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Insulin-induced hypoglycemia is a major limiting factor in maintaining optimal blood

glucose in patients with type 1 diabetes and advanced type 2 diabetes. Luckily, a

counterregulatory response (1) system exists to help minimize and reverse hypoglycemia,

although more studies are needed to better characterize its components. Recently, we

showed that the hormone ghrelin is permissive for the normal CRR to insulin-induced

hypoglycemia when assessed in mice without diabetes. Here, we tested the hypothesis

that ghrelin also is protective against insulin-induced hypoglycemia in the streptozotocin

(2) mouse model of type 1 diabetes. STZ-treated ghrelin-knockout (KO) (3) mice

as well as STZ-treated wild-type (WT) littermates were subjected to a low-dose

hyperinsulinemic-hypoglycemic clamp procedure. The STZ-treated ghrelin-KO mice

required a much higher glucose infusion rate than the STZ-treated WT mice.

Also, the STZ-treated ghrelin-KO mice exhibited attenuated plasma epinephrine and

norepinephrine responses to the insulin-induced hypoglycemia. Taken together, our data

suggest that without ghrelin, STZ-treated mice modeling type 1 diabetes are unable to

mount the usual CRR to insulin-induced hypoglycemia.

Keywords: ghrelin, type 1 diabetes, glucose clamp, hypoglycemia, glucose counterregulation

INTRODUCTION

Insulin-induced hypoglycemia is prevalent in type 1 diabetes and advanced type 2 diabetes (4).
Given the high risk of morbidity and mortality associated with hypoglycemia, mammals have
developed a highly integrated counterregulatory response (CRR) system to help prevent, minimize,
and reverse hypoglycemia. In individuals without diabetes, this CRR system is mobilized to
varying degrees during progression from fasting to starvation. As reviewed by Cryer (5), in
humans, the first defense within the traditional CRR involves decreased insulin secretion, which
disinhibits glycogenolysis and gluconeogenesis and reduces glucose uptake into muscle and fat.
The second defense involves increased glucagon release, stimulating hepatic glycogenolysis and
gluconeogenesis. The third defense is an increase in epinephrine, resulting in higher delivery of
gluconeogenic substrates to the liver and inhibition of whole body glucose utilization and insulin
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release. Fourth and fifth defenses include cortisol and growth
hormone (GH) rises, which mobilize if hypoglycemia persists
and work by limiting glucose utilization and stimulating
gluconeogenesis. A sixth defense is activation of the sympathetic
nervous system, which, in conjunction with adrenal activation,
is linked to a constellation of warning symptoms that include
tachycardia, tremors, anxiety, irritability, arousal, sweating, and
hunger. Many of these responses are influenced directly or
indirectly via glucose-sensing neurons in the central nervous
system (6).

Importantly, this CRR system is often compromised in
diabetic patients experiencing insulin-induced hypoglycemia (5).
For instance, an attenuated sympathoadrenal response may
occur, manifesting as hypoglycemia-associated autonomic failure
and a markedly increased risk for severe hypoglycemia (7). The
normal fine-tuning of insulin release is not an option due to β-
cell failure. Also, α-cell dysregulation may occur, due to a lack
of functional β-cells in the diabetic islet, and thus loss of normal
tonic inhibition of α-cells by intra-islet insulin. This can lead to a
reduced glucagon response to insulin-induced hypoglycemia (8).

Although the CRR during insulin-induced hypoglycemia in
the context of diabetes has been long appreciated, it is not
fully understood and also likely includes other hormones besides
those originally described by Cryer. As an example, the stomach-
derived hormone ghrelin has many known glucoregulatory
actions in both rodent models and humans and seems well-
suited to participate in the CRR. Administration of ghrelin
(which henceforth mainly refers to the acylated form of ghrelin)
reduces insulin sensitivity, restricts insulin secretion, stimulates
glucagon secretion and GH release, and raises circulating
cortisol (9–12). These interactions, as well as those with GLP-
1 (13), and ghrelin receptor (GHSR)-expressing neurons in the
hypothalamic arcuate nucleus and caudal brainstem (1, 14), likely
contribute to ghrelin’s overall glucoregulatory effects, which are
emphasized by the actions of administered ghrelin to increase
blood glucose (11, 12, 15–20) and conversely, by the blood
glucose-lowering effects of ghrelin deletion or blockade, as
reviewed in (9, 10).

