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Background. Cardiovascular disease (CVD) annually claims more lives and costs more dollars than any other disease globally amid
widening health disparities, despite the known significant reductions in this burden by low cost dietary changes. The world’s first
medical school-based teaching kitchen therefore launched CHOP-Medical Students as the largest known multisite cohort study of
hands-on cooking and nutrition education versus traditional curriculum for medical students. Methods. This analysis provides a
novel integration of artificial intelligence-basedmachine learning (ML)with causal inference statistics. 43MLautomated algorithms
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were tested, with the top performer compared to triply robust propensity score-adjusted multilevel mixed effects regression
panel analysis of longitudinal data. Inverse-variance weighted fixed effects meta-analysis pooled the individual estimates for
competencies. Results. 3,248 unique medical trainees met study criteria from 20 medical schools nationally from August 1, 2012, to
June 26, 2017, generating 4,026 completed validated surveys. ML analysis produced similar results to the causal inference statistics
based on rootmean squared error and accuracy. Hands-on cooking and nutrition education compared to traditionalmedical school
curriculum significantly improved student competencies (OR 2.14, 95% CI 2.00–2.28, 𝑝 < 0.001) and MedDiet adherence (OR
1.40, 95% CI 1.07–1.84, 𝑝 = 0.015), while reducing trainees’ soft drink consumption (OR 0.56, 95% CI 0.37–0.85, 𝑝 = 0.007).
Overall improved competencies were demonstrated from the initial study site through the scale-up of the intervention to 10 sites
nationally (𝑝 < 0.001).Discussion.This study provides the first machine learning-augmented causal inference analysis of amultisite
cohort showing hands-on cooking and nutrition education formedical trainees improves their competencies counseling patients on
nutrition, while improving students’ own diets. This study suggests that the public health and medical sectors can unite population
healthmanagement and precisionmedicine for a sustainablemodel of next-generation health systems providing effective, equitable,
accessible care beginning with reversing the CVD epidemic.

1. Introduction

The global leader among mortality causes is cardiovascular
disease (CVD), claiming the lives of over 1 in 3 people
annually throughout the world and nearly 1 in 5 dollars
of the total United States health expenditures [1, 2]. This
epidemic for both medical and public health sectors is only
projected to increase, as CVD is expected to affect nearly
half the population with at least double the cost by 2035
[3, 4]. Yet nearly 40% of CVD is attributed to modifiable
social determinants of health including poor diet, exercise,
and smoking which worsen endothelial function and arterial
compliance [5]. These trends are further complicated by
health disparities including racial and sexual [6]. Aside from
the ethical toll, health disparities every year account for over
1 in 10 health expenditure dollars or $1.24 trillion every three
years [7, 8].

Amid this backdrop, diet-driven improvements in such
nutrition-related CVD risk factors as obesity, diabetes, and
hypertension have been shown in a simulated trial with the
ArchimedesModel to reduce the collective risk ofmyocardial
infarctions and stroke by 46% under real-world conditions
[9]. The Mediterranean Diet (MedDiet) in particular has
increasingly emerged in multiple systematic reviews and
meta-analyses of randomized controlled trials (RCTs) and
large cohorts as a clinically effective and low-cost interven-
tion to improve CVD risk factors and also mortality [10–
16]. However only 1 in 2 primary care physicians regularly
educate their patients on nutrition [17], while over 7 out
of 10 American medical school graduates report inadequate
training in how to provide nutrition counseling for patients
[18].

Not only nutrition, but more broadly medical education
has failed to keep pace with some of the most fundamental
shifts in medicine and public health to match global patient
health needs particularly with CVD—there are no known
medical education institutions actively training future physi-
cians in the societal transition from the Information Age
to the Age of Artificial Intelligence (AI) [19]. AI is rapidly
transforming nearly every aspect of society in clinically rele-
vant ways, including how patients’ outcomes are impacted by
finances, education, infrastructure, politics, and ecology [20].
AI through machine learning (ML) self-learning algorithms
are playing an increasingly pivotal role in precision medicine

by accelerating the speed and accuracy of cost-effective
health system interventions to improve population health
from both the medical and public health sectors [21–23]. A
recent demonstration of this potential is the collaboration
between Mayo Clinic and UnitedHealth Group to create
Optum Labs, allowing an unprecedented clinical and claims
dataset of 150 million patients, compliant with the Health
Insurance Portability and Accountability Act (HIPAA) [24].
By rapidly integrating -omics, clinical, and claims datasets,
AI is advancing the synergistic role of precision medicine
and population health to improve patient outcomes through
improved diagnostics and treatments by clinicians, resource
management by learning health system executives and poli-
cymakers, and ultimatelymore efficient and ethical outcomes
generated for patient populations by the medical and public
health sectors [19–25].

