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Abstract: Over the decades, pharmaceutical treatments, particularly dopaminergic (DAergic) drugs 
have been considered as the main therapy against motor symptoms of Parkinson's disease (PD). It is 
proposed that DAergic drugs in combination with other medications, such as monoamine oxidase type 
B inhibitors, catechol-O-methyl transferase inhibitors, anticholinergics and other newly developed 
non-DAergic drugs can make a better control of motor symptoms or alleviate levodopa-induced motor 
complications. Moreover, non-motor symptoms of PD, such as cognitive, neuropsychiatric, sleep, 
autonomic and sensory disturbances caused by intrinsic PD pathology or drug-induced side effects, are gaining increasing 
attention and urgently need to be taken care of due to their impact on quality of life. Currently, neuroprotective therapies 
have been investigated extensively in pre-clinical studies, and some of them have been subjected to clinical trials. 
Furthermore, non-pharmaceutical treatments, including deep brain stimulation (DBS), gene therapy, cell replacement 
therapy and some complementary managements, such as Tai chi, Yoga, traditional herbs and molecular targeted therapies 
have also been considered as effective alternative therapies to classical pharmaceutics. This review will provide us 
updated information regarding the current drugs and non-drugs therapies for PD. 
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1. INTRODUCTION 

 Parkinson’s disease (PD) is the second most common 
neurodegenerative disease worldwide, affecting 1% of the 
population older than 60 years [1] with the prevalence rates 
being higher in men than in women at the ratio of 1.6:1 [2]. 
The classic clinical manifestations of PD include 
bradykinesia, resting tremor, rigidity and postural instability, 
which are largely caused by the deficiency of dopamine 
(DA) in the striatum due to the progressive loss of 
dopaminergic (DAergic) neurons in the substantia nigra pars 
compacta (SNpc) [3]. Until now, the exact etiology of PD is 
largely unknown, but the pathogenesis of PD is believed to 
be related to reactive oxygen species (ROS), mitochondrial 
dysfunction, neuroinflammation, and other conditions such 
as protein degradation failure associated with ubiquitin 
proteasome system (UPS) and autophagy impairment [4-6]. 
PD can be divided into idiopathic (90-95%) and familial 
forms. At least 15 genes are thought to be linked with this 
disease, some of them have been the hotspot, such as α-
synuclein (SNCA), parkin (PARK2, PARK7), leucine-rich 
repeat kinase 2 (LRRK2), tensin homolog-induced kinase 1 
(PINK1) and beta-glucocerebrosidase (GBA)  [7].  

 Clinically, motor symptoms are the main features of PD 
onset and progression, but non-motor symptoms also could  
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be evident in the early or late stages of the disease, which 
include neuropsychiatric symptoms such as depression and 
fatigue, hyposmia, sleep disorders, automatic dysfunction, 
cognitive impairment and dementia. Since 1960’s, treatment 
for PD has been focused on the replacement or supplement 
of DA. As the most effective medication in PD treatment, 
levodopa benefits almost all PD patients [8]. However, long-
term use of levodopa is often accompanied by motor 
complications, including levodopa-induced dyskinesia (LID), 
"wearing-off” and "on-off” phenomena, which range in severity 
from mild and non-disabling to incapacitating. Once motor 
complications emerge, it means that PD patients have entered 
the advanced stage [9]. Then it is necessary to modify the 
dosage, change the formulation of levodopa, and combine with 
DA agonists or other drugs to control the adverse symptoms.  

 As DAergic neurons degeneration and DAergic 
dysfunction are responsible for the development of most 
motor and some non-motor symptoms in PD [10], the current 
development of new drugs seeks not only to control 
symptoms, but also to target disease-modifying molecules or 
pathways to protect and restore DAergic neurons. The latter 
one includes the current drug treatments, new formulations 
and feasible alternative therapeutic strategies for PD. 