Regarding the latter, chronic pharmacological blockade of
GHSRs or genetic ablation of other ghrelin system components
improve glucose tolerance in diet-induced obese mice (21–26).
An intact ghrelin system also is required to prevent development
of severe hypoglycemia and resulting death in a mouse starvation
model. More specifically, ghrelin-KO mice exhibit a progressive
decline in fasting blood glucose to the point of near-death
following a week-long 60% caloric restriction regimen that
depletes body fat to< 2% (27). Hypoglycemia under this regimen
also occurs in mice with ablated ghrelin cells, mice deficient in
ghrelin O-acyltransferase, mice overexpressing the endogenous
GHSR antagonist LEAP2, GHSR-null mice, and mice with
ghrelin cell-selective deletion of β1-adrenergic receptors (14, 24,
28–30).

A functional ghrelin system also appears to be important
in various diabetic models, as reviewed in (10). As examples,
ghrelin deletion markedly attenuates hyperglycemia in leptin-
deficient (ob/ob) mice, which are hyperphagic, obese, and
diabetic (31). GHSR antagonist administration normalizes blood

glucose in otherwise hyperglycemic HNF1α-deficient mice –
a model of maturity-onset diabetes of the young type 3,
which is associated with elevated plasma ghrelin (32, 33).
Administration of a GHSR inverse agonist improves glucose
tolerance in Zucker diabetic fatty (ZDF) rats (25). Also, type
1 diabetes as modeled in rats and mice by chemical ablation
of pancreatic β-cells with streptozotocin (STZ) causes elevation
of plasma ghrelin (34–41). Genetic ablation of ghrelin or
pharmacological inhibition of GHSR cause significant reductions
in STZ-associated hyperphagia (36, 38–40, 42). Furthermore,
genetic ablation of GHSR lowers fasting blood glucose in STZ-
treated mice (42).

In a recent study, we specifically investigated the contributions
of ghrelin to the CRR to insulin-induced hypoglycemia using
mice without diabetes (41). We showed that ghrelin-KO mice
exhibit more pronounced and prolonged hypoglycemia than
WT littermates when administered the same insulin dose in the
form of a single bolus (41). Also, ghrelin-KO mice required a
much (10-fold) higher glucose infusion rate (GIR) to maintain
the same target blood glucose as WT littermates during low-
dose hyperinsulinemic-hypoglycemic clamps (41), similar to
the findings in GHSR-KO mice (43). Ghrelin-KO mice also
exhibited less robust corticosterone and GH responses than their
WT counterparts during the clamps (41). Conversely, ghrelin
receptor agonist (HM01) administration, which reduced the
GIR required by ghrelin-KO mice during the clamps, increased
plasma corticosterone and plasma GH (41).

Collectively, these data suggest that endogenously-produced
ghrelin not only influences insulin sensitivity, but also is
permissive for the normal CRR to insulin-induced hypoglycemia.
As the CRR is altered in diabetes (see above), we undertook the
current study in order to investigate the protective actions of
ghrelin during insulin-induced hypoglycemia in the STZ model
of type 1 diabetes.

MATERIALS AND METHODS

Animals
All animal experiments performed in this study were approved by
the UT Southwestern Medical Center Institutional Animal Care
and Use Committee. Ghrelin-KO mice [line GKO1 (41, 44)] and
WT littermates on a C57BL/6N background were generated by
pairing mice heterozygous for the ghrelin-KO allele. Ghrelin-KO
mice contain two copies of the ghrelin-KO allele whereas WT
littermates instead contain two copies of the wild-type ghrelin
allele. Mice were housed at room temperature (21.5–22.5◦C)
using a 12 h light-dark cycle and were provided ad lib access to
water and regular chow [2016 Teklad Global 16% Protein Rodent
Diet (Envigo, Indianapolis, IN)], except as noted.

Jugular Vein Catheterization
Eight to ten week-old male mice were anesthetized using 2%
isoflurane, and each was then surgically implanted with a
right jugular vein catheter (0.20-inch, Silastic tubing) (Instech
Laboratories, Plymouth Meeting, PA). The free end of the
catheter was exteriorized from the dorsal intrascapular region,
and the incision sites were closed with a 5–0 nylon suture. Mice
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were fitted with a vascular harness (Instech Laboratories). Mice
were provided ketoprofen (5.25 mg/kg s.c.) immediately, 24,
and 48 h post-surgically for analgesia. Mice also were closely
monitored post-surgically for signs of infection or swelling,
neither of which were observed.