Driven by these larger trends, the Goldring Center for
Culinary Medicine (GCCM) at Tulane University School of
Medicine (GCCM) was created in 2012 as the world’s first
known medical school-based teaching kitchen to reverse
the CVD epidemic through sustainable, scalable culinary
medicine programs. GCCM increasingly has incorporated
ML to increase the speed and accuracy identifying at-risk
patients in addition to optimal intervention, study design,
and implementation aspects in culturally and socioeconom-
ically diverse communities throughout America. By first
training medical students in nutrition education through
hands-on cooking classes in a lower-income former food
desert-based grocery store complex, GCCM provides free
cooking and nutrition classes to communitymembers, taught
by those students. The force multiplying effect of this two-
part education model was intended to train a more well-
equipped generation of physicians, while providing clinically
efficacious, financially sustainable, culturally-sensitive cook-
ing and nutrition classes throughout America’s health system
particularly with the ultimate goal of reversing the CVD
epidemic.

To establish the evidence-base foundation for this nutri-
tion curriculum, GCCM through its collaboration network
of 45+ medical schools, colleges, and hospitals launched
Cooking for Health Optimization with Patients (CHOP).
This study serves as the largest and longest-running known
multisite cohort trial on hands-on cooking and nutrition
education for medical students, in addition to the first
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known to incorporate causal inference traditional statistics
augmented by ML. Previous attempts to test efficacy for
similar interventions have been limited by no validated
surveys tools [26–29], multisite design [28–32], long-term
follow-up [26–28, 30–32], or adequately powered sample
sizes [27–33]. CHOP therefore seeks to test causal inference
if hands-on cooking and nutrition education compared to
standard of training and care for medical trainees (through
the cohort study) and patients (through nested Bayesian
adaptive randomized trials), respectively, can improve trainee
competencies in providing patients nutrition education and
patient outcomes. The study reported here is a substudy
within CHOP, CHOP-Medical Students, with the objectives
of determining if hands-on cooking and nutrition education
versus traditional education for medical students can have
inferred causality to improve student competencies and
attitudes about providing patients with nutrition education
along with students’ own diet and if such a program could be
scalable.

2. Methods

2.1. StudyDesign. Due to the logistical and ethical prohibitive
challenges, a randomized controlled trial design was not
implemented. Rather, CHOP-Medical Students features a
prospective multisite cohort study design. Inclusion criteria
were any medical student responder to the validated survey
[34] sent electronically to the first 20 GCCM collaborat-
ing medical schools licensing the GCCM curriculum from
August 1, 2012, to June 26, 2017, stretching from Oregon to
Pennsylvania and Chicago toNewOrleans. Exclusion criteria
were any responder who completedmore than one survey per
survey cycle within each semester or failed to report number
of GCCM classes received if any.

2.2. Control and Treatment. Control was the standard med-
ical school curriculum, which was assumed to be ade-
quately homogenous to allow comparison due to the com-
mon accreditation standards outlined by the United States
Department of Education-recognized Liaison Committee on
Medical Education, jointly sponsored by the American Med-
ical Association (AMA) and the Association of American
Medical Colleges (AAMC) [35]. Further, there is no evidence-
based nutrition education widely provided within school
curricula nationally, with the wide majority not meeting
even the minimum nutrition hours outlined by the National
Academy of Sciences (NAS) of 25 [36]. Treatment was
the GCCM nutrition education curriculum, designed and
implemented as a supplement to school curricula, annually
updated based on the GCCM CHOP collaborating schools
and latest literature [34]. The GCCM curriculum utilizes the
active learning approach of hands-on cooking and nutrition
education in medical school-based teaching kitchens, in
contrast to solely utilizing the lecture or small group-based
format of nutrition teaching in traditional medical school
curriculum. This active approach, indicated in a recent
meta-analysis to be superior to traditional clinical education
[37], translates the latest evidence-based medical education
model of simulation-basedmedical educationwith deliberate

practice (SBME-DP) into training for patient nutrition coun-
seling. To exceed the NAS minimum, the GCCM elective
curriculum consists of 28 hours of instruction over 8 classes,
each divided up by 0.5-hour preclass lecture videos, 1.5 hours
of hands-on cooking, and 0.75-hour postclass problem-based
learning (PBL) sessions as the trainees eat their prepared
meals.These sessions serve to foster clinical application of the
lecture material, constructed based on national board exam
questions.

