decreases the risk of medically attended infection. However, vacci-

nated individuals may seek healthcare for symptomatic influenza at a different rate than unvacci-

nated individuals. Moreover, because vaccines are routinely recommended for individuals with

underlying health conditions, pre-existing susceptibility to MAARI among vaccinated individuals may

also differ from unvaccinated individuals. Let Rt;g represent the fraction of vaccinated individuals in

age group g in season t that present with MAARI. We use test-negative controls to estimate this as

Rt;g ¼
v�t;g

u�t;g þ v�t;g
; (15)

where v�t;g and u�t;g are the number of vaccinated or unvaccinated individuals born in year g presenting

with MAARI and testing negative for influenza in season t. We converted Rt;g to Rt;y (i.e., to a covari-

ate indexed by birth cohort) using the same method described in ‘Age-specific factors.’ We tested

five different VE schemes: subtype-specific VE that remained constant across seasons and cohorts

(two parameters), subtype-specific VE that varied between the age groups described above (18

parameters), VE that varied between seasons (12 parameters), VE for each possible imprinting sub-

type (six parameters), and birth-cohort-specific VE (18 parameters). These VE parameters (V )

reduced the probability of medically attended influenza A infection among vaccinated individuals in

a birth cohort, i.e,

ps;t;y;vac: / Rt;yð1�VÞ (16)

ps;t;y;unvac: / ð1�Rt;yÞ; (17)

where V depends on the specific implementation of VE used.

Constant VE only varies with the infecting subtype, thus

V ¼ vs: (18)

Season-specific VE varies with subtype and season, thus

V ¼ vs;t: (19)

For age-specific VE, we used the same age classes described above for ‘Age-specific factors’ but
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did not consider a reference age class, so that each age group had an associated VE for each sub-

type. We used these age-specific VE parameters to calculate the VE against subtype s in birth cohort

y during season t using the same procedure described in ‘Age-specific factors’ (Equation 9).

Therefore,

V ¼ fa1;t;yvGða1Þ;sþ fa2;t;yvGða2Þ;s; (20)

where vGða1Þ;s and vGða2Þ;s are age-specific VE parameters for a1 and a2.

For imprinting-specific VE, we used the imprinting probabilities for each birth cohort described in

‘Calculating imprinting probabilities’ to scale V such that

V ¼ 1�
Y

z2fH1N1;H2N2;H3N2g

ð1� vs;zmz;t;yÞ; (21)

where vs;z is the VE among people imprinted to subtype z against infection by dominant subtype s,

and mz;t;y is the imprinting probability for subtype z in season t for birth cohort y.

For birth-cohort-specific VE, we defined nine birth cohorts corresponding to the nine age groups

we used for the 2017–2018 season: 1918–1952, 1953–1967, 1968–1977, 1978–1987, 1988–1997,

1998–2002, 2003–2007, 2008–2012, and 2013–2017. Let QðyÞ be the birth cohort of people born in

year y. Then

V ¼ vQðyÞ;s; (22)

where vQðyÞ;s is the VE among people in cohort QðyÞ against infection by dominant subtype s.

Model likelihood
Recall that our aim is to predict ps;t;y;v, the fraction of all PCR-confirmed influenza cases of dominant

subtype s in influenza season t among people born in year y with vaccination status v. These fractions

can also be interpreted as multinomial parameters that describe the probability that in season t, a

medically attended influenza infection of subtype s occurs among people born in year y with vaccina-

tion status v. Each model M assumes that ps;t;y;v is proportional to a collection of model components

j described above (demography, age, imprinting, and vaccination). Thus,

pM;s;t;y;v /
Y

j

fM;jhj;s;t;y;v; (23)

where pM;s;t;y;v is a multinomial probability under model M, fM;j indicates whether model M contains

component j, and hj;s;t;y;v is the mathematical expression for model component j given s, t, y, and v

(e.g., for HA subtype imprinting, hj;s;t;y;v ¼ 1� hsms;t;y).

To obtain proper multinomial probabilities, we calculated a normalizing constant for each season

t such that all probabilities in that season sum to 1. For convenience, let p0M;s;t;y;v ¼
Q

j fM;jhj;s;t;y;v be

the unnormalized multinomial probability for model M. Then for a specific season t, the normalized

multinomial probability is

pM;s;t;y;v ¼
p0M;s;t;y;v

Pymax;t

y0¼1918
p0M;s;t;y0;unvac: þ

Pymax;t

y0¼1918
p0M;s;t;y0;vac:

: (24)

where ymax;t is the maximum birth year possible for a specific season t.

To calculate the likelihood of a given model, we used the multinomial probabilities and the

observed birth year distribution of cases. Let ns;t;y;v be the number of PCR-confirmed cases of domi-

nant subtype s in influenza season t among people born in year y with vaccination status v. The total

number of PCR-confirmed cases of dominant subtype s in season t is

Ns;t ¼
X

ymax;t

y¼1918

ns;t;y;unvac: þ
X

ymax;t

y¼1918

ns;t;y;vac: (25)

For models fitted to a restricted set of ages, we limited the cases for each season to the birth

cohorts that were guaranteed to meet the age requirements in that season.
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Then, the likelihood of model M in season t is given by the multinomial likelihood,

LM;t ¼
Ns;t!p

ns;t;1918;unvac:

M;s;t;1918;unvac:p
ns;t;1918;vac:

M;s;t;1918;vac: � � �p
ns;t;ymax;t ;unvac:

M;s;t;ymax;t ;unvac:
p
ns;t;ymax;t ;vac:

M;s;t;ymax;t ;vac:

ns;t;1918;unvac:!ns;t;1918;vac:! � � �ns;t;ymax;t ;unvac:!ns;t;ymax;t ;vac:!
; (26)

Finally, the full model likelihood for model M over all observed seasons is

LM ¼
Y

2017�2018

t¼2007�2008

LM;t: (27)

We fitted the model to case data using the L-BFGS-B algorithm implemented in the R package

optimx. We estimated 95% confidence intervals for parameters of the best-fitting model by evaluat-

ing likelihood profiles at 14 evenly spaced points and interpolating the entire profile using a smooth-

ing spline.

Results

The age distribution of cases varies between seasons and subtypes
The age distribution of cases varies between subtypes. The relative burden of cases is consistently

higher in people �65 years old during H3N2-dominated seasons compared to H1N1-dominated sea-

sons (Figure 2). The age distribution tends to vary more between subtypes than within either over

time (Figure 2—figure supplement 1, off-diagonal quadrants). This is consistent with recent work

showing that the ratios of H3N2 to H1N1 cases differ between age groups (Gagnon et al., 2018b).