Administration of STZ
To model type 1 diabetes mellitus, 2 d following jugular vein
catheterization, mice were injected once with STZ (150 mg/kg
i.p.; Sigma-Aldrich, St. Louis, MO) freshly dissolved in sodium
citrate buffer (0.1M, pH∼4.5). Drinking water containing
10% dextrose was provided for 24 h in petri dishes on the
floors of the home cages to preclude development of transient
hypoglycemia. Ad lib-fed blood glucose levels were checked
before administration of STZ and 3 d later via tail nick using a
Contour Next EZ glucometer system (Ascensia Diabetes Care,
Parsippany, NJ). Mice with blood glucoses > 200 mg/dL were
used for clamp studies. Only two mice (both of which were
ghrelin-KO mice) were excluded from the clamp studies due to
day 3 post-STZ injection blood glucoses ≤ 200 mg/dL. Blood
glucoses at or above the maximum detection limit (600 mg/dL)
were noted as 600 mg/dL for quantification purposes.

Low-Dose
Hyperinsulinemic–Hypoglycemic Clamp
Procedure
Hyperinsulinemic-hypoglycemic clamps were performed in
conscious, unrestrained mice 4 d after STZ injection as described
previously (41), using modifications that took into account their
baseline hyperglycemia in the ad lib-fed state. Mice were fasted
overnight for 16 h before starting the clamp procedure at 10:00
AM (with access to water until 9:00 AM). This 16 h fast preceding
the clamp studies was longer than that used previously in non-
STZ-treated mice (5 h) (41) as it was needed to achieve the
target hypoglycemic range using the low-dose insulin. During the
clamp, Humulin-R insulin was infused over 2 h at a constant rate
of 4 mU/kg/min i.v. Simultaneously, a solution of 20% glucose
(prepared using pharmaceutical grade 50% dextrose diluted in
sterile saline) was infused i.v. at a variable rate to achieve and
maintain blood glucose levels within a target range of 35–45
mg/dL during the final 20min of the 2-h clamp procedure. Blood
glucose was measured via tail nicks every 5min, as above. Blood
samples to measure ghrelin were taken from tail nicks at t =
−5 and t = 120min. At t = 120min, blood samples to measure
insulin, epinephrine, norepinephrine, glucagon, corticosterone,
and GH were collected by cardiac puncture from mice that had
been anesthetized with isoflurane.

Histologic Assessment of Islets
A separate group of ghrelin-KO and WT littermates (n = 5–
7) received a single i.p. injection of vehicle (0.1M sodium
citrate buffer, pH∼4.5) or STZ (150 mg/Kg; freshly prepared,
as above). Three days later, blood glucose levels of mice
in the ad lib-fed state were measured, as above, and blood
to assess plasma insulin was collected by quick superficial
temporal vein bleed. On the same day, mice were deeply
anesthetized with chloral hydrate, transcardially perfused with

formalin, and then processed for islet histology. Eight µm-
thick pancreatic sections were cut on a cryostat at 50-
µm intervals, mounted, and then assessed for both insulin-
immunoreactivity (red) and glucagon-immunoreactivity (green).
Incubations with primary antibodies and secondary antibodies
[guinea pig anti-Insulin (DakoCytomation, Carpinteria, CA;
diluted 1:300) followed by Alexa Fluor 594 R© donkey anti-guinea
pig IgG (ThermoFisher Scientific; 1:500); rabbit anti-Glucagon
(Millipore, Temecula, CA; diluted 1:300) followed by Alexa
Fluor 488 R© donkey anti-rabbit IgG antibody (ThermoFisher
Scientific; 1:500)] were performed as in (42). Three mice of
each genotype and treatment were chosen for further analysis.
Digital images of labeled islets were taken using the 20X
objective of an Olympus BX41. Subjective assessments of
islet anatomy were made using 3–4 representative islets from
each mouse.

Determination of Plasma Hormone Levels
For ghrelin, blood was collected into ice-cold EDTA-coated
microfuge tubes. P-hydroxymercuribenzoic acid (final
concentration 1 mmol/L; Sigma-Aldrich) was added, plasma was
isolated following centrifugation, and HCl was added to achieve
a final concentration of 0.1 nmol/L. For other hormones, blood
was collected into 3 different EDTA-coated microfuge tubes. For
glucagon, aprotinin (final concentration 250 KIU/ml; Sigma-
Aldrich) was added. For catecholamines, EDTA-glutathione
solution (9% w/v EDTA and 6% w/v glutathione, pH 7.4; 2
µL per 100 µL blood) was added. For insulin, no reagents
were added.

