
Article

The International Journal of

Robotics Research

2021, Vol. 40(12-14) 1488–1509

� The Author(s) 2021

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/02783649211045736

journals.sagepub.com/home/ijr

Self-supervised learning for using overhead
imagery as maps in outdoor range sensor
localization

Tim Y. Tang1 , Daniele De Martini1, Shangzhe Wu2 and Paul Newman1

Abstract

Traditional approaches to outdoor vehicle localization assume a reliable, prior map is available, typically built using the

same sensor suite as the on-board sensors used during localization. This work makes a different assumption. It assumes

that an overhead image of the workspace is available and utilizes that as a map for use for range-based sensor localiza-

tion by a vehicle. Here, range-based sensors are radars and lidars. Our motivation is simple, off-the-shelf, publicly avail-

able overhead imagery such as Google satellite images can be a ubiquitous, cheap, and powerful tool for vehicle

localization when a usable prior sensor map is unavailable, inconvenient, or expensive. The challenge to be addressed is

that overhead images are clearly not directly comparable to data from ground range sensors because of their starkly dif-

ferent modalities. We present a learned metric localization method that not only handles the modality difference, but is

also cheap to train, learning in a self-supervised fashion without requiring metrically accurate ground truth. By evaluat-

ing across multiple real-world datasets, we demonstrate the robustness and versatility of our method for various sensor

configurations in cross-modality localization, achieving localization errors on-par with a prior supervised approach while

requiring no pixel-wise aligned ground truth for supervision at training. We pay particular attention to the use of

millimeter-wave radar, which, owing to its complex interaction with the scene and its immunity to weather and lighting

conditions, makes for a compelling and valuable use case.

Keywords

Localization, cross-modality localization, deep learning, self-supervised learning

1. Introduction

The ability to localize relative to an operating environment

is central to robot autonomy. Localization using range sen-

sors, such as lidars (Levinson and Thrun, 2010; Wolcott

and Eustice, 2015) and, more recently, scanning millimeter-

wave radars (De Martini et al., 2020; Park et al., 2019;

Saftescu et al., 2020), is an established proposition. Both

are immune to changing lighting conditions and directly

measure scale, while the latter adds resilience to weather

conditions.

Current approaches to robot localization typically rely

on a prior map built using a sensor configuration that will

also be equipped on-board, for example a laser map for

laser-based localization. This article looks at an alternative

method. Public overhead imagery such as satellite images

can be a reliable map source, as they are readily available,

and often capture information also observable, albeit per-

haps in some complex or incomplete way, by sensors on the

ground. We can pose the localization problem in a natural

way: finding the pixel location of a sensor in an overhead

(satellite) image given range data taken from the ground.

The task is, however, non-trivial because of the drastic

modality difference between satellite images and sparse,

ground-based radar or lidar.

Recent work on learning to localize a ground scanning

radar against satellite images by Tang et al. (2020b) pro-

vides a promising direction which addresses the modality

difference by first generating a synthetic radar image from

a satellite image. The synthetic image can then be ‘‘com-

pared’’ against live radar data, expressed as 2D images from

a ‘‘bird’s eye’’ perspective, for pose estimation. Such an

approach learns metric, cross-modality localization in an

1Mobile Robotics Group, University of Oxford, Oxford, UK
2Visual Geometry Group, University of Oxford, Oxford, UK

Corresponding author:

Tim Y. Tang, Mobile Robotics Group, Oxford Robotics Institute,

University of Oxford, Oxford, OX2 6NN, UK.

Email: ttang@robots.ox.ac.uk

uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/02783649211045736
journals.sagepub.com/home/ijr


end-to-end fashion, and therefore does not require hand-

crafted features limited to a specific environment.

The method in Tang et al. (2020b) trains a multi-stage

network, and needs pixel-wise aligned radar and satellite

image pairs for supervision at all stages. This, in turn, relies

on sub-meter and sub-degree accurate ground-truth position

and heading signals, which in practice requires high-end

GPS/inertial navigation system (INS) and possibly bundle

adjustment along with other on-board sensor solutions,

bringing in burdens in terms of cost and time consumption.

To address this issue, building on the work of Tang

et al. (2020b), we propose a method for localizing against

satellite imagery that is learned in a self-supervised fash-

ion. The core idea is still to generate a synthetic image with

the appearance and observed scenes of a live range sensor

image, but pixel-wise aligned with the satellite image. Yet,

we relax the requirement on pixel-wise aligned data pairs

and assume only a coarse initial pose estimate is available

from a place recognition system, such that there is reason-

able overlap between the live ground sensor field of view

and a queried satellite image. Our method does not solve

the global localization problem. Instead, given a coarse ini-

tial pose estimate from place recognition, our method

solves the metric localization of a range sensor using over-

head imagery, providing a refined SE(2) metric pose para-

metrized as x y u½ �T:
Vitally, here we make no use of metrically accurate

ground truth for training. Note also that although designed

for localizing against satellite imagery, our method can

naturally handle other forms of cross-modality registration,

such as localizing a radar against a prior lidar map. Figure 1

shows synthetic images generated by our method used for

pose estimation.

To the best of the authors’ knowledge, our proposed

method is the first to learn the cross-modality, metric loca-

lization of a range sensor in a self-supervised fashion. Our

method is validated experimentally on multiple datasets

and achieves performances on-par with a state-of-the-art,

supervised approach. Even though our method does not

solve the global localization problem and instead relies on

an external place recognition system, it can nevertheless be

utilized to greatly refine the sensor’s metric pose starting

from a coarse initial pose estimate, all in the absence of

any prior sensor maps.

This article is an extended version of our prior work

(Tang et al., 2020a). The improvements include a more

detailed explanation for the motivation of our method to

tackle the problem of localizing range sensors using satel-

lite imagery (Section 3) and a more thorough description

of our method (Section 4). For experimental validation

(Section 6), we present additional qualitative results, an

ablation study with reduced training data, a study on the

trade-offs between network width and depth and solution

quality, and an analysis on the choice of image resolution.

We also introduce an introspective strategy at inference

time to handle initial pose offsets larger than in the training

data. Finally, we show with unsupervised domain

adaptation, models trained using radar data can be utilized

for localization between lidar and overhead imagery, and

vice versa.

2. Related work

Our approach is related not only to other works in the field

of localization using overhead imagery and the general

theme of cross-modality localization, but also to learned

methods for range sensor state estimation and unsupervised

image generation. We provide a broad coverage of the most

relevant research in these subjects in this section.

2.1. Localization using overhead images

Localization using aerial or overhead images has been of

interest for the community for over a decade. The methods

in Leung et al. (2008), Li et al. (2014), and Parsley and

Julier (2010) localize a ground camera using aerial images,

by detecting Canny edges from aerial imagery, and match-

ing against lines detected by a ground camera. Several other

vision-based approaches project the ground camera images

to a top-down perspective via a homography, and compare

against the aerial imagery by detecting lane markings

(Pink, 2008), Speeded Up Robust Features (SURF) (Noda

et al., 2010), or dense matching (Senlet and Elgammal,

2011). Recent work by Chebrolu et al. (2019) localizes a

Fig 1. Given a map image of modality A (left) and a live data

image of modality B (middle), we wish to find the unknown

SE(2) offset between them. To do so, our method generates a

synthetic image of modality B (right) that is pixel-wise aligned

with the map image, but contains the same appearance and

observed scenes as the live data image. Top: localizing radar data

against satellite imagery. Middle: localizing lidar data against

satellite imagery. Bottom: localizing radar data against prior lidar

map.

Tang et al. 1489



ground robot in a crop field by matching camera features

against landmarks from an aerial map, and explicitly incor-

porates semantics of crops to reduce ambiguity.

Metric localization of range sensors or point-clouds

against overhead imagery requires further pre-processing

owing to the modality difference. Kaminsky et al. (2009)

projected point-clouds into images and matched against

binary edge images from overhead imagery. The method of

Kaminsky et al. (2009) also constructs a ray image by ray-

tracing each point, and introduces a free-space cost to aid

the image registration. The work by de Paula Veronese

et al. (2015) accumulates several lidar scans to produce

dense lidar intensity images, which are then matched

against satellite images utilizing normalized mutual infor-

mation. Similar to Kaminsky et al. (2009), several other

methods also pre-process the aerial image before matching

against ground laser observations, for example using edge

detection (Kümmerle et al., 2011) or semantic segmenta-

tion (Dogruer et al., 2010). In contrast to these approaches,

our method directly learns the metric localization of a

range sensor end-to-end, without the need for careful pre-

processing or manual feature definition.

Closely related to our method is the seminal work on

learning to localize a ground radar against satellite imagery

by Tang et al. (2020b). As discussed previously, the

method in Tang et al. (2020b) requires pixel-wise aligned

ground truth for supervision, whereas our method is self-

supervised.

2.2. Cross-modality localization

Other forms of cross-modality localization have also been

heavily studied by the community. Several works propose

to localize a forward-facing camera against a prior 3D

point-cloud map (Caselitz et al., 2016;Wolcott and Eustice,

2014; Xu et al., 2017). Carle and Barfoot (2010) localized

a ground laser scanner against an orbital elevation map.

The works in Wang et al. (2019), Boniardi et al. (2017),

Wang et al. (2017), and Mielle et al. (2019) localize an

indoor lidar or stereo camera against architectural floor

plans. Recently, Yin et al. (2021) proposed a joint learning

system for radar place recognition using a prior lidar data-

base, and achieves state-of-the-art results on the Oxford

Radar RobotCar Dataset (Barnes et al., 2020) and MulRan

Dataset (Kim et al., 2020).

OpenStreetMap is a particularly useful publicly avail-

able resource for robot localization. Brubaker et al. (2013)

and Floros et al. (2013) concurrently proposed matching

visual odometry paths to road layouts from OpenStreetMap

for localization. Ruchti et al. (2015) proposed a road classi-

fication scheme to localize a ground lidar using

OpenStreetMap. Yan et al. (2019) utilized networks pre-

trained for point-cloud semantic segmentation, and built a

light-weight descriptor to recognize intersections and gaps,

and compared against the descriptors of the operating envi-

ronment built using OpenStreetMap.

2.3. Learning-based state estimation for range

sensors

A number of recent works were proposed for learning the

odometry or localization of lidars. Barsan et al. (2018) rep-

resented lidar data as intensity images, and learned a deep

embedding specifically for metric localization that can be

used for direct comparison of live lidar data against a

previously-built lidar map. Other methods such as Cho

et al. (2019); Li et al. (2019), instead, learn deep lidar odo-

metry by projecting lidar point-clouds into other representa-

tions before passing through the network. Lu et al. (2019b)

learned descriptors from input point-clouds, and utilized

3D CNNs for solving SE(2) metric localization by search-

ing in a 3D cost volume. In their later work, Lu et al.

(2019a) proposed a method to learn SE(3) lidar point-cloud

registration end-to-end. Recently, OverlapNet (Chen et al.,

2020) was proposed to learn lidar loop-closure detection

based on the overlap between bird’s eye view lidar images.