2. SYMPTOMATIC TREATMENTS OF PARKINSON’S 
DISEASE  

2.1. Drug Treatments for Motor Symptoms 

 Drug treatments of PD motor symptoms mainly comprise 
DAergic and non-DAergic therapies. The DAergic drugs 
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include levodopa or levodopa plus dopa-decarboxylase 
inhibitors (DDC-I), catechol-O-methyl transferase (COMT) 
inhibitors, monoamine oxidase type B (MAO-B) inhibitors 
and DA agonists. These drugs have been used for decades 
and show good effects on the motor symptoms of PD. New 
formulations have been developed constantly due to the 
limitation of efficiency and the occurrence of side effects of 
those traditional drugs. In this review, we mainly focus on 
the new formulations of those traditional drugs and their 
latest advances. 

2.1.1. Levodopa+DDC-I 

 There is no doubt that levodopa is the most efficient 
medication for PD. Initially, levodopa offers a stable 
alleviation of PD symptoms, and is well-tolerated, which 
called “honeymoon”. Nevertheless, there is approximate 
40% likelihood of developing motor complications after 4-6 
years [11]. Although the mechanisms leading to motor 
complications are not fully understood, the pharmacokinetics 
of levodopa, particularly short half-life (ranging from 36-96 
min) [12], the emptying and absorption regions, and pulsatile 
stimulation [13, 14], as well as the disease progression itself are 
thought to contribute to the occurrence of motor complications. 

 Once the diagnosis is made, the appropriate time for the 
introduction of therapy must be considered. PD-MED trial 
demonstrates that there is very limited benefits of PD 
patients starting on levodopa treatment earlier versus later 
[15]. Moreover, Cilia et al. present a group of data from a 4-
year longitudinal study, which indicate that motor 
complications are most likely to be correlated with a higher 
levodopa daily dose and longer disease duration [16]. Thus, 
it seems unwise to withhold the use of levodopa because of 
the motor complications.  

 Pulsatile stimulation, due to the short half-life and rapid 
catabolism of DA, leads to intermittent delivery to receptors 
[17]. It is suggested that continuous DAergic stimulation 
may delay or even reverse the motor complications [14, 18]. 
The formulation of levodopa and DDC-I (benserazide and 
carbidopa are currently used) is aimed at reducing peripheral 
levodopa degradation and subsequent DAergic side effects 
[19-21]. Melevodopa, the methyl ester of levodopa, can 
improve daily motor performance, especially in patients with 
both "delayed-on" and "wearing-off" [22].  

 Several new formulations of levodopa have been developed 
to provide a more stable levodopa plasma concentration, 
most of which are able to reduce off-time and levodopa use 
frequency, or increase on-time without troublesome dyskinesia 
(Table 1). IPX066 is an extended-release formulation of 
levodopa/carbidopa (LD/CD). A phase 3 study of IPX066 
conducted at 68 academic and clinical centers reports that 
IPX066 has a greater reduction in daily off-time by extra 
1.17h than immediate-release LD/CD [23]. DM-1992, a bilayer 
formulation combining both immediate and extended-release 
gastroretentive LD/CD, shows a significant reduction in off-
time by 5.52% and exhibits a smoother plasma levodopa 
concentration profile [24].  

 Different delivery methods such as intestinal and 
continuous subcutaneous infusion, inhalable formulation and 

intravenous delivery can achieve the similar goal of 
optimizing dose and reducing side effects. Unfortunately, 
although intravenous delivery results in stable plasma 
concentration and reduces motor fluctuations, it has the risk 
of causing thrombosis; therefore, it can not be used for long 
term treatment [25]. LD/CD intestinal gels (LCIG), after a 
percutaneous gastrojejunostomy, provide a good tolerability 
profile and reduce the severity of motor fluctuations and 
LID, which may offer a promising option for controlling 
motor complications [26, 27]. Among other investigational 
products, CVT301, a formulation to deliver large dose, can 
achieve a therapeutic concentration in 5-10 minutes [28]. 
Besides, nasal powder formulations of melevodopa may 
provide a better brain-targeting delivery route than those oral 
formulations [29].  