ELISA kits were used for acyl-ghrelin (Millipore-Merck;
Burlington, MA), insulin (Crystal Chem, Downers Grove, IL),
and glucagon (Mercodia AB, Uppsala, Sweden). Calorimetric
assays were performed using a BioTek PowerWave XSMicroplate
spectrophotometer (Winooski, VT) and BioTek KC4 junior
software. Plasma catecholamines were determined using HPLC
at the Vanderbilt University Medical Center Hormone Assay and
Analytical Services Core.

Statistical Analyses
All statistical analyses and graph preparations were performed
using GraphPad Prism 7.0. A Student’s t-test, 1-way, or 2-way
ANOVA were used to test for significant differences among
test groups. Data with significant unequal variance were log
transformed prior to performing analyses. Outliers, if any, were
detected by the ROUT test.

RESULTS

STZ Induces Diabetes in Both WT and
Ghrelin-KO Mice
A single high-dose of STZ (150 mg/Kg, i.p.) was administered
to both ghrelin-KO mice and WT littermates in order to
model type 1 diabetes mellitus. This administration protocol,
which is based on one previously published (45–49) markedly
reduced pancreatic β-cell mass (as assessed by comparing
insulin-immunoreactivity in representative islets from vehicle-
treated mice to insulin-immunoreactivity in islets from
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STZ-treated mice) in both genotypes without causing any
subjective genotype-dependent differences in resulting islet
shape, islet size, or patterns of insulin-immunoreactivity
and glucagon-immunoreactivity (Figure 1A, Supplementary

Figure 1). Plasma insulin levels also were equivalently reduced
by STZ in WT and ghrelin-KO littermates (Figure 1B), while
corresponding blood glucose levels were raised (Figure 1C).
Thus, STZ efficaciously destroyed pancreatic β-cells in both
WT and ghrelin-KO littermates—sufficiently enough to induce
diabetes in both genotypes but, as expected (42, 49–52), without
causing a complete disappearance of β-cells. Of interest, despite
the induction of hyperglycemia in both genotypes, the mean
blood glucose attained in ghrelin-KO mice was lower than that
observed inWTmice (Figure 1C), similar to previously-reported
effects of STZ in GHSR-null mice (42).

STZ-Treated Ghrelin-KO Mice Are More
Susceptible to Hypoglycemia During
Hyperinsulinemic-Hypoglycemic Clamps
Next, we subjected a separate cohort of STZ-treated ghrelin-
KO and WT littermates to a hyperinsulinemic-hypoglycemic
protocol to assess the CRR. Just as shown in the above cohort
(Figure 1C), STZ induced hyperglycemia in both WT and
ghrelin-KOmice when assessed 3 d following STZ administration
in the ad lib-fed state (Figure 2A). Also similar to the above
cohort, the degree of hyperglycemia induced in ghrelin-KO mice
was lower than that induced in their WT littermates (Figure 2A).
Following a 16 h-fast to prepare the mice for the clamps, blood
glucose levels fell in both genotypes, and remained lower in the
ghrelin-KOmice than in theWTmice (Figure 2B). A low insulin
dose protocol (4 mU/kg/min) was used, as in (41), to minimize
direct inhibitory effects of insulin on ghrelin secretion in WT
mice, while still achieving hypoglycemia. This low-dose insulin
protocol reduced blood glucose in both STZ-treated WT and
STZ-treated ghrelin-KO mice, such that within the final 20min
of the procedure, both genotypes were successfully clamped
within the target hypoglycemic range (∼35–45 mg/dL), with
blood glucose levels that were without statistically significant
differences (Figure 2B). Notably, a much higher (∼5.8-fold) GIR
was required by ghrelin-KO mice during the final 20min of
the clamps to maintain a similar blood glucose to that of WT
littermates (Figure 2C).