The age distribution also varies within subtypes over time (Figure 2—figure supplement 1, diag-

onal quadrants). The seven H3N2-dominated seasons display three types of age distributions (Fig-

ure 2—figure supplement 1, clusters of lighter-colored cells in the upper left-hand quadrant), and

two correspond to major antigenic clusters (2007–2008, Fonville et al., 2016; 2010–2012,

Ann et al., 2012). These differences sometimes coincide with significant shifts in the age distribution

between seasons. For instance, the highest fraction of H3N2 cases occurs in 20–29 year olds in the

2007–2008 season, but this age group has the lowest fraction of cases in the next H3N2-dominated

season (2010–2011, Figure 2C). In H1N1, the shift from seasonal to pandemic strains is associated

with large changes in the age distribution (Figure 2—figure supplement 1, lower right-hand

quadrant).

We found further evidence that age groups differed in their susceptibility across seasons by

examining the relative risk of infection during the first versus second half of each epidemic period

(Materials and methods: ‘Calculating relative risk’). Individuals at greater risk of infection should be

infected disproportionately early rather than late in an epidemic (Worby et al., 2015). We confirmed

that an age group’s relative risk correlates with the fraction of cases within that age group in the

same season (Pearson’s r = 0.58, 95% CI 0.38–0.73; Figure 2—figure supplement 2A; Appendix 1:

‘Correlation of relative risk and fraction of cases’). This trend is evident for H1N1 (Pearson’s r = 0.73,

95% CI 0.45–0.88; Figure 2—figure supplement 2A) and H3N2 seasons separately (Pearson’s

r = 0.52, 95% CI 0.30–0.69; Figure 2—figure supplement 2A). The positive correlation in all seasons

is robust to undersampling of cases at the start and end of seasons (Appendix 1: ‘Sensitivity to sam-

pling effort’, Figure 2—figure supplement 2B). This provides supporting evidence that the different

numbers of cases in each age group reflect underlying differences in infection risk.

Just as the age distribution of cases varies over time, the age groups with high relative risks of

infection change over time. If people contact one another similarly from one season to the next,

these shifting relative risks imply that age groups’ relative susceptibilities change over time. For

instance, 5–17 year olds had the highest relative risk of early infection in the 2008–2009 season,

whereas 50–64 year-olds had the highest relative risk in the 2013–2014 season (Figure 2—figure

supplement 3). Relative risks in MESA vary more than national estimates, which show that 5–17

year-olds had the highest relative risk in all but one season from the 2009 pandemic to 2013–2014

(Worby et al., 2015). These differences may partly be due to the fact that our measurements of rela-

tive risk use outpatient visits, whereas the national estimates use hospitalizations.
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Taken together, these findings suggest that the risk of influenza infection is not a simple function

of age alone. Other factors, such as past influenza infections and vaccination, might explain the

changing age distributions of cases in time.

Imprinting probabilities of age groups change over time
We hypothesized that variation in the age distribution of cases could be explained by the aging of

birth cohorts with similar early exposure histories. This would cause the early exposure history of an

age group, and thus potentially its susceptibility, to change in time. To calculate the probability that

people in a particular age group had their first influenza A infection with a particular subtype, we

adapted the approach from Gostic et al., 2016. Briefly, we calculated the probability that an individ-

ual born in a specific year had a primary infection with H1N1, H2N2, or H3N2 using data on relative

Figure 2. The age distribution of cases. (A) The age distributions of cases from the 2007–2008 through the 2017–

2018 influenza seasons in MESA. Dark lines with open circles indicate the average fraction of cases in each age

group. Lighter-colored lines show the age distribution for individual seasons. (B) The age distribution of cases in

H1N1-dominated seasons. (C) The age distribution of cases in H3N2-dominated seasons.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Statistical analysis of age distribution of cases.

Figure supplement 2. Correlation of relative risk and fraction of cases within an age group.

Figure supplement 3. Relative risk among different age groups across seasons.
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epidemic sizes and the frequencies of circulating subtypes (Figure 3—figure supplement 1; Materi-

als and methods: ‘Calculating imprinting probabilities’).

As expected, age groups’ early exposures are not static and change over time (Figure 3). Older

people nonetheless tend to be imprinted to H1N1 or H2N2, whereas younger people have higher

probabilities of imprinting to H3N2. The effects of the 2009 H1N1 pandemic are evident in the three

youngest age groups as a transient increase (from 2009 to approximately 2013) in their H1N1

imprinting probability. These imprinting probabilities are relatively well-constrained even after for

accounting for uncertainty in epidemic size (Figure 3—figure supplement 2; Appendix 1: ‘Sensitivity

to uncertainty in ILI and the frequency of influenza A’).

Age-specific differences in medically attended influenza A infection risk
affect epidemic patterns
We fitted models to estimate the underlying effects of age, early infections, and vaccination on the

age distributions of cases. As expected, the cases reveal age-specific differences in the risk of medi-

cally attended influenza A infection (Figure 4; Figure 4—figure supplement 1; Appendix 2—table

1). This risk is roughly threefold higher among children <4 years old compared to adults 20–29 years

old, after adjusting for other effects (Figure 4). The decline in risk through middle age is generally

consistent with attack rates estimated from serology (Monto et al., 1985; Bodewes et al., 2011;

Wu et al., 2010; Huang et al., 2019) and clinical infections (Wu et al., 2017). We recently observed

smaller differences in the attack rates of school-aged children and their parents when estimating

Figure 3. Imprinting probabilities by age group across seasons. Each panel shows the imprinting probabilities of

an age group from the 2007–2008 season through the 2017–2018 season. The color of each bar corresponds to

the imprinting subtype or naive individuals, who have not yet been infected.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Intensity and subtype frequencies of influenza A.

Figure supplement 2. Imprinting probabilities with random sampling of seasonal intensity.
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infections serologically (Ranjeva et al., 2019). We hypothesize that the attack rates estimated from

clinical infections might show larger differences by age due to age-related changes in infection

severity and healthcare-seeking behavior. Indeed, rates of healthcare-seeking behavior have been

shown to decline with age before rising in adults �65 years old (Biggerstaff et al., 2014; Brooks-

Pollock et al., 2011; Van Cauteren et al., 2012), consistent with our results. Finally, the increased

risk of medically attended influenza A infection among people �65 years old compared to other

adults may be related to the increasing prevalence of high-risk medical conditions with age (Fig-

ure 1—figure supplement 4).