2.1.2. COMT Inhibitors  

 COMT is an enzyme for peripheral metabolism of 
levodopa. Its inhibitors are always used in triple combination 
with levodopa and carbidopa, which has become a first  
line medication for motor fluctuation treatment of PD. 
Entacapone can lead to an improved motor fluctuation,  
with 1.0-1.7h more on-time and less off-time per day [42]. 
Stalevo®, a tablet consist of LD/CD and entacapone,  
can provide a more stable plasma levodopa level and a 
persistent stimulation of DA receptors in the striatum [43]. 
However, the recent FDA Adverse Event Reporting System 
(FAERS) database warns that there is a risk of death with the 
use of an entacapone-containing drug combination, and it 
requires more epidemiological studies to confirm its safety 
[44].  

 Nebicapone, a more effective COMT inhibitor than 
entacapone, has been under phase 3 clinical trial. It reduces 
off-time approximate 100 min with nebicapone of 150 mg 
compared to 70-80 min with entacapone of 200 mg [45, 46]. 
The third generation of COMT inhibitor, opicapone (OPC) 
shows a potent effect by increasing levodopa exposure 
(AUC) 65.6% with 30 mg without inducing toxicity [47, 48].  

2.1.3. MAO-B Inhibitors 

 MAO-B plays an indispensable role in DA metabolism in 
the brain. It can be used as monotherapy in early stage or 
combination with levodopa. Selegiline, the first MAO-B 
inhibitor used in PD, delays the need for levodopa by 
slowing the progression of PD [49, 50]. Switching selegiline to 
rasagiline can improve motor behavior, motor complications, 
mood and sleep disorders due to the additional glutamate 
receptor antagonizing properties of rasagiline [51]. 

 Safinamide (Xadago®) has just been approved globally. 
This drug can effectively inhibit MAO-B and excessive 
glutamate release, and selectively modulates sodium channel 
and calcium channel, via both DAergic and non-DAergic 
mechanisms [52]. In a 2-year, double-blind, randomized-
controlled trial (RCT), safinamide at 50 or 100 mg/day dose 
provided significant clinical benefits in on-time without 
causing troublesome dyskinesia [53]. Another phase 3 
multicentre research also demonstrates a significant increase 
in total on-time, which is about 1.36 hours with safinamide 
at 50 or 100 mg/day [54].  
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 Because of the first-pass effect, the oral bioavailability of 
selegiline is only 10% [55]. The orally disintegrating tablet 
(ODT) can improve the bioavailability effectively and reduce 
dose significantly [56, 57]. Recently, preclinical trials of 
novel delivery systems of rasagiline are also reported to be 
effective, such as nanoparticals through intranasal route  
and transdermal system [58-60]. However, transdermal 
application of selegiline is mostly used for major depressive 
disorders, not routinely for PD treatment [61].  

2.1.4. DA Receptor Agonists 

 DA receptor agonists, as initial monotherapy or adjunct 
treatment for PD to improve motor fluctuations, are 
commonly used medications for PD. Adverse effects of DA 
agonists include hallucinations, hypotension, nausea, 
vomiting, pathological gambling, compulsive shopping and 
hypersexuality [62]. 

 Ergot derivatives are seldom used now due to severe side 
effects of valvulopathy and pleuropulmonary fibrosis [63-
65]. Non-ergot derivatives include ropinirole, pramipexole, 
rotigotine and apomorphine. According to a meta-analysis 
study, non-ergot derivatives exhibit similar improvements in 

motor score and off-time [66]. Pramipexole with high 
affinity of D3 receptor is able to alleviate LID to certain 
extent [67]. Rotigotine transdermal patch, providing continuous 
drug delivery over 24h, shows improvements in off-time [68-
70]. Apomorphine, a short-acting D1/D2 receptor agonist, has 
two delivery formulas (intermittent injections and subcutaneous 
infusions). In addition, it can also be used as inhaled dry 
powder and sublingual strip, which  are still under clinical 
trials [71-73]. Apomorphine is usually used to reduce off-time 
without obvious dyskinesias improvement. The comprehensive 
introductions of novel formulations of DA agonists under 
preclinical or clinical trials are summarized in Table 2. 