2.3. Study Endpoints. The primary endpoint was 20% in-
creased odds of medical trainees achieving competency
mastery educating patients on 25 nutrition topics selected
based on the above literature and their clinical significance to
improve patient outcomes (Figure 1, Table 1). The secondary
endpoint was 10% increased odds of medical trainees’ high
and medium versus low adherence to the MedDiet. These
endpoints were selected based on the existing literature on
medical student nutrition education [26–33] including the
first phase of this trial [34] and the clinically significant
threshold to pragmatically justify an educational intervention
for trainees with the ultimate purpose of producing superior
patient outcomes.

2.4. Data Source. The primary data source was the odd-
number, Likert scale-based survey described above. Ethical
standards required no coercion for survey completion includ-
ing no threat of negative impact on student grades, and so
it had to remain voluntary. Subsequently there was notable
incomplete follow-up at the individual level and incomplete
time to track all individuals joining the study rapidly from
new collaborating sites from their first through fourth years
of schooling. The MedDiet score utilized in the survey was
adapted from the 9-point scale described in the seminal New
England Journal of Medicine article by Trichopoulou et al.
[14, 15].

2.5. Power Analysis. The required calculated sample size to
achieve 80% power and detect an odds ratio (OR) of at least
1.50 with a two-sided test set at 5% was 263 cases.

2.6.Machine Learning and Statistical Analysis. Thefirst phase
of the analysis was conducted with ML within a supervised
learning framework to test 43 algorithms with 10-fold cross-
validation, selected based upon the data type. Algorithm per-
formance was assessed favorably based on higher accuracy,
lower root relative squared error (RRSE) with model accept-
ability set at 100% (for comparison among ML algorithms),
and lower root mean squared error (RMSE, for comparison
to traditional statistical models) [38]. Performance could be
improved further if the relevant ML algorithms would be
additionally permitted to select which variables should be
included in the models. But to improve comparison to tra-
ditional statistical results, all the variables based on the above
literature to be included in the statistical regression models
were included first in the ML algorithms.The following algo-
rithms by type were tested: Bayesian (Bayes Net, Naive Bayes,
Naive Bayes Multinomial Text, and Naive Bayes Updateable),
Functions (Logistic, Multilayer perceptron, SGD, SGD Text,
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Table 1: CHOP-Medical Students (𝑁 = 3,248): propensity score-adjusted multilevel mixed effects panel analysis showing medical students’
improved competencies and diet.

Outcome OR 95% CI 𝑝 value

Adherence

High/medium versus low
Fall 2012–Spring 2016 1.32 1.00–1.73 0.048
Fall 2012–Spring 2017 1.40 1.07–1.84 0.015

Olive oil 1.11 0.68–1.81 0.671
Fruit 1.22 0.91–1.63 0.189

Vegetables 1.13 0.84–1.52 0.416
Vegetables/fruits 1.28 0.95–1.72 0.104

Legumes 1.63 1.11–2.40 0.013
Seafood 1.43 1.10–1.87 0.008
Alcohol 1.09 0.71–1.67 0.694
Meat 1.75 1.32–2.33 <0.001

Whole grains 1.41 1.12–1.78 0.004

Daily intake
Fruit 1.22 0.91–1.63 0.189

Vegetables 1.13 0.84–1.52 0.416
Soft drinks 0.56 0.37–0.85 0.007

Strong agreement
Nutrition counseling should be routine 2.56 1.95–3.38 <0.001

Specific counseling can improve patients’ diets 1.73 1.38–2.17 <0.001
Physicians counseling can improve patient’s diets 1.62 1.31–2.01 <0.001

IVWFE meta-analysis

Total mastery of all 25 competency topics
Fall 2012–Spring 2013 0.98 0.81–1.19 0.859
Fall 2012–Spring 2014 2.52 2.06–3.08 <0.001
Fall 2012–Spring 2016 1.69 1.34–2.13 <0.001
Fall 2012–Spring 2017 2.14 2.00–2.28 <0.001