Initial infection confers long-lasting, subtype-specific protection against
future infection
Our best-fitting model supports subtype-specific imprinting for H1N1 and H3N2 (Figure 5, top row;

Appendix 2—table 1). This model also provides the best predictive power compared to other mod-

els in a leave-one-out cross-validation analysis (Figure 5—figure supplement 1; Figure 5—figure

supplement 2; Appendix 1: ‘Evaluation of predictive power’). The risk of future medically attended

infection by H1N1 is reduced by 66% (95% CI 53–77%) in people imprinted to H1N1, whereas the

risk of future medically attended infection by H3N2 is reduced by 33% (95% CI 17–46%) in people

imprinted to H3N2. We found no evidence of a protective effect from imprinting to N2 (0%, 95% CI

0–7%). These estimates of imprinting protection are insensitive to:

. uncertainty in imprinting probabilities due to uncertainty in past epidemic sizes (Figure 3—fig-
ure supplement 2; Appendix 1: ‘Sensitivity to uncertainty in ILI and the frequency of influenza
A’; Appendix 2—table 3),

. choice of age groups for medically attended influenza A infection risk and VE (Appendix 1:
‘Sensitivity to age groups’; Appendix 2—table 4), and

. undersampling of influenza cases in some seasons (Figure 5—figure supplement 3).

In theory, the estimated protective effects of imprinting could be influenced by cross-protection

rather than the impact of first infection per se. Because first infections are also recent infections in

children, we reasoned that the observed imprinting effects might arise from confounding with recent

infections in these ages. Based on an estimated 7 year half-life of homologous protection after

H1N1pdm infection in children (Ranjeva et al., 2019) and the fact that most children experience pri-

mary influenza A infection by 5 years of age (Bodewes et al., 2011), we reasoned that excluding

Figure 4. Estimates of relative age-specific medically attended influenza infection risk. Open circles represent the

maximum likelihood estimates of parameters describing age-specific differences in the relative risk of medically

attended influenza A infection. Lines show the 95% confidence interval.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Ranking of models fitted to all ages.
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children <15 years old would diminish the impact of protection from recent infection on our results.

When we excluded the youngest age groups, our estimates of H1N1 imprinting protection

decreased while H3N2 imprinting protection increased (Figure 5, second row). However, initial

infection by H1N1 was still more protective than initial infection by H3N2, both imprinting effects

remained positive, and there was no significant change in the values of other estimated parameters

(Appendix 2—table 1 and Appendix 2—table 2).

The effects of recent infection should also manifest in the difference between the observed and

estimated numbers of cases (i.e., the excess cases, Appendix 1: ‘Calculating excess cases’), since

unlike typical transmission models, our model does not take prior-season infections into account

when estimating cases for the current season. More infections in a birth cohort in one season should

reduce susceptibility in that birth cohort at the start of the next season. We thus expect that excess

cases in one season will be followed by missing cases in the next season dominated by that subtype

(i.e., a negative correlation in excess cases). Instead, we observed that excess cases for each birth

cohort are weakly positively correlated from season to season, suggesting that immunity from recent

infections is not a major driver of temporal variation in the age distribution of cases (Figure 5—fig-

ure supplement 5).

Since older adults have the highest probability of primary infection with H1N1, we also reasoned

that older adults might disproportionately drive the strong protection from H1N1 imprinting we

observe. People born before 1947 were likely exposed to H1N1 strains that are antigenically similar

to the post-pandemic H1N1 strains that comprise most of our H1N1 infection data

(Manicassamy et al., 2010; O’Donnell et al., 2012), creating the possibility that strain-specific

cross-immunity drives the pattern we attribute to subtype-specific imprinting. These people nearly

all fall into the �65 year-old age group in the study period. The study also underenrolled medically

attended infections among people in nursing facilities, which would artificially lower the case count

in this age group and may affect estimates of imprinting protection. Therefore, we excluded adults

�65 years old and refitted our models. Excluding the oldest adults does not significantly change

Figure 5. Estimates of imprinting strength. Imprinting is more protective against H1N1 infection than H3N2

infection. Open circles represent the maximum likelihood estimates of imprinting parameters from the model

including HA subtype imprinting and age-specific VE fitted to the indicated age group (y-axis). Black lines show

95% confidence intervals.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Ranking of models by predictive power.

Figure supplement 2. Model performance on excluded seasons.

Figure supplement 3. Cases per sampling day.

Figure supplement 4. Estimates of imprinting protection with added simulated cases.

Figure supplement 5. Correlation of excess cases between seasons.
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estimated imprinting protection or other parameters (Appendix 2—table 1 and Appendix 2—table

2).

When we exclude both the youngest and oldest age groups, initial infections by H1N1 and H3N2

have similar protective effects (Figure 5, bottom row). This shows that the combined effects of

cross-protection in both the youngest and oldest individuals contribute to the signal of imprinting

protection we observe, but they are not its sole drivers.

VE varies by birth cohort in older children and adults
The best-fitting model includes age-specific VE (Figure 4—figure supplement 1; Appendix 2—

table 2). While serological responses to influenza vaccination are weakest in the young

(Englund et al., 2005; Neuzil et al., 2006) and old (Lee et al., 2018; DiazGranados et al., 2014), it

is unclear what age-related factors would drive variation in VE in other age groups. We hypothesized

that VE in these ages varies with early exposure history, which correlates with birth year, rather than

age.

To test this hypothesis, we fitted a model with birth-cohort-specific VE to the cases, excluding

either children <15 years old or adults �65 years old. We chose birth cohorts that corresponded to

Figure 6. Estimates of birth-cohort-specific VE. Birth-cohort-specific VE differs significantly between subtypes and

birth cohorts. The location of each pie chart represents the H3N2 (x-axis) and H1N1 (y-axis) VE estimates for a birth

cohort (indicated by text) obtained from our model fitted to people �15 years old. Pie charts are colored by the

probability of first infection by each subtype (i.e, imprinting probability). 95% confidence intervals of the VE

estimates are indicated by light grey solid lines. The dashed grey line shows the diagonal where the VE estimate

for H1N1 is equal to the VE estimate for H3N2.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Ranking of models fitted to people �15 years old.