2.1.5. Anticholinergics 

 Antagonism of muscarinic acetylcholine receptors aids  
in the correction of the imbalance between DA and 
acetycholine. Anticholinergic drugs such as benztropine, 
trihexyphenidyl have been registered by FDA. It is one of 
the M4 receptor antagonists among the whole 5 subtypes of 
muscarinic acetylcholine receptors (M1-M5), and they are 
often used in tremor treatment [82, 83]. Clinical use of 
anticholinergics is limited due to the obvious adverse effects, 
which even outweigh therapeutic benefits to some extent. 

Table 1. Different formulations of levodopa+DDC-I. 

Formulations Mechanisms Study Phase Characteristics Refs. 

LD/CD or 
LD/benserazide 

LD+DDC-I, reduce 
peripheral elimination 

Registered 
drug 

Increase in bioavailability by approximately 100%;  
reduce peripheral side effects  

[19-21] 

LCIG LD/CD intestinal gel III 
Stable plasma levodopa concentrations;  

reduce motor symptoms and complications 
[26, 27,  
30, 31] 

melevodopa 
levodopa methyl ester with 

high solubility  
Registered 

drug 
Improve motor symptoms and quality of life; reduce motor fluctuations 

(optimization of morning delay on and afternoon off periods) 
[22, 32, 

33] 

IPX066  extended-release LD/CD III 
Stable levodopa plasma level (a longer duration of time with > 50% of 

peak dose); reduce off-time and dosing frequency than  
immediate-release LD/CD 

[23, 34, 
35] 

accordion pill 
prolonged gastric retention 

of LD/CD 
II 

Reduce off time and increase on time without troublesome  
dyskinesia compared with LD/CD 

[36] 

DM1992 
combining immediate and 

extended-release 
gastroretentive LD/CD 

II 
Reduce off time compared with immediate-release LD/CD; reduce 
dosing frequency; elevate predose plasma levodopa concentration  

[24] 

ND0612 
continuous subcutaneous 

LD/CD 
IIa 

Stable levodopa level; reduce motor fluctuations compared with oral 
levodopa; well-tolerated  

[37] 

CVT301 inhalable levodopa III Study ongoing [28] 

ODM-101 
levodopa + carbidopa 

(65/105mg)+entacapone 
II 

Reduce daily off time; increase daily on time without troublesome 
dyskinesia 

[38] 

stalevo 
LD+CD+COMT inhibitors 

(entacapone) 
Registered 

drug 
Increase motor and daily activities; reduce severity of basic symptoms 

and improve quality of life  
[39] 

XP21279 
extended-release levodopa 

prodrug 
II 

Greater reduction in off time; increase levodopa plasma concentration; 
decrease plasma level variation. 

[40] 

IPX054 
bilayer tablet of immediate 

and extended-release LD/CD 
II Reduce dosing frequency of standard LD/CD [41] 
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 According to a logistic regression study in 1636 elderly 
patients, the significant risk of using anticholinergics 
includes immobilization, urinary dysfunction, disorders of 
digestion and neurologic and psychiatric comorbidities, such 
as depression, PD, and epilepsy [84]. Anticholinergic drugs 
also lead to blurred vision and tachycardia. From a 
multivariate analysis, anticholinergics application is 
correlated to the decline of all the activities of daily life, 
higher rate of falls and delirium, and gait freezing [85, 86]. 
Thus, PD patients who comorbid dementia should avoid 
using anticholinergics [87].  

2.1.6. Amantadine 

 Amantadine is originally introduced as an antiviral 
medication. It is accidently found that the drug is able to 
relieve PD early symptoms [88]. Antidyskinetic effects of 
amantadine are confirmed by abundant evidences. Many 
clinical trials have demonstrated that amantadine could 
reduce the duration of LID and freezing severity, and 
improve daily activities in PD [89, 90]. There is a 
remarkable improvement of unified Parkinson’s Disease 
Rating Scale (UPDRS)-IVa in amantadine-treated patients 
than those placebo-treated controls [91]. It improves 
parkinsonian symptoms, mostly balance and gait [92, 93]. 
Moreover, amantadine also shows the effect to reduce 
pathological gamble, the adverse effect from DA agonists 
[94]. However, withdrawing amantadine may cause a worsen 
LID in 7 days and induce a rebound of 10-20% increase in 
dyskinesia, thus a gradual amantadine withdrawal is 
necessary for routine clinical practice [95, 96].  