As an emerging sensor for outdoor state estimation,

learning-based methods were proposed for scanning

frequency-modulated continuous-wave (FMCW) radars.

Aldera et al. (2019) utilized an encoder–decoder on polar

image representation of radar scans to reject superfluous

points for decreasing computation time in the classical

radar odometry method described by Cen and Newman

(2019). Barnes et al. (2019) learned image-based radar odo-

metry by masking out regions distracting for pose estima-

tion. Barnes and Posner (2020) learned point-based radar

odometry by detecting key points from radar images.

Saftescu et al. (2020) encoded images of polar radar scans

through a rotation-invariant architecture to perform topolo-

gical localization (place recognition), which can then be

used for querying a previously built map (De Martini et al.,

2020). These methods, however, are designed to compare

data of the same sensor type, and do not address modality

difference. Our approach is similar to Barsan et al. (2018),

Cho et al. (2019), Aldera et al. (2019), Barnes et al. (2019),

Weston et al. (2019), Saftescu et al. (2020), Barnes and

Posner (2020), and Broome et al. (2020) in that we also

represent range sensor data as 2D images.

2.4. Unsupervised image generation

A fundamental step in our approach is the generation of a

synthetic image before pose computation, where there is no

pixel-wise aligned target image for supervision. CycleGAN

(Zhu et al., 2017) achieves unsupervised image-to-image

transfer between two domains X and Y, by learning two

pairs of generators and discriminators, and enforcing cycle-

consistency when an image is mapped from X to Y and

back from Y to X , and vice versa. Other methods (Lee

et al., 2018; Liu et al., 2017) also utilize cycle-consistency

but make different assumptions on how the latent spaces of

the two domains are treated. Whereas these methods are

concerned with generating photo-realistic images, we are

interested in the problem of metric localization. As such,

1490 The International Journal of Robotics Research 40(12-14)



we need to explicitly encourage the synthetic image to con-

tain information appropriate for pose estimation, rather than

aiming for photo-realistic reconstruction.

Several prior works are also geometry-aware. The meth-

ods by Shu et al. (2018), Wu et al. (2019), and Xing et al.

(2019) use separate encoders and/or decoders to disentangle

geometry and appearance. The results are networks that can

separately interpolate the geometry and appearance of the

output images. Similarly, our method separately encodes

information about the appearance and the relative pose off-

set, resulting in an architecture where the two are explicitly

disentangled.

3. Overview and motivation

We seek to solve for the SE(2) pose between a map image

of modality A and a live data image of modality B: Our

main focus is when modalityA is satellite imagery, whereas

modality B are range sensor data represented as an image.

Previously, Radar–Satellite Localization Network (RSL-

Net) (Tang et al., 2020b) was proposed to solve for the

metric localization between matched pairs of radar and satel-

lite images. In particular, it aims to generate a synthetic

image that preserves the appearance and observed scenes of

the live radar image, and is pixel-wise aligned with the

paired satellite image. The synthetic image and the live radar

image are then projected onto deep embeddings, where their

pose offset is found by maximizing a correlation surface.

We follow the same general approach, but, unlike RSL-Net,

our method learns in a self-supervised fashion.

3.1. Hand-crafting features versus learning

Some of the works listed in Sections 2.1 and 2.2 can

achieve decent accuracy on localizing a ground range sen-

sor against aerial imagery. However, they typically rely on

pre-processing the aerial images using hand-crafted fea-

tures or transformations designed for a specific set-up and

may not generalize to other sensors or different environ-

ments. For example, Kümmerle et al. (2011) focus on

detecting edges from a campus dominated by buildings. de

Paula Veronese et al. (2015) directly match accumulated

lidar intensity images against aerial imagery without pre-

processing, yet this is inappropriate for radars due to the

complexity of their return signals.

Our data-driven approach instead learns to directly infer

the geometric relationship across modalities, remaining free

of hand-crafted features. We show in Section 6 the robust-

ness of our method when localizing against satellite ima-

gery in various types of scenes, including urban, residential,

campus, and highway (Figure 2).

3.2. Generating images versus direct regression

A naive approach would be to take a satellite image and a

live data image as inputs, and directly regress the pose. Yet,

as shown in Tang et al. (2020b), this led to poor results even

for the supervised case. Our hypothesis is that when the

two images are starkly different in appearance and observed

scenes, the problem becomes too complex for direct regres-

sion to succeed given current techniques.

Generating synthetic images prior to pose estimation

brings two advantages over directly regressing the pose.

First, it is a simpler and less ill-posed problem than directly

regressing the pose, particularly because we can utilize the

live data image to condition the generation. Second, the

image generation loss is distributed over an entire image of

H ×W pixels, where H and W are height and width,

instead of on just three pose parameters that describe an

SE(2) displacement (x, y, and u), introducing greater con-

straints during optimization.

3.3. Conditional image generation

We tackle the synthesis of an image of the live data modal-

ity B from one of the map modality A as a conditional

Fig. 2. Our method is demonstrated on datasets collected around different locations, at various types of settings including urban

(Oxford, UK), residential (Karlsruhe, Germany), campus (KAIST, Korea), and highway (Sejong City, Korea).

Tang et al. 1491



image generation task, that is, taking both a map (e.g., sat-

ellite) image and a live data image as inputs. An alternative

approach is to learn a domain adaptation directly from A to

B, without conditioning on the live data image, for exam-

ple, standard image-to-image transfer such as CycleGAN

(Zhu et al., 2017).

In practice, the map (e.g., satellite) image is a denser

representation of the environment than a frame of data cap-

tured by a range sensor. Only a fraction of the scenes cap-

tured in a satellite map is present in a ground sensor field

of view, resulting in the scan to appear drastically different

depending on the sensor pose. In other words, the mapping

from a satellite image to a range sensor image is not one-

to-one, but one-to-many, as illustrated in Figure 3. Figure 4

demonstrates this concept on real data: the overlapping

regions of the two satellite images are identical, whereas

the two radar images observe different portions of the scene

and as such appear drastically different.

By using a naive image-to-image transfer approach,

there is no guarantee for the generated image to contain

regions of the scene that are useful for pose comparison

against the live data image. Figure 5 shows examples of

images generated using CycleGAN (Zhu et al., 2017),

where the synthetic image highlights different scenes than

what are observed by the live data image. The issue with

observability or occlusion can potentially be handled by

ray-tracing, such as in Kaminsky et al. (2009). However,

not only is this computationally expensive, it does not apply

to FMCW radars which have multiple range returns per azi-

muth (see Barnes et al. (2020) and Cen and Newman

(2019) for more details on the sensing characteristics of

FMCW radars).

Our approach inherently addresses this problem: by con-

ditioning the image generation with the live data image, we

can encourage the synthetic image to capture regions of the

scene also observed by the live data image, as shown in

Sections 4 and 6. This concept is analogous to learning the

mapping on the right of Figure 3, where, by using a pair of

satellite and range sensor images as input, the regions of

the scene to be present in the output synthetic image is no

longer ambiguous, but constrained by the input range sen-

sor image.

4. Self-supervised cross-modality localization

Our localization pipeline is composed of three steps: rota-

tion inference, image generation, and pose estimation. We

discuss them in detail in this section.

4.1. Rotation inference

Given a paired map (e.g., satellite) image A 2 A and live

data (e.g., radar or lidar) image B 2 B pre-scaled to have

the same resolution but with an unknown SE(2) offset, we

seek to generate a synthetic image that contains the same

appearance and observed scenes as B, but is pixel-wise

aligned with A:
Let the SE(2) pose difference between A and B be para-

metrized as x y u½ �T, such that by rotating B by u and

then translating by x y½ �T, one can pixel-wise align B

onto A: The image generation can be formulated as

Fig. 3. A one-to-many mapping (left) versus a one-to-one

mapping (right). Left: the mapping from modality A to modality

B preserves color, but is ambiguous in orientation of the output,

resulting in a one-to-many mapping, and is therefore not a

function. Right: augmenting the input with an element of B
offers additional constraint in orientation, resulting in a one-to-

one mapping as the mapping is now unambiguous in both color

and orientation. Note that the mapping on the right is one-to-one,

but not necessarily surjective.

Fig. 4. Two radar images captured 15 seconds apart from each

other (2 and 4), pixel-wise aligned with satellite images (1 and

3). Though the overlapping scenes in the satellite images are

identical, the radar scans appear significantly different, as they

capture different regions in their field of view.

Fig. 5. Results of CycleGAN: satellite image (left), live radar

image pixel-wise aligned with the satellite image (middle),

synthetic radar image (right). There is no explicit constraint on

which regions of the input satellite image will appear in the

output synthetic image. As a result, this leads to large

localization error as the synthetic image does not contain scenes

observed by the live radar image.

1492 The International Journal of Robotics Research 40(12-14)



f (A,B)! ~Bu,a ð1Þ

where a = x y½ �T: Here ~Bu,a is a generated image of

modality B that synthesizes the input live sensor image B

applied with a rotation of u, followed by a translation of

a = x y½ �T: Thus, ~Bu,a is pixel-wise aligned with the

input map image A, but contains the same observed scenes

as B:
However, as originally noted by Tang et al. (2020b), the

mapping in (1) is difficult to learn as the inputs A and B are

offset by both a translation and a rotation. CNNs are inher-

ently equivariant1 to translation, but not to rotation (Lenc

and Vedaldi, 2015). As a result, the CNNs in the network

cannot automatically utilize their mutual information and

thereby capture their geometric relationship.

The method in Tang et al. (2020b) proposes to infer the

rotation prior to image generation, namely, reducing (1) to

two steps:

fR(A,B)! Bu ð2Þ

fG(A,Bu)! ~Bu,a ð3Þ

Here fR is a function that infers the rotation offset u

between A and B, and outputs Bu, which is input image B

rotated by u: Now, Bu is rotation-aligned with the map

frame, and therefore offset with A only by a translation,

which CNNs can naturally handle. fG is an image genera-

tion function that produces the synthetic image ~Bu,a: The

experiments in Tang et al. (2020b) show that learning (2)

and (3) sequentially resulted in better performance than

learning (1) directly, as the former is congruous with the

equivariance properties of CNNs.

In Tang et al. (2020b), the rotation inference function fR

is parametrized by a deep network as shown in Figure 6,

where satellite imagery and radar images are used as an

example. Given a coarse initial heading estimate, the live

data image B is rotated a number of times with small incre-

ments to form a stack of rotated images fBg=
fBu0

,Bu1
, . . . ,Bun

g, where the number of rotations n and

the increment are design parameters. Each rotated image is

further concatenated with the map image to form a stacked

tensor input of n pairs of map and live data images. The

network assigns a latent score per input pair, and outputs a

softmaxed image from fBg where the softmax weights are

a function of learned latent scores:

fR(A,Bu0
,Bu1

, . . . ,Bun
)=

X
i

eziP
i

ezi
Bui

ð4Þ

where each zi is the associated learned scalar latent score

for the pair fA,Bui
g:

A loss function enforces the output to correspond to B

rotated to be rotation-aligned with A, namely Bu: The core

idea is that the network fR will assign a large softmax

weight to the image from fBg whose heading most closely

aligns with the map image A, and small weights to all other

images in fBg.
If a metrically accurate heading ground truth u is avail-

able, then one can rotate B to form a ground-truth image

target to Bu used for supervising the rotation inference, as

in Figure 6. In this work, however, we assume this is never

the case, thus the network for fR must learn to infer the rota-

tion offset in a self-supervised fashion.