Figure supplement 2. Excess cases for models using birth-cohort-specific VE and age-specific VE.
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A

B

Figure 7. Model predictions compared to observed case counts. (A) The model including age-specific VE and subtype-specific HA imprinting

accurately predicts the overall age distribution of cases across seasons and age groups. Each row depicts the age distribution of cases among

unvaccinated (top) and vaccinated (bottom) individuals over all sampled seasons (2007–2008 through 2017–2018). Each column indicates H1N1 cases

(left, blue) and H3N2 cases (right, red). Open circles represent observed cases, solid lines represent the predicted number of cases from the best-fitting

model, the shaded area represents the 95% prediction interval of the best-fitting model. (B) Excess cases of dominant subtype for each season. Excess

Figure 7 continued on next page
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the age groups of the original model in 2017–2018 (Materials and methods: ‘Vaccination’), keeping

the number of parameters the same (e.g., VE in the 20–29 age group became VE in the 1988–1997

birth year cohort). We find that age-specific VE still outperforms all other models after we exclude

the oldest age group (�65 years old). In contrast, birth-cohort-specific VE performs better when we

exclude children <15 years old (Figure 6—figure supplement 1). Estimates of imprinting protection

and age-specific risk of medically attended influenza in the birth-cohort-specific VE models are not

significantly different from estimates from the best-fitting model fitted to all ages (Appendix 2—

table 1). Taken together, these results suggest that birth-cohort-specific VE best explains the case

distribution in older children and adults, who have likely experienced their first influenza infection,

whereas age-specific VE best explains cases in younger children, who have less influenza exposure.

VE differs between birth cohorts that have similar imprinting by subtype (Figure 6; Appendix 2—

table 5). For example, the 1968–1977 and 1988–1997 cohorts have similar probabilities of primary

exposure to H1N1 and H3N2, but they differ substantially in their VE to both subtypes (Figure 6).

The 1988–1997 and 1998–2002 cohorts also have similar probabilities of primary exposure to each

subtype and have similar H1N1 VEs, but have significantly different H3N2 VEs (Figure 6). Antigenic

differences within each subtype might explain this variation.

Discrepancies partly explained by antigenic evolution
The best-fitting model accurately reproduces the age distributions of vaccinated and unvaccinated

cases of each subtype, aggregated across seasons (Figure 7A). The only exception is that it underes-

timates aggregate H1N1 cases in unvaccinated 5–9 year-olds. By examining the differences between

predicted and observed cases for each season, we see that this is largely driven by infection during

the 2009 H1N1 pandemic (Figure 7B). Such a large antigenic change may have negated any protec-

tion from previous infection in 5–9 year-olds and made them particularly susceptible to pandemic

infection.

The model underestimates cases in unvaccinated individuals who were 30–39 years old and over

50 years old in the 2013–2014 season (Figure 7B), as indicated by the many excess cases in these

age groups in that season. This is further evidence that subtype-specific imprinting cannot explain all

age variation. As mentioned before, this season provided one of the first examples that original anti-

genic sin could affect protection: middle-aged adults had been targeting a familiar site on the pan-

demic strain that then mutated, rendering them susceptible. Other age groups were effectively

blind to these changes, owing to their different exposure histories (Linderman et al., 2014;

Huang et al., 2015; Arriola et al., 2014; Dávila et al., 2014; Petrie et al., 2016).

Discussion
The distribution of influenza cases by birth year is consistent with subtype-level imprinting, whereby

initial infection with a subtype protects against future medically attended infections by the same sub-

type. The stronger protective effect observed from primary H1N1 infection compared to primary

H3N2 infection may be caused by stronger cross-protective responses to conserved epitopes in the

more slowly evolving H1N1 (Bedford et al., 2015). This is in line with previous work showing that

protection conferred by H1N1 infection lasts longer than protection conferred by H3N2 infection

(Ranjeva et al., 2019). Another recent study found stronger imprinting protection from primary

H1N1 compared to primary H3N2 infection (Gostic et al., 2019). Subtype-specific protection

observed in seasonal influenza is narrower than the previously reported HA-group-level imprinting

protection against avian influenza (Gostic et al., 2016), but in both cases, the protection correlates

strongly with primary infection rather than any prior exposure.

Examining cases of seasonal influenza over a 20 year period in Arizona, Gostic et al., 2019 find

evidence of imprinting protection not only from HA but also NA, which we do not. We speculate

that this discrepancy may be due to increasing vaccination coverage over time in middle-aged

Figure 7 continued

cases are defined as the predicted number of cases from the best-fitting model - observed cases (Appendix 1: ‘Calculating excess cases’). Each panel

shows the excess cases of the dominant subtype for each season for each age group among unvaccinated (dark bars) and vaccinated (light bars)

individuals. Grey error bars show the 95% prediction interval.
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adults. During the period of the Arizona study (1993–1994 through 2014–2015), vaccination cover-

age in U.S. adults increased most rapidly in this age group (NHIS, 2009), which corresponds to the

H2N2-imprinted cohorts near the end of the study. Without adjustment for vaccination, the appar-

ently increased protection in the middle aged might resemble N2 imprinting. Accounting for vacci-

nation in the MESA population, including the relatively stable vaccination coverage in each age

group over time (Figure 1—figure supplement 3), suggests imprinting protection is driven by HA.

In contrast to the clear role of the imprinting subtype in protection against medically attended

infection, the model implicates the imprinting strain or other attributes of early exposure history in

VE. We expect that people born around the same time were likely exposed to similar strains, not

just subtypes, of influenza A early in life, and our results support the idea that biases in immune

memory from these early exposures (i.e., original antigenic sin; Davenport and Hennessy, 1957;

Francis, 1960; Fazekas de St Groth and Webster, 1966) influence VE. Specifically, we observe that

our model is consistent with previous suggestions of birth-cohort-specific VE. The model with birth-

cohort-specific VE better estimates cases in vaccinated 50–64 year-olds (born 1953–1967) in the

2015–2016 season than the model with age-specific VE, as indicated by the fewer excess cases pre-

dicted in that age group and an improved fit of 1.1 log-likelihood units (Figure 6—figure supple-

ment 2; Appendix 1: ‘Calculating excess cases’). Reduced VE in this group during the 2015–2016

season has been attributed to the exacerbation of antigenic mismatch by the vaccine in adults whose

antibody responses were focused on a non-protective site (Skowronski et al., 2017b;

Flannery et al., 2018). The improved performance of birth-cohort-specific VE relative to age-specific

VE suggests other seasons and age groups where original antigenic sin might have influenced VE,

such as 20–29 year-olds in the 2007–2008 influenza season.

Although seasonal estimates of VE routinely stratify by age, shifts in VE from one season to the

next might thus be easier to interpret in light of infection history (e.g., Skowronski et al., 2017b;

Flannery et al., 2018). The results suggest this effect may be subtle, i.e, influenced by strains’ spe-

cific identities rather than merely their subtype. Our model cannot distinguish between the possibil-

ity that the precise identity of the imprinting strain primarily determines later VE, or if individuals’

responses to vaccination are shaped by a particular succession of exposures, which would be com-

mon to others in the same birth cohort. Regardless, variation in VE between birth cohorts appears

substantial and presents a challenge for vaccination strategies (Erbelding et al., 2018).