We also determined plasma ghrelin and insulin levels.
Basal plasma ghrelin in STZ-treated WT mice (Figure 2D)
was significantly higher than levels usually observed in non-
STZ-treated WT mice, as expected (34–41). Also as expected
from other studies that examined the effects of insulin on
plasma ghrelin or ghrelin secretion (41, 53–57), plasma ghrelin
fell (∼79%) in STZ-treated WT mice over the course of
the clamp (Figure 2D). Nonetheless, plasma ghrelin remained
much higher than the essentially undetectable level in ghrelin-
KO littermates (Figure 2D). Also, plasma insulin levels were
genotype-independent at the end of clamps, reflecting similar
levels of endogenous plus infused insulin in the WT and ghrelin-
KO mice (Figure 2E).

The CRR Differs in STZ-Treated Ghrelin-KO
and WT Littermates
Finally, we assessed the levels of the traditional CRR hormones
epinephrine, norepinephrine, glucagon, corticosterone, and GH
at the end of the hyperinsulinemic-hypoglycemic clamps. Plasma
epinephrine and norepinephrine were significantly lower in
ghrelin-KO mice (Figures 3A,B). There were no genotype-
dependent differences in end-of-clamp levels of plasma glucagon,
corticosterone, and GH (Figures 3C–E).

DISCUSSION

The current study was designed to characterize the CRR actions
of ghrelin during insulin-induced hypoglycemia in the setting of
type 1 diabetes. Our new data indicate that ghrelin expression is
permissive for the usual CRR to insulin-induced hypoglycemia
in mice in which diabetes was induced by STZ. In particular,
during hyperinsulinemic-hypoglycemic clamps, diabetic ghrelin-
KO mice required a ∼5.8-fold higher GIR to maintain blood
glucoses in the target hypoglycemic range as compared to
WT littermates. Previously, higher GIRs had been shown to
be required by both non-diabetic ghrelin-KO and GHSR-
KO mice as compared to WT mice during hyperinsulinemic-
hypoglycemic clamps (41, 43). Interestingly, as compared to
a previous study in which non-diabetic ghrelin-KO mice
exhibited less robust corticosterone and GH responses during
hyperinsulinemic-hypoglycemic clamps than WT littermates
(41), the corticosterone and GH responses observed here in
clamped diabetic ghrelin-KO and WT mice were without
statistically significant differences. Instead, upon induction of
hypoglycemia, the diabetic ghrelin-KOmice exhibited attenuated
epinephrine and norepinephrine responses as compared to
WT littermates.

There are several notable topics of discussion that these
new data bring to mind. One relates to the demonstration
of important actions by ghrelin during the CRR to insulin-
induced hypoglycemia, now newly shown using the STZ
model of type 1 diabetes. Just as had been observed in non-
diabetic mice (41, 43), the elevated GIR required during the
hyperinsulinemic-hypoglycemic clamps in STZ-treated ghrelin-
KO mice as compared to WT littermates again suggests that
the presence of circulating ghrelin is permissive for the usual
CRR to insulin-induced hypoglycemia. This role for ghrelin
during the CRR to insulin-induced hypoglycemia aligns with
its other well-described glucoregulatory actions. These include
effects of administered ghrelin and endogenous plasma ghrelin
elevations to increase blood glucose (9, 10) and numerous
examples of endogenously-produced ghrelin preventing falls in
blood glucose—including life-threatening falls in blood glucose
in certain settings, as reviewed in (10).

Our new data also highlight another observation previously
made in insulin-induced hypoglycemic, non-diabetic mice—
namely, that despite ghrelin expression allowing the usual CRR
to insulin-induced hypoglycemia, plasma ghrelin levels do not
elevate in STZ-treated WT mice upon hypoglycemia induction,
as occurs with the traditional CRR hormones. Instead, plasma
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FIGURE 1 | Effects of STZ on islets, plasma insulin, and blood glucose in WT and ghrelin-KO mice. (A) A representative islet co-labeled for insulin-immunoreactivity

(red) and glucagon-immunoreactivity (green) from a vehicle-treated WT mouse (1st row), a vehicle-treated ghrelin-KO mouse (2nd row), an STZ-treated WT mouse

(3rd row), and an STZ-treated ghrelin-KO mouse (4th row). Scale bar = 100µm. (B) Ad lib-fed plasma insulin levels and (C) corresponding blood glucose levels in

vehicle- and STZ-treated mice. Data are presented as mean ± SEM. n = 5–7. ****P < 0.0001, #P = 0.09, NS, no significant difference.

ghrelin levels fall over the course of the hyperinsulinemic-
hypoglycemic clamps in the STZ-treated WTmice, just as occurs
in non-STZ-treated mice (41). Nevertheless, despite this drop

in plasma ghrelin, the remaining circulating ghrelin continues
to serve a crucial permissive function during the CRR, as
emphasized by the requirement for a markedly higher GIR and
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FIGURE 2 | Low-dose hyperinsulinemic–hypoglycemic clamps in STZ-treated mice. (A) Ad lib-fed blood glucose levels before and 3 d after STZ administration.