Total competency counseling on

MedDiet 9.41 4.73–18.75 <0.001
Dash diet 5.41 2.80–10.45 <0.001

Vegetarian diet 3.04 2.05–4.52 <0.001
Low fat diet 3.13 1.98–4.96 <0.001

High protein diet 2.08 1.34–3.23 <0.001
Serving size 2.79 1.93–4.04 <0.001

Moderate alcohol 1.91 1.45–2.50 <0.001
Eating disorders 1.80 1.29–2.51 <0.001
Cholesterol 1.67 1.23–2.26 0.001
Diabetes diet 2.52 1.85–3.43 <0.001

Diabetes weight loss 2.05 1.56–2.68 <0.001
Obesity weight loss 2.29 1.73–3.01 <0.001

Omega fats 2.61 1.84–3.71 <0.001
Dietary fats 2.72 1.70–4.36 <0.001
Antioxidants 2.50 1.75–3.57 <0.001
Calories 2.70 1.97–3.70 <0.001
Hydration 1.73 1.34–2.24 <0.001
Celiac 2.39 1.52–3.74 <0.001

Food allergies 2.18 1.56–3.03 <0.001
Glycemic index 2.29 1.54–3.40 <0.001

Fiber 3.06 2.23–4.19 <0.001
Food label 1.89 1.47–2.43 <0.001

Osteoporosis 1.50 1.11–2.02 0.008
BMI 1.46 1.13–1.88 0.004

Exercise 1.72 1.34–2.21 <0.001
CHOP, Cooking for Health Optimization for Patients; GCCM, Goldring Center for Culinary Medicine; OR, odds ratio (logistic regression); 95% CI, 95%
interval; IVWFE, inverse-variance weighted fixed effects; MedDiet, Mediterranean Diet; BMI, body mass index.
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Overall (I2 = 65.5%, p = 0.000)
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Figure 1: CHOP-Medical Students (𝑁 = 3,248): inverse-variance weighted fixed effects meta-analysis of propensity score-adjustedmultilevel
mixed effects regression panel analysis of hands-on cooking and nutrition education versus control for counseling patients on key nutrition
topics.

Simple Logistic, SMO, and Voted Perceptron), Lazy (IBK,
KStar, and LWL), Meta (AdaBoostM1, Attribute Selected
Classifier, Bagging, Classification via Regression, CV Param-
eter Selection, Iterative Classifier Optimizer, Logit Boost,
Multiclass Classifier, Multiclass Classifier Updateable, Multi-
Scheme, Random Committee, Randomizable Filtered Clas-
sifier, Random Sub-Space, Stacking, Vote, and Weighted
Instances Handler Wrapper), Miscellaneous (Input Mapped
Classifier), Rules (Decision Table, JRip, OneR, Part, and
ZeroR), and Trees (Decision Stump, Hoeffding Tree, J48,
LMT, Random Forest, Random Tree, and REP Tree).

The second phase of analysis was conducted with tradi-
tional statistics using a novel integration of three statistical
methods. Panel analysis of longitudinal data with triply

robust propensity score (PS) adjustedmultilevelmixed effects
multivariable regression was conducted for causal inference.
There is extensive, well-accepted statistical literature that
causation can be inferred in observational trials without
randomization through certain rigorous statistical methods,
with fixed effects and propensity score being two of the most
popular and well validated particularly with panel data [39–
43].

Doubly robust estimation features a dual strategy of
outcome regression that also accounts for the likelihood
of receiving an exposure or treatment, such as with a PS
[39, 44–46]. Simply using multivariable regression or PS
analysis can lead to biased treatment estimates if eithermodel
is incorrectly specified. But with doubly robust estimation
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using both concurrently, only one model must be correctly
specified to produce unbiased estimates. Of all the forms
of PS analysis (i.e., matching, stratification, weighting, and
adjustment), regression that includes the PS as one of the
adjusted variables has quantitative evidence as being the top
performing PS method [47]. Finally, mixed effects regression
further provides a powerful approach to causal inference.
This mixed method contains both fixed effects (FE) and
random effects (RE) components [48], with FE having the
distinct advantage of controlling even for nonobserved traits
by controlling for all time-invariant traits [41, 42]. FE does
this by setting each individual subject as his/her own control
and thus models within-person effects. Aside from the theo-
retical advantages, FE has shown quantitative strengths over
competing methods [49–51]. RE was used to control for what
FE cannot, namely, time-varying traits at the individual level
with repeated observations over time (as students progressed
through their medical education). The multilevel aspect was
used to account for the hierarchical nature of the data in
which medical trainees responded from different medical
institutions. Inverse-varianceweighted fixed effects (IVWFE)
meta-analysis was used to produce a composite estimate
across the 25 competency topics [52].