2.1.7. New Drugs Outlook 

 Cannabis is one of medical marijuana. In a small 
controlled trial, at 30 min after smoking cannabis, there was 
a remarkable alleviation in tremor, bradykinesia and rigidity. 
This might be an alternative therapy for PD, but it still 
requires verification through additional studies with larger 
sample size [97].  

 Recently, Wright and colleagues have synthesized a 
small molecule angiotensin IV ligand-based compound, 
which could bind to angiotensin 4 receptor to facilitate 
compromised memory and motor systems [98]. Although 

this compound is still in the preclinical trials, it shows high 
promise in PD motor symptomatic treatment improvement. 

2.2. Drug Treatments for Non-motor Symptoms 

 Now, the significance of non-motor symptoms has been 
recognized due to the greater negative influence on quality of 
life compared with motor signs. Patients experience a wide 
range of non-motor symptoms, including cognitive impairment, 
neuropsychiatric disturbances, sleep disorders, autonomic 
dysfunctions (gastrointestinal, cardiovascular, urinary, 
thermoregulation) and pain syndrome [99].  

2.2.1. Cognitive Impairment  

 Cognitive impairment can be developed from mild 
cognitive impairment (MCI) to PD dementia (PDD). The 
possibility of developing dementia increases along with the 
PD progression that consists of approximately 50% incidence 
rate after 10 years and 80% after 20 years of the disease 
[100, 101]. Given that the underlying mechanisms remain 
unclear, there is no mechanism-based treatment available 
now. A multidisciplinary approach and accurate communication 
with patients and relatives are essential [102].  

 Rivastigmine, butyrylcholinesterase and acetylcho- 
linesterase dual inhibitor, is available in two formulations, 
oral capsules and transdermal patch, of which transdermal 
patch may improve tolerability of gastrointestinal adverse 
effect and has more practical advantages than oral capsules 
[103]. Donepezil is a selective acetylcholinesterase inhibitor. 
One recent phase 3 trial has demonstrated that long-term 
donepezil administration at 5 or 10 mg/day can improve 
cognitive function without increasing risk [104, 105]. 
Memantine is used commonly in clinical practice, but a 
recent meta-analysis and trial sequential analysis indicate 
that both memantine and cholinesterase inhibitors including 
rivastigmine and donepezil produce slight efficacy on 
impression change, but only cholinesterase inhibitors can 
enhance cognitive function, not the memantine [106].  

2.2.2. Sleep Disorders 

 PD patients experience a wide range of sleep disorders, 
such as insomnia, excessive daytime sleepiness, restless legs 
syndrome and REM-sleep behavior disorder (RBD) [107]. 

Table 2. New formulations of DA agonists.  

Formulations Mechanisms Study Phase  Refs. 

KW-6500 Subcutaneous infusions of apomorphine III completed [74] 

Pramipexole ER Extended-release pramipexole III completed [75] 

APL-130277 Sublingual apomorphine III [76] 

Aplindore High affinity, dopamine D2 receptor partial agonist II [77] 

S90049 Sublingual formulation of the non-ergoline D2-D3 agonist piribedil IIa [78] 

VR040 Nasal inhalation of apomorphine IIa [79] 

RH-CSNPs  Intranasal delivery of ropinirole preclinical trials [80] 

SOMCL-171 Dopamine D2 and serotonin 5-HT1A dual agonist preclinical trials [81] 
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However, the effects between PD and sleep are mutual 
which reflects the high risk of developing to MCI/PD in 
RBD patients [108].  