The use of different influenza vaccines in MESA during this period is unlikely to affect the results.

Most people enrolled in the study received the standard-dose inactivated influenza vaccine (IIV-SD)

(Figure 1—figure supplement 7). However, between 9–26% of vaccinated children <18 years old

received the live attenuated influenza vaccine (LAIV) between the 2008–2009 and 2015–2016 sea-

sons (Figure 1—figure supplement 7B). A separate study of LAIV VE in the United States found

that LAIV and IIV-SD recipients who were repeat vaccinees (as most children were) had similar VE,

and thus we do not expect that LAIV receipt should affect VE estimates (McLean et al., 2018). Simi-

larly, 1–15% of adults �65 years old received the high-dose inactivated influenza vaccine (IIV-HD)

between 2009–2010 and 2017–2018 (Figure 1—figure supplement 7C). This vaccine is 20% more

effective than IIV-SD (Lee et al., 2018). Therefore, the changing ratio of IIV-HD to IIV-SD recipients

over time might bias results toward cohort-specific VE in models that include people �65 years old.

However, when we fitted to cases between 15–64 years old, we found that cohort-specific VE still

performed best. Thus, we conclude that changes in IIV-HD coverage do not substantially influence

results.

Potential methodological biases and the vaccination history of the study population nonetheless

suggest caution in interpreting VE estimates. Selection and misclassification biases can arise when

using influenza test-negative controls to control for differences in healthcare-seeking behavior

(Lewnard et al., 2018; Sullivan et al., 2016). Because we also use test-negative controls to set our

null expectation for the distribution of cases among birth cohorts, our VE estimates are subject to

these biases as well. Moreover, since 45% of the study population is vaccinated, and most partici-

pants are frequent vaccinees (Figure 1—figure supplement 6), we are limited in our ability to gen-

eralize the VE results to populations with much lower vaccination coverage and/or a shorter history

of vaccination. Frequent vaccination has been associated with reduced VE (McLean et al., 2014;

Saito et al., 2018; Skowronski et al., 2016). Therefore, the model may underestimate VE in less

vaccinated populations. Underestimation of VE could also occur if unvaccinated people are pro-

tected by vaccination in the preceding season. Inference might also be distorted if vaccination has
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large indirect effects, which our model does not consider. Finally, our analysis is worth repeating in a

larger population to reduce stochastic influences. We observed an unusually high H1N1 VE in the

1998–2002 birth cohort. Because we restricted cases in this analysis to people �15 years old, this VE

estimate included data from only the 2013–2014 and 2015–2016 influenza seasons. No H1N1 cases

among vaccinated or unvaccinated individuals were observed in this birth cohort in those seasons,

which led to the high VE. This might have been due to particular epidemic dynamics in MESA.

Incorporating differences in susceptibility based on early exposures might improve methods to

forecast influenza seasons. The analysis of the relative risk of infection during the first half of each

season shows more variation in the susceptible age groups from season to season than previously

estimated (Worby et al., 2015). While the smaller sample sizes in MESA introduce uncertainty, the

correlation between the relative risk and total fraction of cases indicates that the age groups driving

epidemics indeed change from season to season. Because the contact structure of the population is

probably constant over influenza seasons, variation in the driving age group may be determined by

fluctuating susceptibility, which is partly determined by early infections. Therefore, incorporating

information on early exposure history into epidemic models may allow for more accurate identifica-

tion of at-risk populations and fine-scale epidemic timing.

While the rate of antigenic evolution affects the rate at which different populations become sus-

ceptible to infection, we propose that the heterogeneity in susceptibility observed here may also

drive antigenic evolution. Heterogeneity in susceptibility implies that influenza viruses face different

selective pressures in groups with different exposure histories (Cobey and Koelle, 2008;

Nakajima et al., 2000). Recent research consistent with this hypothesis has shown that sera isolated

from different individuals can select for distinct escape mutants (Lee et al., 2019). More careful

study of how immune memory to influenza evolves from infection and vaccination might improve

understanding of influenza’s evolution.
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Appendix 1

Vaccination coverage
Seasonal influenza vaccination coverage for MESA was collected by age in the 2007–2008 through

2017–2018 seasons using a regional immunization registry (Irving et al., 2009). Monovalent vaccina-

tion coverage for the 2009–2010 season was obtained by directly measuring monovalent vaccination

coverage in enrolled individuals and fitting a smoothing spline to the data (Figure 1—figure supple-

ment 3). We also calculated the fraction of people who received different vaccination formulations,

and found that most people received IIV-SD (Figure 1—figure supplement 7).

Correlation of relative risk and fraction of cases
To assess whether an age group’s relative risk correlates with the fraction of cases of that age group in

the same season, we performed a rank correlation analysis. For each season, we ranked each age group

based on its relative risk and the fraction of cases within that age group. If age groups were tied in either

relative risk or fraction of cases, we assigned them the average rank they spanned. We then calculated

the Pearson’s correlation coefficient for these two rankings. A positive correlation indicates that an age

group with a large relative risk compared to other age groups will also make up a large proportion of

cases compared to other age groups.

Seasonal intensity
We defined the intensity of an influenza season as the product of the mean fraction of patients with

influenza-like illness (ILI) and the percentage of specimens testing positive for influenza A that

season,

It ¼
ILItFt

Nt

; (28)

where ILIt is the mean fraction of all patients with ILI in season t adjusted for differences in state

population size (CDC, 2018), Ft is the number of respiratory specimens testing positive for influenza

A in season t, and Nt is the total number of respiratory specimens tested in season t. For seasons

1997–1998 through 2017–2018, these data were obtained from the U.S. Outpatient Influenza-like Ill-

ness Surveillance Network (ILINet) and the World Health Organization/National Respiratory and

Enteric Virus Surveillance System (WHO/NREVSS) Collaborating Labs (CDC, 2018). For seasons

1976–1977 through 1996–1997 when seasonal ILI data were not available, we assumed that the

mean ILI was equal to the mean of mean ILI for seasons 1997–1998 through 2017–2018. We

obtained data on Ft and Nt for these seasons from Thompson et al., 2003. We then normalized the

intensity of each season by dividing It by the mean of It from the 1976–1977 through 2017–2018 sea-

sons. For all seasons before 1976–1977, for which no seasonal intensity data were available, we

assumed that the intensity of influenza A equalled the mean intensity of seasons 1976–1977 through

2017–2018.