This triply robust approach can be represented by the
following mathematical formula:

Pr (𝑦𝑖𝑗 = 1 | 𝑢𝑗) = 𝐻(𝑥𝑖𝑗𝛽 + 𝑧𝑖𝑗𝑢𝑗) (1)

for 𝑀 independent clusters conditioned on random effects
𝑢𝑗 for 𝑗 = 1, . . . ,𝑀 clusters with cluster 𝑗 constituting
𝑖 = 1, . . . , 𝑛𝑗 observations, outcome 𝑦𝑖𝑗, FE covariate 𝑥𝑖𝑗, RE
covariate 𝑧𝑖𝑗, and regression coefficient 𝛽, all within a logistic
regression equation with logistic cumulative distribution
function of 𝐻(∙) [53]. The PS is utilized as an additional
variable in the above model and is represented as

𝑒 (𝑥𝑖) = Pr (𝑧𝑖 = 1 | 𝑥𝑖) (2)

in which exposure probability is conditioned on the covariate
𝑥𝑖 observed [54].

The competing causal inference methods of instrumental
variable anddifference in difference analyseswere not utilized
due to their methodological weaknesses, respectively, of
having varying degrees of reliable instrumental variables and
having a prevalence of unobserved confounders exerting
time-varying effects before and after the exposure/treatment
[55]. The above methods of doubly robust PS adjustment
in multivariable regression were therefore integrated with
multilevel mixed effects to provide a novel triply robust
approach to causal inference. Aside from controlling for the
likelihood of receiving GCCM education (via the PS) and
unobserved time-invariant traits (via FE) and time variant
along with intracluster correlation (via RE), this integrative
method controlled via regression for age, gender, race, prior
nutrition education, special diet, school year, intended spe-
cialty, and medical school. This multilevel approach has a
Bernoulli conditional distribution of the response given the
random effects and logistic cumulative distribution function
for the success probability.

All results are reported as fully adjusted ORs. ORs
rather than relative risks were calculated due to the complex
data source described above and due to the rare disease
assumption [56, 57]. Statistical significance was set at a two-
tailed 𝑝 value < 0.05. ML analysis was performed in R
3.3.2 (The R Foundation for Statistical Computing, Vienna,
Austria). Statistical analysis was performed in STATA 14.2
(STATACorp, College Station, Texas, United States of Amer-
ica). Ethics approval was obtained through the Institutional
Review Board (IRB) of Tulane University.

3. Results

Across the 20medical education institutions nationally, 3,248
unique medical trainees met study criteria and produced
4,026 completed surveys over the 5 years of the study
period. The mean (standard deviation, SD) age was 25.71
years (SD 2.91), 548 (61.43%) were female, 202 (22.65%) had
nutrition education prior to medical school, 207 (23.21%)
adhered to a special diet, 270 (30.27%) were in their clinical
years, and 225 (25.22%) intended to enter a primary care
specialty.

ML logistic regression for the primary endpoint indi-
cated that GCCM versus traditional curriculum significantly
improved student mastery of 25 competency topics (OR
1.97, accuracy 89.39%, RRSE 97.33%, and RMSE 0.30). Model
performance wasmildly boosted by using the top performing
algorithm across the 43 tested, namely, simple logistic (OR
3.23, accuracy 89.32%, RRSE 97.10%, and RMSE 0.30).