 Based on clinical practice, clonazepam is considered as 
the first line therapy for RBD. A comparative RCT study 
suggests that both clonazepam and melatonin could reduce 
sleep disorders, while melatonin treatment offers higher 
scores in Mini-Mental State Examination, five-word test, and 
Hamilton scale than clonazepam-treated group. However, the 
daytime sleepiness can be significantly increased by 
clonazepam [109]. Several RCT studies have demonstrated 
non-ergot DA agonists such as piribedil, rotigotine and 
LD/CD preparation are able to reduce daytime sleepiness 
and improve sleep as well [110-113]. Doxepin, as a 
medication against depression, is confirmed by a small scale 
randomized study to produce an improvement in sleep [114]. 
Besides, rivastigmine can significantly decrease the frequency 
of RBD episodes [115]. Several researchers have suggested 
homotaurine or cannabis could be alternative therapies for 
sleep disorders, but this notion still requires further studies for 
confirmation [97, 116].  

2.2.3. Depression  

 Recent two meta-analyses have shown that antidepressants 
have moderate but non-significant pooled effect in PD, and 
insufficient evidence to support selective serotonin recapture 
inhibitors (SSRIs), pramipexole, pergolide and norepinephrine 
recapture inhibitors (SNRIs). Tricyclic antidepressants 
(TCAs) might be the most effective medication for depression 
treatment followed by pramipexole, SNRIs and SSRIs [117, 
118]. 

 In an exploratory post hoc analysis, patients are divided 
into rasagiline-treated and placebo groups. It turns out 
rasagiline-treated group has a significantly less worsening 
depression scores [119]. In addition to pharmaceutical 
treatments, the cognitive behavioural therapy seems to be 
efficacious and practical [120]. Although there are several 
drugs to choose, we still have no standard guideline to follow. 

3. NEUROPROTECTIVE TREATMENTS OF 
PARKINSON’S DISEASE 

 Neuroprotection is one of the disease-modifying therapies 
in PD. It would produce benefits for patients through blocking 
the disease process or underlying pathogenesis, aiming at the 
improvement of mitochondrial function, prevention of  
α-synuclein dysregulation and stimulating neurotrophic 
factors production [121]. Different approaches need to be 
applied in different stages of PD. Among them, antioxidants, 
including green tea polyphenol, glutathione, nicotine, iron 
chelators, melatonin and polydatin, account for a large 
proportion and are gaining increasing attention [122, 123]. 
The clinical trial outcomes of these neuroprotective drugs for 
PD treatment are listed in Table 3. 

 Importantly, while most neuroprotective drugs show 
robust improvement in animal models, few have been turned 
out to be effective in clinical trials [148]. Several commonly 
used non-prescribed medications such as coenzyme Q10 and 
creatine are of no proven clinical benefit according to recent 
studies [149, 150]. The failure of clinical trials of neuro- 

protective drugs may be resulted  from the following three 
causes. Firstly, most positive outcomes of neuroprotective 
compounds are based on toxin-induced acute animal PD 
models. Transgenic parkinsonian models may be better 
choices to mimic chronic pathogenic process of PD. 
Secondly, the recruited patients are mostly in the late stage 
of disease, therefore we are not able to evaluate the long-
term outcomes of these drugs. The early diagnosis of PD is 
still a big challenge due to the lack of appropriate biomarkers. 
Thirdly, the outcomes of these neuroprotective drugs are 
mainly estimated by motor scores, imaging manifestations of 
DA transporters or the abosorptivity of 18F-dopa, without direct 
observation of pathological or physiological manifestations. 
Thus, these problems are urgently needed to be solved in 
order to make a better evaluation of neuroprotective drugs of 
PD. 

3.1. Rasagiline and Selegiline 

 MAO-B inhibitors, rasagiline and selegiline, can stabilize 
mitochondria membrane permeabilization through inhibition 
of Ca2+ efflux to suppress activation of subsequence 
apoptosis cascade and induce brain derived and glial cell line 
derived neurotrophic factors (BDNF and GDNF) [151]. In 
animal experiments, rasagiline is more potent than selegiline 
in both neuroprotection and neurorestoration [152]. The 
ADAGIO study is registered to test the disease-modifying 
effects of rasagiline, indicating that rasagiline at 1 mg not 2 
mg/day has benefits against PD progression [144]. Selegiline 
can play a similar role as rasagiline in delaying disease 
progression after a long-term usage [50].  