For this reason, while following the same architecture as

Tang et al. (2020b), our method for inferring rotation uses

a different training strategy that enables self-supervised

learning. In order for the network fR to produce the correct

output, it must be able to infer the rotation from the solu-

tion space fBg, despite the modality difference between

map image A and live data image B: We make the observa-

tion that if the network can infer the rotation offset from a

stack of rotated live data images fBg, then, given a live

data image Bui
, fR should also be able to output Aui

from a

stack of rotated map images fAg, where Aui
is rotation-

aligned with Bui
: Specifically, if we have Bui

= Bu, then

the softmaxed map image from fAg should be A, as A and

Bu are rotation-aligned.

As such, to learn rotation inference self-supervised, we

need to pass through the network fR twice. The first pass is

identical as in the supervised approach in Figure 6, where

we denote the output softmaxed image as Bui
: Then Bui

is

used as input to the second pass through network fR,
together with a stack of map images fAg= fA,Af0

,
Af1

, . . . ,Afm
g: The rotation angles f0 f1 . . . fm½ �

can be chosen randomly, and the order of fAg is shuffled

such that the original non-rotated map image A can be at

any index within fAg: Each image is concatenated with Bui

to form the input stack for passing through fR the second

time. Note that the same network fR is used in both passes.

The network is supervised with an L1 loss that enforces

the output of the second pass to be the non-rotated map

image A:

Bui
= fR(A, fBg) ð5Þ

LL1(fR)=EA, fBg,Bui
½ A� fR(Bui

, fAg)k k1� ð6Þ

Fig. 6. Prior work in Tang et al. (2020b) proposes a network to

infer the rotation offset. The rotation offset is found by

softmaxing a stack of rotated radar images to produce a radar

image with the same heading as the satellite image.

Tang et al. 1493



where Bui
is the output of the first pass. Minimizing the

loss in (6) in turn enforces Bui
to be Bu, as Bu is rotation-

aligned with A: Our approach is shown in Figure 7. We use

an increment of 28 when forming the rotation stack fBg:
We evaluate the effect of the rotation increment on solution

error in Section 6.10 and justify our choice.

The estimate for the rotation offset, û, can then be found

from the arg-softmax for the rotation stack fBg:

4.2. Image Generation

Given A and Bu we seek to generate a synthetic image ~Bu,a

as in (3), where ~Bu,a is pixel-wise aligned with A:Tang et al.

(2020b) learns the image generation function by a super-

vised approach, concatenating A and Bu, and applying an

encoder–decoder architecture, as shown in Figure 8. This is

possible because a target for the synthetic image ~Bu,a can be

obtained by applying the ground-truth transform.

In the supervised approach in Tang et al. (2020b), a loss

can be formed between the synthetic image and the target:

LL1(fG)=EA,Bu,Bu,a
½ Bu,a � fG(A,Bu)k k1� ð7Þ

where Bu,a is the target with ground truth transform.

To generate synthetic images self-supervised, we pro-

pose an architecture we call PASED, shown in Figure 9.

PASED is trained in two steps: the first is a pre-training,

intra-modality process that can be supervised with ground

truth image targets (top half of Figure 9), whereas the sec-

ond handles cross-modality comparison (bottom half of

Figure 9).

4.2.1. Pre-training step. Taking two random images B1

and B2 in the live data modality B from the training set,

where B1 and B2 can be at arbitrary heading, we apply a

known translation offset g 2 R
2 to B2: This forms an image

B2
g that is a shifted version of B2: We pass B1 through an

appearance encoder Ea that encodes its appearance and

observed scenes. Then B2
g and B2 are passed as inputs to a

pose encoder Ep that encodes the translation offset between

the input images. The latent spaces from Ea and Ep are

combined before passing through a decoder D, which out-

puts a synthetic image ~B1
g that is B1 shifted by a translation

g:

~B1
g = D(Ea(B

1),Ep(B
2
g,B

2)) ð8Þ

In other words, PASED discovers the translation offset

between the two images passed as input to Ep, and applies

the latent translation encoding to the input image of Ea:
The pre-training can be supervised as g is known, thus we

can shift B1 by g to produce the target B1
g: The loss func-

tion can be formulated as

LL1(Ea,Ea,D)=EB1,B2,B1
g ,B

2
g

B1
g � ~B1

g

���
���

1

h i
ð9Þ

and the parameters for networks Ea,Ep, and D can be opti-

mized by minimizing (9).

Fig. 7. Given A and a rotation stack fBg the network fR finds Bui
by taking softmax. Then, given Bui

and a rotation stack fAg, the

network outputs a softmaxed map image from fAg: A loss is applied to enforce the output of the second pass to be A, which in turn

enforces the output of the first pass to be Bu: Here both symbols for fR in the figure refer to the same network with the same

parameters, but at different forward passes.

Fig. 8. Architecture for image generation in prior supervised

approach (Tang et al., 2020b).

1494 The International Journal of Robotics Research 40(12-14)



The fact that we use different images B1 and B2 for

inputs to Ea and Ep ensures appearance and pose are disen-

tangled from each other. As shown later, this allows mod-

ules of PASED to be separated and re-combined with newly

learned modules.

4.2.2. Cross-modality step. In the second step, we fix the

weights of Ea, Ep, and D which are optimized from the

pre-training step. This narrows down the self-supervision

problem to learning a cross-modality pose encoder E�p that

discovers the translation offset between an image of modal-

ity A and another of B: Taking A and Bu as inputs, E�p
should encode the unknown translation offset a between

them. Concurrently, Bu is fed to Ea to encode its appear-

ance and the resulting latent space is combined with the

latent space produced by E�p(A,Bu), before being decoded

by D: This encoder–decoder combination will generate a

synthetic image ~Bu,a, which we do not have a target for:

~Bu,a = D(Ea(Bu),E�p(A,Bu)) ð10Þ

We can apply a known shift to the center position of A

to query another map image A0, where A0 is offset with Bu

by an unknown translation b: Using the same encoder–

decoder combination as before, we can take A0 and Bu to

generate a synthetic image ~Bu,b :

~Bu,b = D(Ea(Bu),E�p(A
0,Bu)) ð11Þ

Furthermore, given Bu and the networks learned from

pre-training, we can easily generate ~Bu by encoding a zero

shift:

~Bu = D(Ea(Bu),Ep(Bu,Bu)) ð12Þ

If we pass ~Bu and ~Bu,a to the pre-trained pose encoder

Ep, then the latent space will encode a shift of �a:
Combing this latent space with Ea(~Bu,b), we can decode a

synthetic image ~Bu,b�a :

~Bu,b�a = D(Ea(~Bu,b),Ep(~Bu, ~Bu,a)) ð13Þ

Here b� a is a known value as it is the translation offset

applied to A to obtain A0:
We can shift Bu by b� a to obtain Bu,b�a: Using

Bu,b�a and Bu, we can generate ~Bu,b�a with pre-trained

networks Ea, Ep, and D, shown on the bottom right of

Figure 9. Specifically, this can be expressed as

~Bu,b�a = D(Ea(Bu),Ep(Bu,b�a,Bu)) ð14Þ

We can form ~Bu,b�a using two different combinations

of inputs as in (13) and (14). Notably, ~Bu,b�a formed using

(14) only passes through networks with weights optimized

from the pre-training step and fixed during the cross-

modality step, and therefore can be used as a target. A loss

can then be established between the two synthetic images

from (13) and (14), where the latter is a target image:

LL1(E
�
p)=EA,A0,Bu,Bu,b�a

½k D(Ea(Bu),Ep(Bu,b�a,Bu))

� D(Ea(~Bu,b),Ep(~Bu, ~Bu,a))k1�
ð15Þ

By back-propagation, the loss in (15) optimizes the net-

work E�p, as ~Bu,a and ~Bu,b are functions of E�p:

Fig. 9. Top: During pre-training, we can learn an appearance encoder Ea, and a pose encoder Ep that discovers the translation offset

between an image of B and a shifted version of itself. Bottom: Taking Ea, Ep, and D and fixing their weights, we seek to learn E�p
which discovers the translation offset between two images from different modalities. Here Ea, Ep, and D can provide the necessary

geometric and appearance relationships used for learning E�p self-supervised.

Tang et al. 1495



Alternatively we can use Bu,b�a as the target, but, in prac-

tice, using ~Bu,b�a as in (14) led to faster convergence.

For the loss in (15) to be minimized, two conditions

must hold true. First, ~Bu,b must have correctly encoded the

appearance and observed scenes in Bu: Second, ~Bu,a and
~Bu,b must have the correct translations a and b, respec-

tively. By satisfying these two constraints we can ensure E�p
is able to discover the translation offset across modalities,

and is compatible with pre-trained networks Ea and D for

image generation.

4.3. Pose estimation

Taking the pose-aligned synthetic image ~Bu,a and the

rotation-aligned range sensor image Bu, we embed them to

a joint space, where their translation offset is found by max-

imizing correlation on the learned embeddings. We denote

the embedding network for real and synthetic images to be

HB and H~B, respectively, and the learned embeddings to be

By
u and ~By

u,a :

By
u = HB(Bu), ~By

u,a = H~B(
~Bu,a) ð16Þ

The correlation maximization is a parameter-free pro-

cess that requires no additional learned modules, but is dif-

ferentiable allowing gradients induced by the downstream

loss to propagate to upstream learned modules. In this step,

we can infer â = x̂ ŷ½ �T, which is our posterior estimate

to the translation. Formally, this can be expressed as

â = argmax
p2R2

~By
u,aHBy

u ð17Þ

where ~By
u,aHBy

u is the discrete cross-correlation between
~By

u,a and By
u : This can be performed efficiently in the

Fourier domain, as is done in prior works that use a similar

approach (Barnes et al., 2019; Barsan et al., 2018; Tang

et al., 2020b).

The embeddings are thus learned to further ensure the

synthetic image and the live image can be correlated cor-

rectly. Without ground truth a, we can self-supervise using

a similar approach as in learning PASED, by applying a

known shift. The architecture for learning the embeddings

is shown in Figure 10. Similar as in Section 4.2, ~Bu,b can

be obtained by shifting the map image A to obtain A0:
Given learned deep embeddings ~By

u,b and By
u , the transla-

tion offset by correlation maximization is found to be b̂ :

~By
u,b = H~B(

~Bu,b) ð18Þ

b̂ = argmax
p2R2

~By
u,bHBy

u ð19Þ

The difference of the two offsets b� a is known, and

can be used to establish a loss term:

LL1(HB,H~B)=EBu, ~Bu,a, ~Bu,b
½ b� a� (b̂� â)
�� ��

1
� ð20Þ

The overall pipeline for data flow at inference time is

shown in Figure 11.