Statistical analysis produced similar results with IVWFE
meta-analysis of the estimates produced by triply robust
propensity score adjusted multilevel mixed effects multi-
variable regression panel analysis. GCCM versus traditional
curriculum significantly improved student mastery (OR 2.14,
95% CI 2.00–2.28, 𝑝 < 0.001, accuracy 89.39%, and RMSE
= 0.30) (Figure 1, Table 1). Notably, GCCM significantly
improved every competency topic individually as well, with
the largest improvements being in educating patients on the
MedDiet (OR 9.41, 95% CI 4.73–18.75, and 𝑝 < 0.001), low
fat diet (OR 3.13, 95% CI 1.98–4.96, and 𝑝 < 0.001), and fiber
(OR 3.06, 95% CI 2.23–4.19, and 𝑝 < 0.001), but also in non-
nutrition areas including exercise (OR 1.72, 95% CI 1.34–2.21,
and 𝑝 < 0.001). In the first year of GCCM versus control
exposure (with only Tulane University included as a study
site), there was no significant improvement. By the second
year with the same study site participating in CHOP, GCCM
versus control significantly improved overall competencies
(OR 2.52, 95% CI 2.06–3.08, and 𝑝 < 0.001). Significance was
retained with the scale-up of the intervention to 10 sites by
Spring 2016 (OR 1.69, 95% CI 1.34–2.13, and 𝑝 < 0.001), with
increased magnitude of the association by Spring 2017 when
20 total sites were included (OR 2.14, 𝑝 < 0.001).

GCCM versus traditional curriculum also significantly
improved MedDiet high or medium versus low adherence
(OR 1.40, 95% CI 1.07–1.84, and 𝑝 = 0.015) and strong
belief that nutrition counseling should be routine clinical
practice (OR 2.56, 95% CI 1.95–3.38, and 𝑝 < 0.001). GCCM
also reduced by nearly half the odds of daily soft drink
consumption (OR 0.56, 95% CI 0.37–0.85, and 𝑝 = 0.007).
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4. Discussion

CHOP-Medical Students is the largest knownmachine learn-
ing (ML) and causal inference statistical-driven multisite
cohort study of nutrition education intervention for medical
students. It is also the first known to utilize an evidence-
based hands-on cooking modality to train future physicians
in how to counsel patients on nutrition while improving
their own diets. This trial provides robust evidence of
causal inference across 3,248 unique medical trainees from
20 medical schools throughout America over 5 years that
Goldring Center for Culinary Medicine (GCCM) hands-on
cooking and nutrition education compared to traditional
medical school curriculum improves student competency
educating patients on 25 nutrition topics, in addition to
students’ own diet through increased Mediterranean Diet
(MedDiet) adherence. The analysis features an innovative
integration of artificial intelligence-based ML with advanced
causal inference-based statistical methodologies that com-
bines propensity score analysis with multilevel mixed effects
regression within a longitudinal panel analysis, with both
methods producing similar results. Additionally, the analysis
suggests that this intervention is scalable and sustainable.
Once the initial GCCM pilot program was optimized based
on the latest research and student feedback after the first
year, these significant improvements were first shown and
then consistently shown despite scale-up of the program to 20
medical schools nationally with different cultures, resources,
and infrastructures.

There are several important implications of these find-
ings. First, these findings strongly suggest that the active
teaching modality of hands-on cooking and nutrition educa-
tion can significantly improve students’ readiness to improve
patients’ health outcomes particularly for cardiovascular
disease (CVD) through low-cost nutrition education. Second,
these findings suggest that this intervention may add direct
and indirect benefit to health systems, first by immediately
improving patient outcomes through cooking classes taught
by medical students and in the longer term by strengthening
public health and medical sectors’ capacities to bridge pop-
ulation health management and precision medicine through
future physicians equipped with culinary medicine compe-
tencies. Third, these results provide evidence improving not
only the quality of care delivered to patients, but also the
societal equity of health outcomes. Not every patient can
afford coronary stents, for instance, but the vast majority can
afford optimizing their diet through practical tips physician
can support them in implementing.

Next, this study suggests that this intervention is scalable
and sustainable operationally, but also analytically. These
results suggest medical students can be trained through
GCCM classes to subsequently counsel patients in hands-on
cooking and nutrition classes led by the same students who
previously went through those classes as a supplement to the
students’ curriculum. Students and patients can benefit as the
cost of such patient cooking classes can be kept low by stu-
dents teaching the courses, financially backed by local health
systems who could potentially benefit from having reduced
costly hospital readmissions from the patients who would

instead be better managed through their own optimized diets
after the classes.Thus, by having results fromwell-established
causal inference statistical analyses confirmed by the faster,
automated ML algorithms, population health management
and precision medicine can more accurately complement
each other. Such ML algorithms can identify patient families
most likely to benefit from the GCCM medical student-led
cooking and nutrition classes, those classes can be provided
to them, and the patients’ health outcomes are tracked as they
diffuse through their social networks as increasingly robust
and diverse data sources including epigenetic and genomic
data can be integrated into further refining the predictive
accuracy and utility of those ML algorithms.