3.2. Ropinirole and Pramipexole  

 Ropinirole and pramipexole are D2/D3 receptor agonists. 
Pramipexole can increase the levels of several neurotrophic 
factors and induce autophagy in UPS-impaired animals 
[153]. Ropinirole can inhibit the subsequence apoptotic 
cascade and block the Ca2+ transition of mitochondria [154]. 
SPECT/PET imaging shows pramipexole and ropinirole 
could reduce the DAergic neuron degeneration and slow PD 
progression compared with levodopa [145, 146]. However, a 
recent phase 4 trial suggests that pramipexole does not have 
neuroprotective effect [147]. 

3.3. Glutathione  

 Given that oxidative stress is one of the pathogenetic 
factors in PD, glutathione, as the primary antioxidant in the 
brain, can deplete excessive ROS formation and supply a 
promising therapy for PD. Because glutathione cannot pass 
the blood-brain-barrier directly, the intranasal delivery 
system is developed that can bypass the obstacle. The safety, 
tolerability and absorption data of intranasal glutathione is 
being evaluated [130]. N-acetylcysteine is regarded as 
potential precursors of glutathione. It can produce a dose-
dependent increase of glutathione concentrations in the brain 
[125,155].  

3.4. Green Tea Polyphenol 

 Much epidemiology evidence indicates drinking green 
tea has the potential to protect or reverse neurodegeneration 



344    Current Neuropharmacology, 2016, Vol. 14, No. 4 Dong et al. 

Table 3. Clinical trial outcomes of neuroprotective drugs for PD treatment. 

Medications Mechanisms Study Phase Status Outcomes Refs. 

І Completed  Increase glutathione level in the brain [124] 
N-acetylcysteine Antioxidant 

І/II  Ongoing   [125] 

Green tea polyphenol Antioxidant, iron chelator II Inconclusive   [126] 

II Completed Improve motor scores and reduce medicine 
dosage 

[127] 
Nicotine Unfolded protein inhibitor, 

calcium handling 
II Ongoing   [128] 

І Completed No significant symptomatic improvement  [129] 
Glutathione Antioxidant 

IIb Inconclusive   [130] 

Granulocyte-colony 
stimulating factors 

Anti-apoptotic, neurogenesis 
induction, immunity modulation 

II Inconclusive 
  

[131] 

Deferiprone Iron chelator  II/III Completed 
Early-start patients respond earlier to 
medicine; slow disease progression  

compared to delayed-start group 
[132] 

II Completed 
Isradipine 10 mg/d was the maximal tolerable 
dosage and the common side effects are edema 

and dizziness 
[133] 

Isradipine Calcium channel antagonist 

III Ongoing   [134] 

III Completed Safe but no evidence of benefit [149] 
Coenzyme Q10 Antioxidant 

III Completed Safe but no evidence of benefit [135] 

II Completed Improve non-motor symptoms, not the motor 
symptoms 

[136] Recombinant human 
erythropoietin (EPO) 

Anti-inflammation, antioxidant 

III Completed Improve both motor and non-motor symptoms [137] 

II Completed Nonfutile and well-tolerated [138] 

II Completed Safe; not interfere with symptomatic treatment [139] Creatine Ergogenic compound 

III Terminated No evidence of benefit for 5-year follow up [150] 

II Completed Nonfutile but tolerability is only 77% [138] 

Minocycline Anti-inflammation 
II Completed Nonfutile, safe but with progressively 

decreased tolerability 
[139] 

II  Completed Improve both motor and non-motor functions 
and well-tolerated  

[140] 
Exenatide Glucagon-like peptide-1 

mimetics 
II  Ongoing   [141] 

GPI 1485  Nonimmunosuppressive 
immunophilin ligand 

II Completed Nonfutile [142] 

III Completed Rasagiline with 1 mg would provide disease-
modifying effect 

[143] 