5. Implementation details

Here we provide details on the architecture of the various

networks used in our method, and the associated hyper-

parameters. We make use of the following abbreviations.

� RP(p): 2D reflection padding of p.
� Conv(Cin,Cout, k, s, p): convolution with Cin input

channels, Cout output channels, kernel size k, stride s,
padding p, and bias.

� IN: instance normalization.
� ReLU: rectified linear unit.
� LReLU(m): leaky ReLU with negative slope m.
� Drop(d): dropout with ratio d.
� ConvT(Cin,Cout, k, s, p, pout): transposed convolution

with Cin input channels, Cout output channels, kernel size

k, stride s, padding p, output padding pout, and bias.

The network architectures are listed in Tables 1 to 4. For

comparison against the prior supervised approach, we use

the same architectures where possible. We implemented the

image generation network for the prior supervised approach

to have the same latent space size at the bottleneck, and the

same number of down-sample and up-sample layers as in

our method.

Our method is implemented in PyTorch (Paszke et al.,

2019). For training rotation inference fR and networks for

image generation Ea, Ep, E�p, and D, we use a learning

rate of 2e�4: For learning the embedding networks HB and

H~B, we use a learning rate of 2× 10�6: We use Adam

(Kingma and Ba, 2015) as the optimizer for all experi-

ments. The training is terminated when the validation loss

increases for more than five epochs, or reaching a maxi-

mum number of epochs. This results in 80 to 150 epochs

of training for learning fR, Ea, Ep, E�p, and D, depending

on the dataset and the specific experiment, and 10 to 20

epochs for learning HB and H~B: The inference runs at about

10 Hz. On a single 1080 Ti GPU. We use a batch size of

32 for all experiments unless otherwise stated.

Fig. 10. The networks HB and H~B are learned to project real live

images and synthetic images to a joint embedding, where their

translation offset can be found by maximizing correlation.

1496 The International Journal of Robotics Research 40(12-14)



6. Experimental validation

We evaluate on several public, real-world datasets collected

with vehicles equipped with on-board range sensors. The

datasets we use come with metric ground truths that are

decently accurate, though we noticed the GPS/INS solu-

tions in certain places can drift up to a few meters.

We add large artificial pose offsets to the ground truth

when querying for a satellite image, thereby simulating a

realistic robot navigation scenario where the initial pose

estimate can solve place recognition, but is too coarse for

the robot’s metric pose. Using a map (e.g., satellite) image

queried at this coarse initial pose estimate, our method

solves metric localization by comparing against the live

sensor data. The true pose offsets are hidden during train-

ing as our method is self-supervised, and are only revealed

at test time for evaluation purposes.

The artificial offset is chosen such that the initial esti-

mate has an unknown heading error in the range ½� p
8
, p

8
�,

therefore given the initial estimate u0, the rotation inference

must choose a solution space of at least ½u0 � p
8
, u0 + p

8
� to

guarantee the correct solution can be found. We use a pixel-

wise translation error in the range ½�25, 25� pixels.

Depending on the resolution for a specific experiment, this

corresponds to an error of at least ½�10m, 10m� and up to

more than ½�20m, 20m�: All experiments use input images

of size 256× 256:

Fig. 11. Overall data flow of our method at inference: given map image A and live data image B, based on the initial heading

estimate, we form a stack of rotated images fBu0
, . . . ,Bun

g, from which fR discovers Bu that is B rotated to be rotation-aligned with

A: This process also infers the heading estimate û: Here A and Bu are used to generate a synthetic image ~Bu,a that has the same

appearance and observed scene as Bu and is pose-aligned with A; and ~Bu,a and Bu are projected to deep embeddings ~By
u,a and B

y
u ,

where the estimate for the translation offset â is found by correlation maximization.

Table 1. Architecture for rotation inference.

Rotation Inference Function fR

Input shape: n× 4× 256× 256 where C = 4, H = W = 256

Conv(4, 32, 3, 2, 1) + IN + ReLU
Conv(32, 64, 3, 2, 1) + IN + ReLU
Conv(64, 128, 3, 2, 1) + IN + ReLU
Conv(128, 256, 3, 2, 1) + IN + ReLU
Latent shape: n× 256× 16× 16

Take the mean along C,H ,W + Softmax + Reshape
Latent vector shape: 1× n, which are the softmax weights
Matrix-multiple softmax weights with the input

Shape of the multiplication product: 4× 256× 256
Extract the associated channel(s) to get Bu (or Aui

during
training)

Table 2. Architecture of for image generation.

Appearance Encoder Ea

RP(3) + Conv(1, 16, 7, 1, 0) + IN + ReLU
Conv(16, 32, 3, 2, 1) + IN + ReLU
Conv(32, 64, 3, 2, 1) + IN + ReLU
Conv(64, 128, 3, 2, 1) + IN + ReLU
Conv(128, 256, 3, 2, 1) + IN + ReLU
ResNet blocks (× 9):
Conv(256, 256, 3, 1, 0) + IN + ReLU + Drop(0.5)
Conv(256, 256, 3, 1, 0) + IN

Intra-Modality Pose Encoder Ep

RP(3) + Conv(2, 16, 7, 1, 0) + IN + ReLU
Conv(16, 32, 3, 2, 1) + IN + ReLU
Conv(32, 64, 3, 2, 1) + IN + ReLU
Conv(64, 128, 3, 2, 1) + IN + ReLU
Conv(128, 256, 3, 2, 1) + IN + ReLU
ResNet blocks (× 9):
Conv(256, 256, 3, 1, 0) + IN + ReLU + Drop(0.5)
Conv(256, 256, 3, 1, 0) + IN

Cross-Modality Pose Encoder E�p

RP(3) + Conv(4, 16, 7, 1, 0) + IN + ReLU
Conv(16, 32, 3, 2, 1) + IN + ReLU
Conv(32, 64, 3, 2, 1) + IN + ReLU
Conv(64, 128, 3, 2, 1) + IN + ReLU
Conv(128, 256, 3, 2, 1) + IN + ReLU
ResNet blocks (× 9):
Conv(256, 256, 3, 1, 0) + IN + ReLU + Drop(0.5)
Conv(256, 256, 3, 1, 0) + IN

Decoder D

ConvT(512, 256, 3, 2, 1, 1) + IN + ReLU + Drop(0.5)
ConvT(256, 128, 3, 2, 1, 1) + IN + ReLU + Drop(0.5)
ConvT(128, 64, 3, 2, 1, 1) + IN + ReLU + Drop(0.5)
ConvT(64, 32, 3, 2, 1, 1) + IN + ReLU + Drop(0.5)
RP(3) + Conv(32, 1, 7, 1, 0) + Sigmoid

Tang et al. 1497



6.1. Radar localization against satellite imagery

We evaluate our method on two datasets with FMCW radar

and GPS: the Oxford Radar RobotCar Dataset (Barnes

et al., 2020) and the MulRan Dataset (Kim et al., 2020).

The satellite images for RobotCar are queried using Google

Maps Platform.2 For MulRan they are queried using Bing

Maps Platform,3 as high-definition Google satellite ima-

gery is unavailable at the place of interest.

The GPS/INS and range sensor data for all datasets used

are timestamped. To create the ground truth, for each frame

of range sensor data, we find its associated latitude, longi-

tude, and heading from the GPS/INS data based on the

time-stamp, and query a satellite image with the corre-

sponding latitude and longitude. We also rotate the range

sensor image with the ground-truth heading to generate a

rotation-aligned range sensor image. To add the initial off-

set for simulating a coarse initial estimate, we simply shift

the center of the satellite images by the translation offset

and rotate the range sensor image by the heading offset

when forming the range sensor–satellite pairs.

We benchmark against the prior supervised method

RSL-Net (Tang et al., 2020b) in our experiments, which is

evaluated only on the RobotCar Dataset. Both datasets con-

tain repeated traversals of the same routes. We separately

train, validate, and test for every dataset, splitting the data

as in Figure 12. For the RobotCar Dataset, we split the tra-

jectories the same way as in Tang et al. (2020b) for a fair

comparison. For the RobotCar Dataset, the training set con-

sists of training data from sequences no. 2, no. 5, and no.

6, whereas we test on the test data from sequence no. 2.

For the MulRan Dataset, we used sequences KAIST 01
and Sejong 01. The resulting test sets feature an urban

environment (RobotCar), a campus (KAIST 01) and a

highway (Sejong 01).

We test on every fifth frame, resulting in 201 frames

from the RobotCar Dataset and 358 from the MulRan

Dataset, spanning a total distance of almost 4 km. The res-

olution used is 0:8665m=pixel for RobotCar and

0:7876m=pixel for MulRan. All sensor data are pre-scaled

to have the same resolution as satellite images. The mean

errors and standard deviations around the mean are

reported in Table 5. Starting from a large initial offset, we

can localize to an error of a few meters in translation and a

few degrees in heading. Our method achieves an error on

par with the supervised approach in Tang et al. (2020b),

while requiring no metrically accurate ground truth for

training.

6.2. Lidar localization against satellite imagery

For this experiment, we evaluate on the RobotCar Dataset

(Barnes et al., 2020) which also has two Velodyne HDL-

32E lidars mounted in a tilted configuration, and KITTI

(raw dataset (Geiger et al., 2013)) which has a Velodyne

HDL-64E lidar and GPS data.

For the RobotCar Dataset, the trajectories are split into

training, validation, and test sets approximately the same

Table 3. Image generation for our implementation of RSL-Net

for comparison.

Encoder E

RP(3) + Conv(4, 32, 7, 1, 0) + IN + ReLU
Conv(32, 64, 3, 2, 1) + IN + ReLU
Conv(64, 128, 3, 2, 1) + IN + ReLU
Conv(128, 256, 3, 2, 1) + IN + ReLU
Conv(256, 512, 3, 2, 1) + IN + ReLU
ResNet blocks (× 9):
Conv(512, 512, 3, 1, 0) + IN + ReLU + Drop(0.5)
Conv(512, 512, 3, 1, 0) + IN

Decoder D

ConvT(512, 256, 3, 2, 1, 1) + IN + ReLU + Drop(0.5)
ConvT(256, 128, 3, 2, 1, 1) + IN + ReLU + Drop(0.5)
ConvT(128, 64, 3, 2, 1, 1) + IN + ReLU + Drop(0.5)
ConvT(64, 32, 3, 2, 1, 1) + IN + ReLU + Drop(0.5)
RP(3) + Conv(32, 1, 7, 1, 0) + Sigmoid

Table 4. U-Net architecture for learning embeddings.