GCCM’s larger CHOP cohort study is investigating the
above implications currently through several Bayesian adap-
tive randomized trials. Phase I of the pilot randomized
trial, CHOP-Diabetes, has previously shown that GCCM
versus standard of care for patients with type 2 diabetes
can significantly improve their diastolic blood pressure and
total cholesterol, in addition to HbA1c (albeit nonstatistically
significant for HbA1c in the smaller sample size of Phase I
design) [58].This trial suggested that lower-income residents
from food desert communities had even greater benefit from
the intervention than nonfood desert residents. Phase II trial
of this study, CHOP-Family, has concluded study recruitment
with forthcoming published results analyzing GCCM versus
standard of care for parent-child pairs, while including a
hospital readmission and cost effectiveness subanalysis. This
analysis notably uses grocery store receipts not simply self-
reported MedDiet consumption for improved study internal
validity. If the target can be reached to improve family’s Med-
Diet adherence by 30%, as the above CHOP-Medical Student
analysis indicated GCCM can improve student adherence
odds by 40%, then this could have substantive clinical and
financial implications. Estruch et al. in the PREDIMED trial
have prior shown in The New England Journal of Medicine
thatMedDiet adherence can reduce the likelihood ofmyocar-
dial infarction, stroke, and cardiovascular disease- (CVD-)
related mortality by 30% [15]. As CHOP-Family scales up
to the other sites of CHOP-Medical Students, the question
remains to be answered about how much of these health
outcomes can be achieved and sustained in the long term
through the classes.

These CHOP substudies are part of the larger CHOP
cohort with a target recruitment goal of 19,500 subjects in its
four tracks working toward establishing the evidence-based
standard in nutrition education for medical professional,
trainees, and patients: CHOP-Medical Professionals, CHOP-
Community, CHOP-Employee, and CHOP-RCT (including
Diabetes and Family substudies). This study features the
GCCM moderated open curriculum, improved annually
through the GCCM Annual Summit gathering physicians,
dietitians, chefs, public health researchers, medical school
administrators, industry representatives, and trainees from
45+ collaborating sites. This elective curriculum spans medi-
cal school, residency, physician continuingmedical education
(CME) credits, and community and patient cooking classes.
Amid this collaboration since the center’s founding in 2012 up
to July 2017, GCCM has provided 53,674+ teaching hours to
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4,051+ medical trainees/professionals and patients, including
over 24,680 education hours to 444 medical students and
3,728 patients nationally.

5. Conclusion

CVD continues to be the most common and costliest mor-
tality cause with the disease affecting nearly 1 in 2 patients,
running up a bill of $555 billion annually [3]. Despite thewell-
accepted role of nutrition and other lifestyle interventions to
reduce the incidence and disease impact on patients globally,
physicians are ill equipped to respond to this growing global
epidemic. As the incidence only is projected to increase
with at least double the cost to $1.1 trillion over the next 20
years, American medical schools are faced with the growing
need to train the next generation of physicians in evidence-
based, equitable, scalable, clinical, and cost-effective inter-
ventions. This study, CHOP-Medical Students, provides the
first known robust evidence of superior performance of a
scalable nutrition education intervention for trainees, using
a large, multisite prospective cohort, along with a novel
integration of automated ML with causal inference statis-
tics. Future studies are required to validate these findings
internationally, in addition to concluding the ongoing nested
Bayesian adaptive randomized trials within the larger CHOP
cohort to determine clinical efficacy and cost effectiveness for
patients whenmedical students teach their hands-on cooking
and nutrition education classes. Such an interdisciplinary
approach may accelerate the growing collaboration between
the public health and medical sectors to bridge population
health management and precision medicine to deliver the
efficacious and equitable outcomes our patients deserve.
The father of medicine, Hippocrates (460-370 B.C.), once
asserted “let food be thy medicine and medicine be thy
food” [59]. This study suggests that stretching into the
future using our generation’s latest artificial intelligence-
based analytics and statistical methodologies and lifestyle
interventions, we may together be discovering the wisdom of
the past in making medicine what our patients deserve for
it to be.
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