(B) Blood glucose levels during the clamps. (C) Glucose infusion rate (GIR) to achieve the target blood glucose (35–45 mg/dL) by the steady-state period

(100–120min) in mice receiving Humulin-R insulin (4 mU/kg/min) from 0 to 120min. (D) Plasma ghrelin levels at the start (“Basal”; t = −5min) and end (“Clamp”; t =
120min) of the clamps. (E) Plasma insulin levels at the end (“Clamp”; t = 120min) of the clamps. n = 10–11. Data are presented as mean ± SEM. ***P < 0.001, ****P
< 0.0001, NS, no significant difference.

Frontiers in Endocrinology | www.frontiersin.org 6 September 2020 | Volume 11 | Article 606

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Shankar et al. Hypoglycemia Counterregulation by Ghrelin

FIGURE 3 | Effects of ghrelin deletion on plasma CRR hormone levels obtained at the end of the hyperinsulinemic-hypoglycemic clamps. Plasma levels of (A)

epinephrine, (B) norepinephrine, (C) glucagon, (D) corticosterone, and (E) GH at the end of the clamps (t = 120min). n = 10–11. Data are presented as mean ±

SEM. *P < 0.05, ****P < 0.0001, NS, no significant difference.
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the attenuated changes to epinephrine and norepinephrine in
clamped STZ-treated ghrelin-KO mice.

Another noteworthy topic of discussion relates to these lower
epinephrine and norepinephrine levels. This finding suggests
that the sympathoadrenal arms of CRR in the STZ-treated
ghrelin-KO mice are blunted and potentially might contribute
to their requirement for a higher GIR during the clamps.
This blunted catecholamine response may result, at least in
part, from decreased stimulation of hypothalamic corticotropin
releasing factor (CRF) neurons. Notably, ghrelin induces c-
fos expression and increases CRF expression in hypothalamic
CRF neurons, induces CRF release from hypothalamic explants,
and increases plasma ACTH and epinephrine in rodent
and/or human subjects (58–63). Also relevant, epinephrine and
norepinephrine are both potent ghrelin secretagogues, acting
via ghrelin cell-expressed β1-adrenergic receptors to stimulate
ghrelin secretion (30, 64). As mentioned, mice with ghrelin
cell-selective deletion of β1-adrenergic receptors exhibit marked
hypoglycemia when exposed to a week-long, severe caloric
restriction regimen (30). Given their attenuated epinephrine
and norepinephrine responses, hypoglycemic ghrelin-KO mice
likely experience a reduction both in the effects that epinephrine
and norepinephrine usually exert during hypoglycemia [namely,
inhibition of whole body glucose utilization, increased delivery
of gluconeogenic substrates to the liver, and enhanced hepatic
and renal glucose production (65)] and in other protective
glucoregulatory processes that would otherwise be initiated if
epinephrine and norepinephrine could stimulate the release
of more ghrelin [for instance, activation of brainstem or
hypothalamic neurons, which in turn, raise blood glucose, as
reviewed in (10)].

As mentioned, although the CRR response in ghrelin-
KO mice during the hyperinsulinemic-hypoglycemic clamps
had previously been shown to be attenuated in non-STZ-
treated subjects (41), the deficits were different than those
observed here. Specifically, attenuated plasma corticosterone
and GH responses but normal epinephrine and norepinephrine
responses had previously been observed in hypoglycemia-
clamped non-STZ-treated ghrelin-KO mice (41). These contrast
with the observations here of attenuated plasma epinephrine
and norepinephrine responses but normal corticosterone and
GH responses in hypoglycemia-clamped STZ-treated ghrelin-
KO mice. These different patterns of traditional CRR hormone
responses in clamped ghrelin-KO mice treated with STZ vs.
non-STZ-treated animals might result from one or more of
the known differential CRR responses in individuals with and
without diabetes. For instance, loss of functional β-cells in the
diabetic islet causes α-cell dysregulation, and in turn, loss of
normal tonic inhibition of α-cells by intra-islet insulin (8).
Also, mRNA levels of adrenal tyrosine hydroxylase, which is
the rate-limiting enzyme in catecholamine biosynthesis, are
decreased in STZ-induced diabetic rats (66). Interestingly, the
observed catecholamine deficits observed here in the clamped
STZ-treated ghrelin-KO mice are reminiscent of the attenuated
sympathoadrenal system response associated with diabetes in
the form of hypoglycemia-associated autonomic dysfunction
(5). More studies are needed to determine if reconstitution of