Fraction of season experienced
We defined the fraction of a given influenza season fw;t occurring in week w of season t as

fw;t ¼
ILIw;tFw;t

Nw;t

Pwf

w0¼w0

ILIw0 ;tFw0 ;t

Nw0 ;t

; (29)

where ILIw;t is the weighted fraction of all patients with ILI in week w of season t, Fw;t is the number

of respiratory specimens testing positive for influenza A in week w of season t, and Nw;t is the number

of specimens tested in week w of season t.
Pwf

w0¼w0

ILIw0 ;tFw0 ;t

Nw0 ;t
is the product of ILI and the fraction of

positive influenza A specimens summed over all weeks of the influenza season t, where w0 is the first

week of the season and wf is the final week of the season. We defined the start of the influenza sea-

son as week 40 of the calendar year, which usually falls at the beginning of October. For seasons
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before 1997–1998, where weekly data is unavailable, we assumed that the fraction of the influenza

season experienced in week w was

fw;t ¼ �fw;t ; (30)

where �fw;t is the mean fraction of the influenza season experienced at week w for all seasons after

1997–1998.

We used fw;t to calculate the fraction of an influenza season experienced by an individual born in

year y. We assumed that people born in year y were born uniformly throughout the year. We also

assumed that due to maternal immunity, infants did not experience immunizing exposure to influ-

enza until they were at least 180 days old. Let py;w;t be the proportion of individuals born in year y

that are over 180 days old in week w of season t and gy;t be the fraction of individuals born in year y

exposed to influenza season t. Then

gy;t ¼
X

wf

w¼w0

fw;tpy;w;t: (31)

Calculating the fraction unexposed
When calculating imprinting probabilities, we used an iterative approach to calculate Uy;t the fraction

of people in birth cohort y who were unexposed at the start of season t. First, we assumed that in

the first year of life (i.e., when t ¼ y), the entire population was unexposed. For seasons where t>y,

the fraction unexposed depends on the fraction unexposed at the start of the previous season

(Uy;t�1) and the attack rate in the previous season (ay;t�1). Thus,

Uy;t ¼
1 t=y

Uy;t�1ð1� ay;t�1Þ t >y

�

(32)

Birth year distribution of the study population
In order to convert the demographic age distribution to a birth year distribution, we assumed that

people were born uniformly throughout the year. We defined a breakpoint date prior to the start of

the enrollment period based on when the the 6 month-old age limit cutoff was set (e.g., if the break-

point date was Ocotober 1, then infants had to be 6 months old by that date to be eligible for

enrollment). We used this date to calculate the fraction of people of age a in season t who were

born in year t � y (d1a;t;y) or year t � y� 1 (d2a;t;y). A fraction d1a;t;y of the total population of age a in sea-

son t was assigned to birth year t � y and d2a;t;y to t � y� 1. Breakpoint dates ranged from September

one through January one with the exception of the pandemic season which had a breakpoint date of

May 1, 2009. The start of the enrollment period ranged from December to January with the excep-

tion of the 2009 pandemic season, when enrollment began in May 2009.

Fraction of birth cohort with specific age
When converting an age-specific parameter to a birth-cohort-specific parameter as in Materials and

Methods ‘Age-specific factors’, we considered that each birth cohort had two possible ages (a1 and

a2) in a given season t. We assumed that people were born uniformly throughout the year and used

the same breakpoint dates described above in ‘Birth year distribution of the study population.’ Then,

f ða1; t; yÞ, the fraction of people born in year y who were age a1 in season t, is the fraction of people

born in year y who were born on a date prior to the breakpoint date for season t. Finally, f ða2; t; yÞ,

the fraction of people born in year y who were age a2 in season t, is 1 - f ða1; t; yÞ.

Age-specific rates of approachment, enrollment, and nursing home
residence
The relative rates at which different age groups were approached for study enrollment (the

approachment rate, xapproach) varied between seasons. Similarly, the relative rates at which different

age groups enrolled in the study after being approached (the enrollment rate, xenroll) also varied

between seasons. Enrollment rates also varied between vaccinated and unvaccinated individuals.

We defined the approachment rate of an age group g in season t as
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xapproach;t;g ¼
Napproached;t;g

NMAARI;t;g

; (33)

where Napproached;t;g is the number of people in age group g during season t who were approached for

enrollment, and NMAARI;t;g is the total number of people in the MESA cohort who presented with

MAARI regardless of whether they were approached for enrollment.

We defined the enrollment rate of age group g in season t with vaccination status v as

xenroll;t;g;v ¼
Nenrolled;t;g;v

Napproached;t;g;v

(34)

where Nenrolled;t;g;v is the number of people in age group g with vaccination status v who enrolled in

the study in season t, and Napproached;t;g;v is the number of people in age group g with vaccination sta-

tus v who were approached for enrollment in season t. Due to differences in data collection for the

2007–2008 and 2008–2009 seasons, complete vaccination records for eligible unenrolled individuals

were not available, so we assumed that the enrollment rates by age group and vaccination status in

those seasons were equal to the mean enrollment rate for each age group and vaccination status

across all other seasons.

We normalized xapproach;t;g by the value of xapproach;t;g for the reference age group (i.e., 20–29 year-

olds) in each season. Similarly, we normalized xenroll;;t;g;v to the value of xenroll;;t;g;v for unvaccinated

members of the reference age group for each season. This yielded the relative approachment and

enrollment rates x0approach;t;g and x0enroll;t;g;v. We converted both x0approach;t;g and x0enroll;t;g;v to birth-year

specific covariates (i.e. covariates by y instead of g) using the same procedure described in Materials

and Methods: ‘Age-specific factors’ (Equation 9).

Finally, the study did not enroll residents of skilled nursing facilities with dedicated medical staff.

To account for this, we estimated the proportion of the population in nursing facilities within the

study area. We obtained the total number of beds in nursing facilities within MESA in 2018 from the

Wisconsin Department of Health Services (WDHS, 2018). We assumed that the total number of

beds did not change between 2007–2008 and 2017–2018. We also used data from the Centers for

Medicare and Medicaid Services (CMS, 2015) to calculate the percent of beds occupied in Wiscon-

sin nursing facilities by age for 2011 through 2014 and the fraction of people in a nursing facility by

age group. We used a smoothing spline to obtain the fraction of people of a given age in a nursing

facility. For seasons before 2010–2011 and after 2013–2014, we assumed that the fraction of people

of a given age in a nursing facility was the average value for 2011–2014. Given the total population

of the study area by age and season, we calculated the fraction of people in a given age a and sea-

son t who are in nursing facilities (kt;a). We converted this to a covariate by birth year (kt;yÞ using the

same procedure described in Materials and Methods: ‘Age-specific factors’ (Equation 9).