Embedding Networks HB and H~B

Conv(1, 32, 4, 2, 0)
LReLU(0.2) + Conv(32, 64, 4, 2, 0) + IN
LReLU(0.2) + Conv(64, 128, 4, 2, 0) + IN
LReLU(0.2) + Conv(128, 256, 4, 2, 0) + IN
LReLU(0.2) + Conv(256, 512, 4, 2, 0) + IN
LReLU(0.2) + ReLU + Conv(512, 1024, 4, 2, 0)
ReLU + ConvT(1024, 512, 4, 2, 1, 0) + IN
ReLU + ConvT(512, 256, 4, 2, 1, 0) + IN
ReLU + ConvT(256, 128, 4, 2, 1, 0) + IN
ReLU + ConvT(128, 64, 4, 2, 1, 0) + IN
ReLU + ConvT(64, 32, 4, 2, 1, 0) + IN
ReLU + ConvT(32, 1, 4, 2, 1, 0) + Sigmoid
With skip connections in-between intermediate layers

Fig. 12. Training (blue), validation (green), and test (red)

trajectories for RobotCar (top left), KAIST (top right), Sejong
(bottom left) and 20111003_drive0034 (bottom right).

Certain data are removed to avoid overlap between the splits.

1498 The International Journal of Robotics Research 40(12-14)



way as in Section 6.1. For the KITTI Dataset, the training

set includes sequences 20110929_drive0071,

20110930_drive0028, and 20111003_drive0027.

Sequence 20110926_drive0117 is used for validation.

Finally, data in 20111003_drive0034 are split into

training and test, as shown in Figure 12. To turn 3D lidar

point-clouds to lidar images, the point-clouds are projected

to the x–y plane. We discard points with z values smaller

than zero to remove ground points when creating the lidar

images. Although such a simple approach may result in cer-

tain non-ground points removed, we observe that such an

effect is rather minimal. The resulting lidar images are

grey-scale images where pixel values are the normalized

intensity.

As lidars have a shorter range than radars, we use satel-

lite images of a greater zoom level, with resolution

0:4332m=pixel for RobotCar and 0:4592m=pixel for

KITTI. The test set consists of 200 frames for RobotCar

and 253 for KITTI, spanning a total distance of near 3km:
The test set for KITTI features a residential area. The

results are reported in Table 6. The error on the RobotCar

Dataset is smaller when using lidar for localization than

when using radar.

6.3. Radar localization against prior lidar map

Though our method is designed for localizing against satellite

imagery, we show it can also handle more standard forms of

cross-modality localization. Here we build a lidar map using a

prior traversal, and localize using radar from a later traversal.

We demonstrate on the RobotCar and MulRan datasets,

where we use the same resolution as in Section 6.1. For

RobotCar, we use ground truth to build a lidar map from

sequence no. 2. Radar data in the training sections from

no. 5 and no. 6 as in Figure 12 form the training set,

whereas the test section from sequence no. 5 forms the test

set. For MulRan, lidar maps are built from KAIST 01 and

Sejong 01, and we localized using radar data from

KAIST 02 and Sejong 02, which are split into training,

validation, and test sets. This resulted in a test set consist-

ing of 201 frames from RobotCar and 272 frames from

MulRan, spanning a total distance of almost 4 km. The

localization results are Table 7.

This experiment is more suitable for naive image gener-

ation methods such as CycleGAN (Zhu et al., 2017) than

previous experiments, because the field of view is consider-

ably more compatible as both modalities are from range

Table 5. Mean error and error standard deviation for radar localization against satellite imagery.

Mean error (metric) Mean error (pixel) Error STD (metric)
x(m) y(m) u(8) x y x(m) y(m) u(8)

RobotCar (ours) 3.44 5.40 3.03 3.97 6.23 4.44 7.50 3.04
RobotCar (RSL-Net (Tang et al., 2020b) , supervised) 2.74 4.26 3.12 3.16 4.92 4.32 6.48 4.16

MulRan (ours) 6.02 7.02 2.92 7.64 8.91 5.75 6.87 3.64
MulRan (RSL-Net) 5.85 7.11 1.88 7.42 9.03 6.50 6.46 2.41

Table 6. Mean error and error standard deviation for lidar localization against satellite imagery.

Mean error (metric) Mean error (pixel) Error STD (metric)
x(m) y(m) u(8) x y x(m) y(m) u(8)

RobotCar (ours) 1.54 1.85 2.29 3.55 4.27 1.54 2.29 3.10
RobotCar (RSL-Net) 2.31 2.55 2.08 5.33 5.89 2.26 2.57 2.91

KITTI (ours) 3.05 3.13 1.67 6.64 6.82 3.59 3.78 2.57
KITTI (RSL-Net) 2.45 2.79 1.59 5.34 6.08 3.70 3.88 2.22

Table 7. Mean error and error standard deviation for radar localization against prior lidar map.

Mean error (metric) Mean error (pixel) Error STD (metric)
x(m) y(m) u(8) x y x(m) y(m) u(8)

RobotCar (ours) 2.21 2.57 2.65 2.55 2.97 2.30 3.53 2.06
RobotCar (RSL-Net) 2.66 3.41 2.45 3.07 3.93 2.85 3.11 2.18
RobotCar (CycleGAN) 6.41 9.05 2.65 7.40 10.44 7.43 7.17 2.06

MulRan (ours) 3.57 3.26 2.15 4.53 4.13 4.29 4.84 2.38
MulRan (RSL-Net) 3.37 2.61 1.40 4.28 3.32 3.38 4.12 1.71
MulRan (CycleGAN) 4.84 4.39 2.15 6.14 5.58 5.78 4.96 2.38

Tang et al. 1499



sensors. In Table 7, we list results where we replaced the

image generation stage of our method by CycleGAN while

keeping other modules unchanged. The localization results

are, however, much worse when modality A is satellite ima-

gery, as shown qualitatively in Figure 5.

6.4. Online pose-tracking system

In prior experiments we assumed place recognition is

always available, providing a coarse initial estimate for

every frame. Here we present a stand-alone pose-tracking

system by continuously localizing against satellite imagery.

Given a coarse initial estimate (e.g., from GPS) for the first

frame, the vehicle localizes and computes its pose within

the satellite map. The initial estimate for every frame

onward is then set to be the computed pose of the previous

frame. We only need place recognition once at the very

beginning; the vehicle then tracks its pose onward without

relying on any other measurements.

6.4.1. Introspection. As localizing using satellite imagery is

challenging, the result will not always be accurate. Our

method, however, naturally allows for introspection. A syn-

thetic image ~Bu,a was generated from A and Bu: We can

apply a known small translation offset d to A to form Ad:
Taking Ad and Bu we can generate ~Bu,a + d: Finally, we can

compute a translation offset d̂ by passing ~Bu,a + d and ~Bu,a

through the learned embeddings and maximizing correlation:

d̂ = argmax
p2R2

~By
u,a + dH~By

u,a ð21Þ

Let dintro = d� d̂
�� ��: A large value of dintro indicates the

generated images are erroneous. This allows us to examine

the solution quality; our system falls back to using odome-

try for dead-reckoning when dintro exceeds a threshold. We

do not require high-quality odometry, but rather only use a

naive approach by directly maximizing correlation between

two consecutive frames without any learned modules. In our

experiments, we set d to be 10 10½ �T, and dintro to be 5.

6.4.2. Results. We conduct two experiments on the test set

of RobotCar, one where we track a radar using satellite ima-

gery, and one where we track a lidar. For both experiments

we run localization at 4 Hz. The results are shown in Figure

13. If the solution error is too large, then the initial estimate

will be too off for a sufficient overlap between the next

queried satellite image and live data, resulting in losing

track of the vehicle. Although the solution error is large for

certain frames, our system continuously localizes the vehi-

cle for over a kilometer without completely losing track.

For the lidar experiment, the solutions are sufficiently accu-

rate to not require any odometry. Each solution only uses a

single frame of data (plus the solution from the previous

frame for the initial estimate), and we make no attempt at

windowed/batch optimization or loop closures.

6.5. Ablation study

We perform an ablation study to investigate the effect of

reduced training data. For radar localization against satellite

imagery on the RobotCar Dataset, we trained a model using

approximately the first 20% of training data, and another

using every 10th frame of training data. The results are

shown in Table 8.

Noticeably, the choice of selecting uniformly distributed

data in contrast to utilizing only the first 20% leads to a

more varied dataset, and as such achieves better perfor-

mances despite the lower number of samples.

6.6. Testing on different sequences

For the results in Tables 5, 6, and 7, the training and test

data, though with zero spatial overlap, are from the same

sequences. The RobotCar and MulRan datasets contain

repeated sequences of the same trajectory. Here we show

results where the test set trajectories are from different

sequences, to demonstrate the capability of generalizing

not only to unseen places, but also to range sensor data

recorded on different days as the training data.

Fig. 13. Estimated pose (blue) versus ground-truth pose (red) for localizing a radar (left) and a lidar (right) against satellite imagery.

Our system tracks the vehicle’s pose over 1 km, where we occasionally fall back to odometry for the radar experiment (green). Our

system is stand-alone and requires GPS only for the first frame.

1500 The International Journal of Robotics Research 40(12-14)



We arbitrarily selected sequences no. 7 and no. 15 as the

new test sequences for RobotCar, and sequences KAIST
02 and Sejong 02 for MulRan. The same test trajectories

as in Figure 12 are extracted for the new test sequences.

The training trajectories and sequences remain unchanged.

The localization results are listed in Table 9 and

Table 10. The mean errors are fairly consistent across dif-

ferent sequences.

6.7. Circular initial offset

For a fair comparison against the supervised approach in

Tang et al. (2020b), we assume the initial offset for both x

and y is uniformly distributed and in the range ½�25, 25�
pixels, which was also employed in Tang et al. (2020b).

However, a more realistic initial offset that more closely

mimics the error characteristics of a GPS would be sam-

pling the initial offset from a circular area of radius r from

the ground-truth position.

Without re-training, we evaluate the model performance

where the initial translation offset is sampled uniformly

from a circular area with a radius of 25 pixels, and centered

at the ground truth position. The sampling for the initial

heading offset remains unchanged. The localization results

are summarized in Tables 11 and 12.

6.8. Trade-offs on network width and depth

Here we show the effects of network width (number of

channels in each layer) and depth (number of layers) on

solution quality and the associated trade-offs, and justify

choosing the architecture shown in Tables 1 to 4. In this

experiment, we vary the width or depth of networks for

rotation inference and image generation, namely

fR,Ea,Ep,E
�
p,D, while keeping HB and H~B unchanged.

The results are listed in Table 13.

First, we fix the network depth while halving or dou-

bling the number of channels in each layer. When the width

is reduced, the network representation power is noticeably

affected, indicated by an increase in solution error in all of

x, y, and u: When the width is doubled, we achieved a

slight reduction on the rotation error and overall translation

error. However, the total number of network parameters

increase by a factor of four when the width is doubled,

greatly limiting the maximum affordable batch size, and

thereby increasing the training time. As a result, we opted

the architecture presented in Section 5.