the epinephrine and norepinephrine responses in STZ-treated
ghrelin-KO mice could rescue their deficient CRR, and also to
determine if an aberrant ghrelin response might contribute to the
occurrence of hypoglycemia-associated autonomic dysfunction.

There are some caveats to our study that should be kept in
mind when interpreting the results. First, the STZ mouse model
adapted for the current study from several studies in the literature
(45–49) does not completely mimic the pathophysiology or
presentation of type 1 diabetes in humans. For instance, although
STZ is toxic to pancreatic β-cells, reducing their numbers enough
to lower circulating plasma insulin and raise blood glucose
into the hyperglycemic range, some β-cells remain (Figure 1A,
Supplementary Figure 1) (67), unlike that observed in humans
with long-standing type 1 diabetes. Although plasma ghrelin
elevates upon STZ administration (Figure 2D) (36, 38, 40, 42)
and also although this elevated ghrelin is thought to contribute
to STZ-induced hyperphagia (38), changes to plasma ghrelin
have not been consistently reported in the literature in type
1 diabetes in humans (33, 68–73) nor is hyperphagia a usual
feature of type 1 diabetes in humans. Also, following STZ
induction of diabetes, the mice did not receive insulin to treat
the hyperglycemia until the clamp procedure, which is unlike
the optimal situation in humans with type 1 diabetes in which
normoglycemia would be the goal. Additionally, these mice have
new-onset diabetes as opposed to most individuals with type
1 diabetes who have been living with the disorder for years.
Nonetheless, STZ as administered here reduced plasma insulin
substantially (by 82–84%), via efficacious reduction in pancreatic
β cell mass, and induced hyperglycemia, which are key hallmarks
of type 1 diabetes.

A second limitation of the study relates to the potential
influence of the collection method for the blood samples used
to measure epinephrine and norepinephrine. Specifically, the
samples for CRR hormones were collected by cardiac puncture
from isoflurane-anesthetized mice at the end of the clamps.
Although handling of themice wasminimized during the clamps,
frequent sampling of blood from tail nicks to assess blood
glucose was performed throughout the 2 h clamp procedure.
Prior work has shown that blood sampling from tail nicks
as compared to indwelling arterial cannulas induces a rise in
plasma catecholamines (74). Thus, the relatively high levels of
catecholamines observed here [in the ∼20–30 ng/mL range for
epinephrine and the ∼5–17 ng/mL range for norepinephrine] as
compared to those in another hypoglycemic clamp study (74)
[in the ∼0–1.2 ng/mL range for epinephrine and the ∼0.21–
0.42 ng/mL range for norepinphrine], in which blood sampling
from non-STZ-treated mice was performed via indwelling
arterial cannulas, may have been influenced by the blood
collection methods. Other potential stressors, including the
recent STZ treatment, the days-long period of hyperglycemia,
the 16 h fast preceding the induction of hypoglycemia, and
background genetic strain of the mice also likely impacted the
magnitude of the detected catecholamine levels (41, 75). That
said, ghrelin-KO and WT mice were exposed to the same
stressors and were handled exactly the same during the study,
and yet, epinephrine and norepinephrine levels were lower in
the ghrelin-KO mice. Thus, we predict the differences observed
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in catecholamine levels between ghrelin-KO and wild-type
littermates reflect a genotype-dependent, differential response
to hypoglycemia.

A third caveat relates to the use of ghrelin-KO mice,
which, because of long-term absence of ghrelin, could exhibit
a phenotype reflective of potential compensatory developmental
changes that alter the true effects of absent ghrelin action in the
setting of insulin-induced hypoglycemia. That said, at least when
assessed in non-STZ-treated subjects, ghrelin receptor agonist
administration has been shown to rescue the deficits observed
in ghrelin-KO mice under the hyperinsulinemic-hypoglycemic
protocol (41).
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