Evaluation of predictive power
To evaluate the predictive power of each model, we performed leave-one-out cross-validation. We

excluded data from each season and fitted our models to the remaining seasons. Because our goal was

to evaluate how well our models predict seasonal epidemics, we excluded the 2009 pandemic season

from all cross-validation analyses. We also did not test seasonal VE models with cross-validation since

estimation of seasonal VE requires data from the excluded season.

Let ns;t;y;v be the number of observed cases of subtype s in season t among people born in year y

with vaccination status v. Let pt
�

M;s;t� ;y;v be the multinomial probability of a case of subtype s in season

t� among people born in year y with vaccination status v under model M fitted to all seasons except

t�. Let Ns;t� be the total number of cases of subtype s in season t�. Then, the predicted number of

cases of subtype s in season t� among people born in year y with vaccination status v under model

M fitted to all seasons except t� is

pt
�

M;s;t� ;y;vNs;t� : (35)

The sum squared prediction error for model M in season t� is given by
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SSEM;t� ¼
X

ymax;t

y¼1918

ðns;t�;y;unvac: � pt
�

M;s;t� ;y;unvac:Ns;t�Þ
2 þ

X

ymax;t

y¼1918

ðns;t;y;vac: � pt
�

M;s;t� ;y;vac:Ns;t�Þ
2
; (36)

where ymax;t is the maximum possible birth year in season t.

We evaluated each model M by its mean-squared prediction error across all excluded seasons t�.

Let T� be the set of all seasons left out and X be the size of T�. Then the mean-squared prediction

error for model M is

MSEM ¼

P

t�2T� SSEM;t�

X
: (37)

Sensitivity to uncertainty in ILI and the frequency of influenza A
Because of the lack of ILI data prior to the 1997–1998 season and the lack of data on the frequency

of influenza A prior to the 1976–1977 season, we used simulated datasets to test the robustness of

our results. We randomly assigned ILI values from the 1997–1998 through 2017–2018 seasons to

every season which did not have a measured ILI value. Similarly, we randomly assigned values of the

frequency of influenza A from the 1976–1977 through 2017–2018 seasons to every season which did

not have a measured value for the frequency of influenza A. We created 10000 simulated datasets

using this procedure and recalculated imprinting probabilities for each dataset (Figure 3—figure

supplement 2). In the period of H1N1 and H3N2 co-circulation, the maximum H1N1 imprinting

probability for a particular birth cohort corresponds to the minimum H3N2 imprinting probability for

that cohort and vice-versa. Therefore, to generate datasets representing the upper and lower

bounds of imprinting probabilities, we assigned imprinting probabilities from the simulation with

either the lowest or highest H1N1 imprinting probability to each birth cohort in each season. We

then fitted our models to these two datasets and evaluated model fit using cAIC.

Sensitivity to age groups
To test whether our models were sensitive to our choice of age groups, we fit revised versions of all

our models with different age groups:

. 0–4 years, 5–17 years, 18–49 years, 50–64 years, and �65 years

. 0–4 years, 5–17 years, 18–64 years, and �65 years

These models with alternate age groupings were fitted to case data to determine whether our

findings on the strength of protection from initial H1N1 and H3N2 infection were altered compared

to fits using the higher-resolution age grouping described above (Appendix 2—table 4).

Sensitivity to sampling effort
Sampling effort was not even across seasons, and analysis of the number of influenza cases per sampling

day suggested that a significant number of cases may have been missed at the beginning or end of a spe-

cific seasons (Figure 5—figure supplement 3). As our analysis of relative risk indicates, different age

groups are more susceptible during different points in the influenza season, and therefore missing data

from the beginning or end of a season could introduce bias in the observed age distribution of cases.

To adjust for this, we simulated cases for seasons which did not have sufficient sampling of the

start or end of the epidemic period. We considered a season sufficiently sampled if the sampling

period spanned the start and end of the epidemic. We expect that the start and end of the epidemic

have few cases per sampling day, and we therefore defined sufficiently sampled seasons as seasons

where

. the number of cases per sampling day in the first week of the enrollment period is < 1 and

. the number of cases per sampling day in the last week of the enrollment period is < 1.

To extrapolate the start of a season, we linearly regressed the number of cases of the dominant

subtype per sampling day for each week of the first half of the season and identified the week of the

season where the number of cases per sampling day fell below 1 (t0). For each week from t0 to the
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first week of the enrollment period, we used the regression of cases per sampling day to calculate

the number of cases we expected to see in each week. Summing these yields the total number of

unsampled cases at the beginning of the season. We used a similar approach to extrapolate the

number of unsampled cases at the end of a season by instead regressing cases per sampling day for

each week of the latter half of the season. We did not extrapolate cases for the 2010–2011 season

for this analysis since the observed number of cases per sampling day did not follow a typical epi-

demic curve.

We stochastically assigned a birth year and vaccination status to these cases according to a multino-

mial distribution. The success probabilities of this distribution were set using the age distribution of cases

of the dominant subtype from the first two weeks of the enrollment period (if extrapolating the begin-

ning of a season) or the last two weeks of the enrollment period (if extrapolating the end of a season).

Specifically, we calculated the distribution of observed cases in the first or last two weeks of the enroll-

ment period among nine age groups (Materials and Methods: ‘Age-specific factors’) with their associ-

ated vaccination status. We then assumed that cases were uniformly distributed among all birth years

contained in an age group. This yielded a set of probabilities describing the probability of infection given

birth year and vaccination status in a specific season.

We sampled from these multinomial distributions 1000 times to obtain augmented datasets that

combined observed and extrapolated cases. For each replicate simulation, we calculated the age

distribution of cases for the entire season as well as the relative risk of each age group in the first

versus the latter half of the season (Figure 2—figure supplement 2B). We also fitted the best-fitting

model to 100 of these datasets (excluding the 2010–2011 season) and recorded the estimated

imprinting strength for both H1N1 and H3N2 for each fit (Figure 5—figure supplement 4).Calculating excess cases
We defined excess cases for a given birth cohort or age group as the number of observed cases for

that birth cohort or age group minus the number of predicted cases for that age group. Predictions

were obtained by multiplying the multinomial probabilities produced by the model by the total num-

ber of cases of the dominant subtype in each season. A 95% prediction interval was obtained by sim-

ulating 10000 datasets using the multinomial probabilities from a specific model (Figure 6—figure

supplement 2, Figure 7).