Next, we keep the number of channels the same in the

first layer, and study the effect of making the networks shal-

lower or deeper (by one layer). For image generation we use

an encoder–decoder architecture with stride 2 in the

Table 8. Ablation study for using reduced training data, evaluated on radar localization against satellite imagery on the RobotCar

Dataset.

Mean error (metric) Mean error (pixel)
x(m) y(m) u(8) x y

RobotCar (full) 3.44 5.40 3.03 3.97 6.23
RobotCar (first 20%) 7.96 7.45 6.03 9.18 8.59
RobotCar (every 10th) 4.36 6.18 4.40 5.03 7.14

Table 9. Results for radar localization against satellite imagery on multiple test sequences.

Mean error (metric) Mean error (pixel) Error STD (metric)
x(m) y(m) u(8) x y x(m) y(m) u(8)

RobotCar (sequence no. 1) 3.44 5.40 3.03 3.97 6.23 4.44 7.50 3.04
RobotCar (sequence no. 7) 3.44 5.15 3.96 3.97 5.95 5.76 5.44 4.32
RobotCar (sequence no. 15) 3.21 5.21 3.80 3.70 6.01 2.83 5.76 4.20

MulRan (KAIST01, Sejong 01) 6.02 7.02 2.92 7.64 8.91 5.75 6.87 3.64
MulRan (KAIST02, Sejong 02) 6.44 6.59 5.15 8.19 8.37 6.64 6.62 7.32

Table 10. Results for lidar localization against satellite imagery on multiple test sequences.

Mean error (metric) Mean error (pixel) Error STD (metric)
x(m) y(m) u(8) x y x(m) y(m) u(8)

RobotCar (sequence no. 1) 1.54 1.85 2.29 3.55 4.27 1.54 2.29 3.10
RobotCar (sequence no. 7) 1.38 1.72 2.35 3.18 3.98 1.37 1.83 2.71
RobotCar (sequence no. 15) 1.67 1.81 2.05 3.87 4.17 1.42 1.84 2.12

Tang et al. 1501



convolution layers (after the first layer) as shown in Table 2,

thus the height and width of the representation decrease by a

factor of 2 after each layer, becoming 16× 16 at the bottle-

neck with an input of size 256× 256. Intuitively, a trade-off

exists such that deeper networks theoretically have stronger

representation power, but will result in reduced representa-

tion size at the bottleneck, making image reconstruction

harder. The results in Table 13 suggest that our choice of

network depth is optimal with noticeably smaller translation

error, which is affected by the quality of image generation.

6.9. Choice of image resolution

In the results presented in Sections 6.1 and 6.2, we used a

resolution of 0:8665m=pixel for experiments on radar loca-

lization against satellite imagery for the RobotCar Dataset,

and a resolution of 0:4332m=pixel for lidar localization

against satellite imagery. The resolutions used correspond

to a ‘‘zoom level’’ of 17 and 18 respectively when querying

from Google Maps Platform, and are chosen based on the

effective sensing range of radar and lidar.

To study the effect of image resolution on solution qual-

ity, we created another dataset for radar localization against

satellite imagery from the RobotCar Dataset, where the res-

olution is set to be 0:4332m=pixel, effectively ‘‘zooming

in’’ on both the radar and satellite images. A comparison

between images with the refined resolution and images

used in the experiment in Section 6.1 is shown in

Figure 14. We consider the same translation error in pixels

for the initial estimate when comparing the two resolutions.

The localization results are listed in Table 14.

Overall, choosing a resolution of 0:4332m=pixel
resulted in slightly larger mean error in x and u. Although

zoomed-in images offer more refined resolution, without

changing the size of the input images, by ‘‘zooming in,’’

measurements far from the sensor are essentially discarded,

as shown in Figure 14, thereby limiting the amount of

information being passed through the network.

Owing to the pixel-based nature of CNNs, the upper

limit our method can handle in terms of initial translation

offset is also inherently in pixels. Without changing the ini-

tial pose offset expressed in pixels, models trained with

higher-resolution images offer a reduction in metric error,

at the cost, however, of needing a smaller metric initial off-

set. In real-world applications, the coarse initial offset may

Table 11. Results for radar localization against satellite imagery using a circular translation offset range.

Mean error (metric) Mean error (pixel) Error STD (metric)
x(m) y(m) u(8) x y x(m) y(m) u(8)

RobotCar (ours) 2.83 4.49 3.57 3.39 5.39 2.93 5.48 3.71
RobotCar (RSL-Net) 2.58 3.89 3.05 3.10 4.66 3.85 4.79 3.48

MulRan (ours) 6.30 6.98 3.01 8.00 8.86 5.22 5.51 3.61
MulRan (RSL-Net) 5.35 7.58 1.72 6.79 9.62 5.25 5.26 2.43

Table 12. Results for lidar localization against satellite imagery using a circular translation offset range.

Mean error (metric) Mean error (pixel) Error STD (metric)
x(m) y(m) u(8) x y x(m) y(m) u(8)

RobotCar (ours) 1.40 1.83 1.97 3.23 4.23 1.31 1.54 2.45
RobotCar (RSL-Net) 1.81 2.15 2.09 4.19 4.96 1.53 1.90 3.17

KITTI (ours) 2.93 3.10 1.30 6.38 6.74 3.06 3.01 1.10
KITTI (RSL-Net) 2.52 2.59 1.50 5.49 5.65 3.49 3.09 2.37

Table 13. Mean error for using various choices of network width and depth, evaluated on lidar localization against satellite imagery

on the RobotCar Dataset.

Mean error (metric) Mean error (pixel) Number of parameters
x(m) y(m) u(8) x y (M)

RobotCar, channels × 1
2

1.57 1.93 2.58 3.62 4.45 5.23
RobotCar, ours 1.54 1.85 2.29 3.55 4.27 20.86
RobotCar, channels × 2 1.58 1.65 2.27 3.64 3.80 83.37

RobotCar, depth �1 1.70 2.09 2.47 3.92 4.82 5.22
RobotCar, ours 1.54 1.85 2.29 3.55 4.27 20.86
RobotCar, depth + 1 1.56 1.98 2.39 3.60 4.57 83.41

1502 The International Journal of Robotics Research 40(12-14)



be large, for example in places where direct GPS signals

are occluded, and as such models trained with lower-

resolution images are needed to handle such large initial

offset. For a smaller metric initial offset, a model trained

with higher-resolution images can be used to provide a

more refined pose estimate.

With this in mind, we present a ‘‘hybrid’’ approach that

utilizes both lower and higher resolution images. Specifically,

given an initial offset in the range ½�21:66m, 21:66m� which

corresponds to ½�25, 25� pixels with a resolution of

0:8665m=pixel, we first compute a solution using a model

trained with lower-resolution images. Next, we take the esti-

mated pose as the new initial translation offset and compute

a refined solution using a model trained with higher-

resolution images at 0:4332m=pixel: This ‘‘hybrid’’ approach

allows for the best of both worlds: the lower-resolution model

allows large metric initial offsets, whereas the higher-

resolution model provides a further refinement, reducing the

metric error. We demonstrate this approach for radar localiza-

tion against satellite imagery on the RobotCar Dataset. The

results are listed in the last row of Table 14: the metric error

in both x and y are reduced compared with using a lower-

resolution model only, by the sequential refinement with a

higher-resolution model.

6.10. Choice of rotation increment

We have chosen a rotation increment of 28 when forming

the rotation stack fBg for all of our experiments. Here we

justify this choice by comparing the resulting rotation error

for various increments.

By intuition, the solution error on u should decrease

with finer increments. However, a trade-off exists such that

for the same range of initial heading error (½� p
8
, p

8
� in all

our experiments), the number of rotated images forming

fBg, n, increases due to the smaller rotation increments.

This, in turn, increases the memory usage during training.

When training on two 1080 Ti GPUs, limited by the mem-

ory requirement, we could only afford a batch size of 16

when the increment is set to 18, whereas we can use a batch

size of at least 32 when the increment is 28 or larger.

As listed in Table 15, the mean error in u when choos-

ing 18 as the rotation increment is slightly larger than when

using 28, primarily because of the fact that the batch size is

too small, in our hypothesis. We used a batch size of 32 for

the experiments where the increment is 28, 38, and 48, and

it is clear that the solution error increases with larger incre-

ments and, thus, coarser sampling. For an increment of 48

we could also afford a batch size of 64, however the result-

ing u error was higher than using 32 as the batch size.

6.11. Handling larger initial offset

So far, all experiments presented start from an initial trans-

lation offset of ½�25, 25� pixels, which corresponds to more

than ½�20m, 20m� for the radar experiments in Section 6.1.

Fig. 14. A pair of satellite and radar images queried using zoom

levels of 18 (top) versus 17 (bottom) at roughly the same center

position. Although ‘‘zooming in’’ can lead to a more refined

resolution, certain regions far away are not seen in the resulting

radar images, despite being observed by the sensor.

Table 14. Mean error and error standard deviation for using refined resolution, evaluated for radar localization against satellite

imagery. We also include results for a hybrid approach utilizing both resolutions.

Mean error (metric) Mean error (pixel) Error STD (metric)
x(m) y(m) u(8) x y x(m) y(m) u(8)

RobotCar, 0:8665m=pixel 3.44 5.40 3.03 3.97 6.23 4.44 7.50 3.04
RobotCar, 0:4332m=pixel 2.23 2.42 3.22 5.29 5.74 2.49 3.02 3.13
RobotCar, hybrid 2.56 3.60 3.03 5.91 8.32 3.78 5.45 3.04

Table 15. Mean u error and error standard deviation for various

rotation increments, evaluated for radar localization against

satellite imagery on the RobotCar Dataset.

Rotation increment Mean error in u(8) Error STD (8)

18 3.29 3.91
28 3.03 3.04
38 4.04 4.93
48 4.26 5.86

Tang et al. 1503



In practice, the amount of offset our method can handle

depends on the effective receptive field of the convolution

layers in the encoder and decoder networks for image gen-

eration, namely Ea,E
�
p, and D: If the offset is too large, the

networks may not be able to encode and decode informa-

tion needed to correctly generate ~Bu,a: Supporting our

intuition, Figure 15 shows that the solution error increases

superlinearly with larger initial offset.

Our method, however, naturally allows for a strategy to

deal with larger initial offsets at inference time than in the

training data, without the need to re-train. At inference,

rather than using just Bu during image generation, we can

apply known translation offsets d1, d2, d3, and d4 to shift

the center of Bu onto each of the four quadrants. This is

depicted in Figure 16, where as an example, we shift Bu by

½�10, 10�, ½10, 10�, ½�10, �10�, and ½10, �10� pixels to

form Bu, d1
, Bu, d2

, Bu, d3
, and Bu, d4

, respectively.

Figure 17 depicts a case where the translation offset a

between the satellite image A and Bu is a = 35 35½ �T
pixels. This is larger than the range of translation offsets in

the training data, which is ½�25, 25� pixels, shown by the

dashed box around the origin. However, the offset between

Bu, d2
and A is 25 25½ �T pixels, which is within the range

our networks can handle, as shown in Figure 18.

Forming E�p(A,Bu) and Ea(Bu) during image generation

might lead to incorrect results when generating ~Bu,a, as the

offset between A and Bu is larger than what E�p is trained

for. However, we can also generate ~Bu,a using E�p(A,Bu, d2
)

and Ea(Bu, d2
) :

~Bu,a = D(Ea(Bu, d2
),E�p(A,Bu, d2

)): ð22Þ

It should be noted that such a combination does not suf-

fer from the issue with large offsets, as discussed.

The remaining question is then which shifted image

from Bu, d1
, Bu, d2

, Bu, d3
, and Bu, d4

to choose from. In

Figure 19, as an example, we show that generating ~Bu,a

using E�p(A,Bu, d1
) and Ea(Bu, d1

) will also be problematic,

as this combination also suffers from the issue with large

offsets. The selection cannot be made ahead of the image

generation as a is unknown. However, our method natu-

rally allows for a strategy to select the correct quadrant to

shift Bu onto, without needing to know a a priori, using an

introspective method similar in spirit to that presented in

Section 6.4.1.

We can generate five versions of ~Bu,a using Bu, Bu, d1
,

Bu, d2
, Bu, d3

, and Bu, d4
, and introspect the quality of each

~Bu,a: To do so, we apply a known shift g to A to query for

another image Ag, and we can also shift each Bu, di
by g to

form Bu, di + g (or Bu, g for Bu), as in Figures 18 and 19.

Fig. 15. Mean error in rotation (left) and translation (right) with

larger initial translation offset range, evaluated for radar

localization against satellite imagery on the RobotCar Dataset.

Fig. 16. The center of image Bu is shifted onto each of the four

quadrants to produce four shifted versions.

Fig. 17. The unknown translation offset a between A and Bu is

larger than the networks are designed for.

Fig. 18. If we shift Bu by ½10, 10� to form Bu, d2
, then the offset

between A and Bu, d2
is within what the networks are designed

for. In this case, generating ~Bu,a and ~Bu,a + g should both be

accurate, as the offset in both cases are within what the networks

are trained for.

1504 The International Journal of Robotics Research 40(12-14)



For each shift di (and zero shift for Bu), we can take the

combination E�p(Ag,Bu, di + g) and Ea(Bu, di + g) to generate
~Bu,a + g, which should be pixel-wise aligned with Ag: If

generating ~Bu,a is problematic due to large offsets, then so

will generating ~Bu,a + g be, as shown in Figure 19. On the

other hand, if the networks can correctly produce ~Bu,a, they

can also correctly produce ~Bu,a + g, as shown in Figure 18.

For each shift di, we can compute a translation offset ĝ

using ~Bu,a + g and ~Bu,a :

ĝ = argmax
p2R2

~By
u,a + gH~By

u,a ð23Þ

along with an error term e = ĝ � gk k: For the five pairs of

synthetic images, the one that results in the smallest e will

be used and passed downstream to solve for â: This forms

an introspective approach for handling initial offsets larger

than what the models are trained for, by augmenting the

original input Bu with various shifted versions.

Table 16 shows results on the RobotCar Dataset for

radar localization against satellite imagery, where the initial

offset is now in the range of ½�35, 35� pixels. We also

include additional results where the networks are trained

using the same offset range as at inference for comparison.

Taking a model trained for an offset in the range ½�25, 25�
pixels and evaluating directly with offsets in the range

½�35, 35� pixels, we resulted in higher errors compared

with Section 6.1. However, with our input-augmentation

approach by shifting Bu and generating ~Bu,a multiple times,

we can handle larger initial offsets without sacrificing sig-

nificantly on accuracy. This method, however, introduces

additional computational cost as multiple forward passes of

image generation are needed.

6.12. Modality transfer

An interesting application would be to train models using

data for localization between one type of range sensor (e.g.,

radar) and satellite imagery, and evaluate for localization

between another type of range sensor (e.g., lidar) and satel-

lite imagery. This is particularly useful if we wish to evalu-

ate using a specific type of range sensor at inference, but

do not have the associated training data with approximately

known trajectories to query for satellite images.

Here we demonstrate how this can be achieved using

unsupervised domain adaptation by image-to-image trans-

fer. Specifically, we consider CycleGAN (Zhu et al., 2017)

for transferring between radar scan images and lidar scan

images. For transferring between images of single scans of

radar and lidar data, we also implement the approach in

Weston et al. (2020), where range sensor data are converted

into polar coordinate representation prior to the domain

adaptation. Figure 20 shows examples of radar and lidar

Fig. 19. The resulting synthetic image will still be erroneous, if

an incorrect quadrant is selected. Here the offset between Bu, d1

and A is larger than what the networks can handle. In this case,

generating ~Bu,a and ~Bu,a + g will both be problematic due to the

issue with offsets.

Table 16. Radar localization against satellite imagery evaluated on the test set of RobotCar, where the initial translation offset is large

at inference. We also included results from Table 5 for reference.

Offset range Offset range With input Mean error (metric) Mean error (pixel)
at training (pixels) at inference (pixels) augmentation x(m) y(m) u(8) x y

½�25, 25� ½�25, 25� ß 3.44 5.40 3.03 3.97 6.23
½�25, 25� ½�35, 35� ß 6.62 7.88 3.26 7.64 9.09
½�25, 25� ½�35, 35� � 4.67 5.54 3.26 5.39 6.40
½�35, 35� ½�35, 35� ß 4.28 7.35 3.26 4.94 8.49

Fig. 20. Qualitative results of CycleGAN for domain adaptation

between a single scan of radar and lidar data. From left to right: a

real radar image and its synthetic lidar image, a real lidar image

and its synthetic radar image. Top: CycleGAN applied in

Cartesian coordinate representation. Bottom: CycleGAN applied

in polar coordinate representation.

Tang et al. 1505



Fig. 21. Images at various stages of our method: map image A (a), live data image B (b), output of rotation inference Bu (c),

embedding B
y
u (d), pixel-wise aligned ground truth Bu,a (e), synthetic image ~Bu,a (f), and embedding ~By

u,a (g). From top to bottom:

radar localization against satellite imagery evaluated on RobotCar (rows 1–2) and MulRan (rows 3–4), lidar localization against

satellite imagery evaluated on RobotCar (rows 5–6) and KITTI (rows 7–8), and radar localization against lidar map evaluated on

MulRan (row 9) and RobotCar (row 10).

1506 The International Journal of Robotics Research 40(12-14)



images and their synthetic counterparts generated using our

implementation of CycleGAN, for both polar and Cartesian

coordinate representations.

At inference, given networks Ea,E
�
p,D,HB, and H~B

trained for radar localization against satellite imagery, and

a lidar image Bl, we can generate ~Br = fL!R(B
l), where ~Br

is a synthetic radar image and fL!R is a network that trans-

forms a lidar image to a synthetic radar image trained using

the objectives of CycleGAN (Zhu et al., 2017).

We can then use ~Br as the input for inferring rotation,

conditional image generation, and learning pose estimation

using the pipeline detailed in Section 4.

The same can be performed for the other way around,

where given networks trained for lidar localization against

satellite imagery, we wish to perform radar localization

against satellite imagery at inference time.

Table 17 summarizes the results for modality transfer.

Networks trained with one type of range sensor suffer from

large localization errors when directly evaluated with

another type of sensor. The errors are greatly reduced after

applying domain adaptation and using transferred images

as input. As shown in Figure 20, applying domain adapta-

tion in polar coordinate representation led to more visually

realistic synthetic images when transferring from lidar to

radar data, and the smallest localization errors for networks

trained on radar data and tested with lidar data. Applying

domain adaptation in Cartesian coordinate representation,

on the other hand, resulted in smaller errors for the reverse

experiment. We use radar and lidar images of the same res-

olution in this experiment, and do not consider modality

transfers that also involve a change in resolution.

6.13. Further qualitative results

Additional qualitative results are presented in Figure 21

showing various stages of our methods for different modal-

ities and datasets.

7. Conclusion and future work

We present self-supervised learning to address cross-modal-

ity, metric localization between satellite imagery and on-

board range sensors, without metrically accurate ground truth

for training. Our approach utilizes a multi-stage network

that solves for the rotation and translation offsets sepa-

rately through the generation of synthetic range sensor

images as an intermediate step. Our method is validated

across a large number of experiments for multiple modes

of localization, with results on par with a prior supervised

approach. A coarse initial pose estimate is needed for our

method to compute metric localization. Therefore, a natu-

ral extension would then be to solve place recognition for

a range sensor within a large satellite map as a prior step

to metric localization.

Acknowledgments

We thank Giseop Kim from IRAP Lab, KAIST for providing GPS

data for the MulRan Dataset.

Funding

The work of Tim Y. Tang was jointly supported by a Postgraduate

Scholarship - Doctoral Program (PGS-D) from the Natural

Sciences and Engineering Research Council of Canada, and an

Oxford Robotics Institute Studentship. The work of Daniele De

Martini and Paul Newman were supported by the EPSRC

(Programme Grant EP/M019918/1: ‘‘Mobile Robotics: Enabling a

Pervasive Technology of the Future’’). The work of Shangzhe Wu

was supported by Facebook Research.

Notes

1. A mapping f : X ! Y is equivariant to a group of transfor-

mations F, if for any f 2 F, there exists a transformation

c 2 C such that c(f (x))= f (f(x)), 8x 2 X :
2. See https://developers.google.com/maps/documentation/

maps-static/intro/

3. See https://docs.microsoft.com/en-us/bingmaps/

ORCID iDs

Tim Y. Tang https://orcid.org/0000-0002-0534-975X

Shangzhe Wu https://orcid.org/0000-0003-1011-5963

References

Aldera R, De Martini D, Gadd M and Newman P (2019) Fast radar

motion estimation with a learnt focus of attention using weak

Table 17. Localization results for experiments where the range sensor used is different between training and inference time, with and

without using modality transfer, evaluated on the RobotCar Dataset. We also included results from Tables 6 and 14 for reference.

Sensor in Sensor at With modality Mean error (metric) Mean error (pixel)
training data inference transfer x(m) y(m) u(8) x y

Lidar Lidar ß 1.54 1.85 2.29 3.55 4.27
Radar Lidar ß 6.39 8.64 4.71 14.74 19.95
Radar Lidar �(Cartesian) 2.63 3.48 2.65 6.08 8.03
Radar Lidar �(Polar) 2.04 2.20 2.38 4.71 5.08

Radar Radar ß 2.23 2.42 3.22 5.29 5.74
Lidar Radar ß 7.03 6.43 10.05 16.23 14.83
Lidar Radar �(Cartesian) 2.74 2.84 3.94 6.32 6.56
Lidar Radar �(Polar) 2.73 3.52 4.62 6.31 8.14

Tang et al. 1507

https://orcid.org/0000-0002-0534-975X
https://orcid.org/0000-0003-1011-5963


supervision. In: 2019 International Conference on Robotics

and Automation (ICRA). IEEE, pp. 1190–1196.