To test whether recent infection might be confounding our estimates, we calculated the correlation

between excess cases in each birth cohort in each season with excess cases of the same birth cohort in the

next seasonwith the same dominant subtype (Figure 5—figure supplement 5).
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Appendix 2

Supplementary tables and figures

Appendix 2—table 1. Estimates of parameters shared by the age-specific VE and birth-cohort-

specific VE models.

Model with age-specific

VE, age �6 months

(MLE, 95% CI)

Model with age-specific

VE, age �15 years

(MLE, 95% CI)

Model with age-specific

VE, age < 65 years

(MLE, 95% CI)

Model with age-specific

VE, age 15–64 years

(MLE, 95% CI)

Model with birth-cohort-

specific VE, age �15 years

(MLE, 95% CI)

Imprinting protection (%)

H1 66 (53, 77) 48 (25, 66) 64 (47, 77) 43 (11, 66) 49 (24, 67)

H3 33 (17, 46) 41 (20, 56) 34 (18, 47) 36 (13, 52) 41 (20, 56)

N2 0 (0, 7) 0 (0, 11) 0 (0, 8) 0 (0, 10) 0 (0, 11)

Age-specific risk of medically attended influenza A infection

0–4 years 3.0 (2.5, 3.6) N.A. 3.0 (2.5, 3.6) N.A. N.A.

5–9 years 2.6 (2.2, 3.0) N.A. 2.5 (2.2, 3.0) N.A. N.A.

10–14 years 1.7 (1.4, 2.0) N.A. 1.7 (1.4, 2.0) N.A. N.A.

15–19 years 1.2 (1.0, 1.5) 1.2 (1.0, 1.5) 1.2 (1.0, 1.5) 1.2 (1.0, 1.5) 1.2 (1.0, 1.5)

30–39 years 1.1 (0.9, 1.3) 1.1 (0.9, 1.3) 1.1 (0.9, 1.3) 1.1 (0.9, 1.3) 1.1 (0.9, 1.3)

40–49 years 0.9 (0.7, 1.1) 0.9 (0.8, 1.1) 0.9 (0.7, 1.1) 0.9 (0.8, 1.1) 0.9 (0.8, 1.1)

50–64 years 1.0 (0.8, 1.3) 1.0 (0.8, 1.2) 1.0 (0.8, 1.3) 1.0 (0.8, 1.2) 0.9 (0.7, 1.1)

65+ years 1.6 (1.2, 2.1) 1.4 (1.0, 1.9) N.A N.A. 1.5 (1.1, 1.9)

Appendix 2—table 2. Estimates of age-specific VE parameters in models fitted to different age

groups.

Model with age-specific

VE, age �6 months

(MLE, 95% CI)

Model with age-specific

VE, age �15 years

(MLE, 95% CI)

Model with age-specific

VE, age < 65 years

(MLE, 95% CI)

Model with age-specific

VE, age 15–64 years

(MLE, 95% CI)

Age-specific VE against H1N1 (%)

0–4 years 69 (56, 84) N.A. 68 (55, 83) N.A.

5–9 years 26 (0, 48) N.A. 24 (0, 47) N.A.

10–14 years 92 (80, 96) N.A. 92 (80, 96) N.A.

15–19 years 86 (62, 95) 89 (66, 97) 86 (61, 95) 89 (65, 97)

20–29 years 84 (65, 91) 86 (69, 91) 83 (63, 90) 85 (67, 91)

30–39 years 8 (0, 37) 22 (0, 47) 5 (0, 35) 19 (0, 45)

40–49 years 18 (0, 45) 28 (0, 47) 14 (0, 42) 24 (0, 49)

50–64 years 32 (7, 51) 39 (16, 56) 28 (2, 48) 37 (14, 55)

65+ years 50 (16, 71) 64 (39, 83) N.A. N.A.

Age-specific VE against H3N2 (%)

0–4 years 58 (48, 67) N.A. 58 (48, 67) N.A.

5–9 years 45 (31, 58) N.A. 45 (30, 57) N.A.

10–14 years 23 (0, 41) N.A. 22 (0, 41) N.A.

15–19 years 31 (3, 53) 33 (4, 55) 30 (2, 53) 32 (1, 54)

20–29 years 34 (11, 51) 37 (15, 53) 33 (11, 51) 36 (14, 53)

30–39 years 10 (0, 31) 15 (0, 35) 9 (0, 30) 12 (0, 33)

40–49 years 36 (15, 52) 42 (24, 57) 36 (15, 52) 42 (23, 57)

50–64 years 47 (35, 56) 49 (37, 58) 47 (35, 57) 48 (36, 58)

65+ years 41 (24, 54) 38 (20, 52) N.A. N.A.

Arevalo et al. eLife 2020;9:e50060. DOI: https://doi.org/10.7554/eLife.50060 29 of 30

Research article Epidemiology and Global Health Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.50060


Appendix 2—table 3. Estimates of imprinting protection fitted to datasets representing upper and

lower bounds of imprinting probabilities.

Dataset Best-fitting model

H1 imprinting
protection
(%, 95% CI)

H3 imprinting
protection
(%, 95% CI)

Lower
bound

Demography, age, HA imprinting, age-specific
VE

72 (57, 84) 32 (17, 44)

Upper
bound

Demography, age, HA imprinting, age-specific
VE

61 (48, 72) 37 (20, 51)

Appendix 2—table 4. Estimates of imprinting protection for models with different age groups.

Age groups (years) Best-fitting model

H1 imprinting
protection
(%, 95% CI)

H3 imprinting
protection

(%, 95% CI)

0–4, 5–17, 18–64, 65+ Demography, age, HA imprinting, age-
specific VE

56 (40, 68) 36 (25, 46)

0–8, 9–17, 18–49, 50–64,
65+

Demography, age, HA imprinting, age-
specific VE

62 (47, 74) 35 (21, 48)

Appendix 2—table 5. Estimates for VE from model with birth-cohort-specific VE fitted to people

�15 years old.

Birth cohort H1N1 VE (%, MLE, 95% CI) H3N2 VE (%, MLE, 95% CI)

1998–2002 100 (22, 100) 0 (0, 36)

1988–1997 89 (74, 93) 62 (45, 76)

1978–1987 59 (35, 76) 17 (0, 35)

1968–1977 23 (0, 47) 25 (2, 44)

1953–1967 28 (4, 46) 43 (32, 53)

1918–1952 61 (38, 76) 45 (32, 55)
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