Barnes D, Gadd M, Murcutt P, Newman P and Posner I (2020)

The Oxford Radar Robotcar Dataset: A radar extension to the

Oxford Robotcar Dataset. In: 2020 IEEE International Confer-

ence on Robotics and Automation (ICRA). IEEE, pp. 6433–

6438.

Barnes D and Posner I (2020) Under the radar: Learning to predict

robust keypoints for odometry estimation and metric localisa-

tion in radar. In: Proceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA), Paris.

Barnes D, Weston R and Posner I (2019) Masking by moving:

Learning distraction-free radar odometry from pose informa-

tion. In: Conference on Robot Learning (CoRL).

Barsan IA, Wang S, Pokrovsky A and Urtasun R (2018) Learning to

localize using a LiDAR intensity map. In: CoRL, pp. 605–616.

Boniardi F, Caselitz T, Kümmerle R and Burgard W (2017)

Robust LiDAR-based localization in architectural floor plans.

In: 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, pp. 3318–3324.

Broome M, Gadd M, De Martini D and Newman P (2020) On the

road: Route proposal from radar self-supervised by fuzzy

LiDAR traversability. Artificial Intelligence 1(4): 558–585.

Brubaker MA, Geiger A and Urtasun R (2013) Lost! Leveraging

the crowd for probabilistic visual self-localization. In: Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 3057–3064.

Carle PJ and Barfoot TD (2010) Global rover localization by

matching lidar and orbital 3D maps. In: 2010 IEEE Interna-

tional Conference on Robotics and Automation. IEEE, pp.

881–886.

Caselitz T, Steder B, Ruhnke M and Burgard W (2016) Monocular

camera localization in 3D lidar maps. In: 2016 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS).

IEEE, pp. 1926–1931.

Cen SH and Newman P (2019) Radar-only ego-motion estimation

in difficult settings via graph matching. arXiv preprint

arXiv:1904.11476.

Chebrolu N, Lottes P, Läbe T and Stachniss C (2019) Robot locali-

zation based on aerial images for precision agriculture tasks in

crop fields. In: 2019 International Conference on Robotics and

Automation (ICRA). IEEE, pp. 1787–1793.

Chen X, Läbe T, Milioto A, et al. (2020) OverlapNet: Loop clos-

ing for LiDAR-based SLAM. In: Proceedings of Robotics: Sci-

ence and Systems, Corvalis, OR.

Cho Y, Kim G and Kim A (2019) DeepLO: Geometry-aware deep

LiDAR odometry. arXiv preprint arXiv:1902.10562 .

De Martini D, Gadd M and Newman P (2020) KRadar++: Coarse-

to-fine FMCW scanning radar localisation. Sensors 20(21):

6002.

de Paula Veronese L, de Aguiar E, Nascimento RC, et al. (2015)

Re-emission and satellite aerial maps applied to vehicle locali-

zation on urban environments. In: 2015 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS).

IEEE, pp. 4285–4290.

Dogruer CU, Koku AB and Dolen M (2010) Outdoor mapping and

localization using satellite images. Robotica 28(7): 1001–1012.

Floros G, Van Der Zander B and Leibe B (2013) OpenStreet-

SLAM: Global vehicle localization using OpenStreetMaps. In:

2013 IEEE International Conference on Robotics and Automa-

tion. IEEE, pp. 1054–1059.

Geiger A, Lenz P, Stiller C and Urtasun R (2013) Vision meets

robotics: The KITTI Dataset. The International Journal of

Robotics Research 32(11): 1231–1237.

Kaminsky RS, Snavely N, Seitz SM and Szeliski R (2009) Align-

ment of 3D point clouds to overhead images. In: 2009 IEEE

Computer Society Conference on Computer Vision and Pattern

Recognition Workshops. IEEE, pp. 63–70.

Kim G, Park YS, Cho Y, Jeong J and Kim A (2020) MulRan:

Multimodal range dataset for urban place recognition. In: IEEE

International Conference on Robotics and Automation (ICRA).

Kingma DP and Ba J (2015) Adam: A method for stochastic opti-

mization. In: Y Bengio and Y LeCun (eds.) 3rd International

Conference on Learning Representations (ICLR 2015), San

Diego, CA, 7–9 May 2015,

Kümmerle R, Steder B, Dornhege C, Kleiner A, Grisetti G and

Burgard W (2011) Large scale graph-based SLAM using aer-

ial images as prior information. Autonomous Robots 30(1):

25–39.

Lee HY, Tseng HY, Huang JB, Singh M and Yang MH (2018)

Diverse image-to-image translation via disentangled represen-

tations. In: Proceedings of the European Conference on Com-

puter Vision (ECCV), pp. 35–51.

Lenc K and Vedaldi A (2015) Understanding image representa-

tions by measuring their equivariance and equivalence. In:

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 991–999.

Leung KYK, Clark CM and Huissoon JP (2008) Localization in

urban environments by matching ground level video images

with an aerial image. In: 2008 IEEE International Conference

on Robotics and Automation. IEEE, pp. 551–556.

Levinson J and Thrun S (2010) Robust vehicle localization in

urban environments using probabilistic maps. In: 2010 IEEE

International Conference on Robotics and Automation. IEEE,

pp. 4372–4378.

Li A, Morariu VI and Davis LS (2014) Planar structure matching

under projective uncertainty for geolocation. In: European

Conference on Computer Vision. Berlin: Springer, pp. 265–

280.

Li Q, Chen S, Wang C, et al. LO-Net: Deep real-time lidar odo-

metry. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 8473–8482.

Liu MY, Breuel T and Kautz J (2017) Unsupervised image-to-

image translation networks. In: Advances in Neural Informa-

tion Processing Systems, pp. 700–708.

Lu W, Wan G, Zhou Y, Fu X, Yuan P and Song S (2019a)

DeepVCP: An end-to-end deep neural network for point cloud

registration. In: The IEEE International Conference on Com-

puter Vision (ICCV).

Lu W, Zhou Y, Wan G, Hou S and Song S (2019b) L3-Net:

Towards learning based LiDAR localization for autonomous

driving. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 6389–6398.

Mielle M, Magnusson M and Lilienthal AJ (2019) The auto-

complete graph: Merging and mutual correction of sensor and

prior maps for SLAM. Robotics 8(2): 40.

Noda M, Takahashi T, Deguchi D, et al. (2010) Vehicle ego-

localization by matching in-vehicle camera images to an aerial

image. In: Asian Conference on Computer Vision. New York:

Springer, pp. 163–173.

Park YS, Jeong J, Shin Y and Kim A (2019) Radar dataset for

robust localization and mapping in urban environment. In:

1508 The International Journal of Robotics Research 40(12-14)



ICRA Workshop on Dataset Generation and Benchmarking of

SLAM Algorithms for Robotics and VR/AR, Montreal.

Parsley MP and Julier SJ (2010) Towards the exploitation of prior

information in SLAM. In: 2010 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems. IEEE, pp. 2991–

2996.

Paszke A, Gross S, Massa F, et al. (2019) Pytorch: An imperative

style, high-performance deep learning library. In: Advances in

Neural Information Processing Systems, Vol. 32. Curran

Associates, Inc., pp. 8024–8035.

Pink O (2008) Visual map matching and localization using a glo-

bal feature map. In: 2008 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition Workshops.

IEEE, pp. 1–7.

Ruchti P, Steder B, Ruhnke M and Burgard W (2015) Localization

on openstreetmap data using a 3D laser scanner. In: 2015 IEEE

International Conference on Robotics and Automation (ICRA).

IEEE, pp. 5260–5265.

Saftescu S, Gadd M, De Martini D, Barnes D and Newman P

(2020) Kidnapped radar: Topological radar localisation using

rotationally-invariant metric learning. arXiv preprint arXiv:

2001.09348.

Senlet T and Elgammal A (2011) A framework for global vehicle

localization using stereo images and satellite and road maps.

In: 2011 IEEE International Conference on Computer Vision

Workshops (ICCV Workshops). IEEE, pp. 2034–2041.

Shu Z, Sahasrabudhe M, Alp Guler R, Samaras D, Paragios N and

Kokkinos I (2018) Deforming autoencoders: Unsupervised

disentangling of shape and appearance. In: Proceedings of the

European Conference on Computer Vision (ECCV), pp. 650–

665.

Tang TY, De Martini D, Wu S and Newman P (2020a) Self-super-

vised localisation between range sensors and overhead ima-

gery. In: Robotics: Science and Systems (RSS) XVI.

Tang TY, Martini DD, Barnes D and Newman P (2020b) RSL-

Net: Localising in satellite images from a radar on the ground.

IEEE Robotics and Automation Letters 5(2): 1087–1094.

Wang X, Marcotte RJ and Olson E (2019) GLFP: Global localiza-

tion from a floor plan. In: 2019 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pp. 1627–

1632.

Wang X, Vozar S and Olson E (2017) FLAG: Feature-based loca-

lization between air and ground. In: 2017 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, pp.

3178–3184.

Weston R, Cen S, Newman P and Posner I (2019) Probably

unknown: Deep inverse sensor modelling radar. In: 2019 Inter-

national Conference on Robotics and Automation (ICRA).

IEEE, pp. 5446–5452.

Weston R, Jones OP and Posner I (2020) There and back again:

Learning to simulate radar data for real-world applications.

arXiv preprint arXiv:2011.14389.

Wolcott RW and Eustice RM (2014) Visual localization within

lidar maps for automated urban driving. In: 2014 IEEE/RSJ

International Conference on Intelligent Robots and Systems.

IEEE, pp. 176–183.

Wolcott RW and Eustice RM (2015) Fast LIDAR localization

using multiresolution Gaussian mixture maps. In: 2015 IEEE

international Conference on Robotics and Automation (ICRA).

IEEE, pp. 2814–2821.

Wu W, Cao K, Li C, Qian C and Loy CC (2019) Transgaga: Geo-

metry-aware unsupervised image-to-image translation. In: Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 8012–8021.

Xing X, Han T, Gao R, Zhu SC and Wu YN (2019) Unsupervised

disentangling of appearance and geometry by deformable gen-

erator network. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 10354–10363.

Xu Y, John V, Mita S, Tehrani H, Ishimaru K and Nishino S

(2017) 3D point cloud map based vehicle localization using

stereo camera. In: 2017 IEEE Intelligent Vehicles Symposium

(IV). IEEE, pp. 487–492.

Yan F, Vysotska O and Stachniss C (2019) Global localization on

OpenStreetMap using 4-bit semantic descriptors. In: 2019 Eur-

opean Conference on Mobile Robots (ECMR). IEEE, pp. 1–7.

Yin H, Xu X, Wang Y and Xiong R (2021) Radar-to-lidar: Het-

erogeneous place recognition via joint learning. Frontiers in

Robotics and AI 8: 101.

Zhu JY, Park T, Isola P and Efros AA (2017) Unpaired image-to-

image translation using cycle-consistent adversarial networks.

In: Proceedings of the IEEE International Conference on

Computer Vision, pp. 2223–2232.

Tang et al. 1509