Rasagiline MAO-B inhibitor (antioxidant/ 
antiapoptotic) 

III Completed A significant difference between early-start 
and delayed-start groups with rasagiline 1 mg 

[144] 

Selegiline MAO-B inhibitor (antioxidant/ 
antiapoptotic) 

III Completed Delay the start of PD symptoms  [50] 

Ropinirole D2/D3 receptor agonist III Completed Slow the loss of DA neurons [145] 

III Completed Slow the degeneration of DA neurons [146] 

Pramipexole D2/D3 receptor agonist 
IV  Completed No significant difference between early-start 

and delayed-start groups 
[147] 
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disorders including Alzheimer’s disease and PD. (-)-
Epigallocatechin-3-gallate (EGCG) is the main extraction 
from green tea. The neuroprotective mechanisms of EGCG 
are mostly related to its antioxidant, iron chelator and 
neuritogenic properties [156]. In a double blind RCT, a total 
of 480 PD patients are divided into three dosage groups of 
EGCG to evaluate its effectiveness by a delay start design, 
while the result has not been published yet [126]. 

3.5. Nicotine  
 Nicotine, the tobacco-derived compound, is considered 
beneficial to PD. Some nicotine’s derivatives diminish 
oxidative stress and neuroinflammation and improve 
DAergic neurons survival [157]. In a small-scale trial, high 
dose and chronic treatment with transdermal nicotine 
improved motor scores and reduced DAergic usage [127]. A 
previous study has suggested the potential neuroprotection of 
nicotine may attribute to the deceleration of the decrease 
binding potential of DA transporters [158]. To confirm the 
neuroprotective effect of transdermal nicotine, PD patients 
are applied with nicotine at 7 to 28 mg/day or placebo for 52 
weeks. This phase 2 trial has been verified at November 
2014, and is currently recruiting new patients [128]. 

3.6. Granulocyte Colony Stimulating Factors 
 Granulocyte colony stimulating factor (G-CSF) has been 
used for hematologic disorders treatment routinely for 
decades. In rodent experiments, it is found that motor 
performance improvement is relevant to the preservation of 
nigrostriatal pathways [159]. Currently, a two-year clinical 
trial is designed to evaluate the disease modifying effect of 
G-CSF on early PD. Patients are divided into three arms, 
high and low dose of G-CSF and placebo group, while the 
outcome is still unknown [131]. Intravenously delivery is the 
most common method of G-CSF application. Recently 
Heinzelaman and colleagues found that some bioactive 
variants might make oral administration possible [160]. If it 
is successful in clinical trial, it would be a big step for the 
clinical application of G-CSF in PD.  

3.7. Iron Chelators 
 There is an abnormal aggregation of labile iron, ROS and 
ubiquitin-conjugated proteins in PD patients [161]. The role 
of an iron chelator is to reduce oxidative stress damage, 
which is associated to regional iron deposition. For a pilot, 
double blind RCT with deferiprone, early-start PD patients 
respond significantly better than delay-start PD patients 
[132]. Recently, Bar-Am O has just synthesized a novel iron 
chelator VAR103039 (VAR), which can permeate through 
the brain. It possesses both anti-peroxidation potency and 
MAO inhibitory effects. After treatment with VAR, PD rat 
model shows a reduction of striatal DAergic neurons loss, 
together with increased neurotrophic factors expression and 
an ameliorated cognitive impairment [162].  

3.8. GLP-1 Mimetics 
 Glucagon like peptide-1 (GLP-1) mimetics initially 
synthesized to treat diabetes shows good effects in several 
PD models. Based on numerous observations, GLP-1 
mimetics may have biological effects against the progression 

and pathogenesis of PD. In animal models, GLP-1 mimetics 
exenatide preserves DAergic neurons from degeneration 
[163]. Furthermore, a small cohort study of exenatide has 
been conducted. Patients who receive exenatide randomly 
for 1 year show a significant improvement of motor and  
non-motor scales, even during the 2-month drug washout 
period [140]. To test whether exenatide has neuroprotective 
function or not, a phase 2 trial with bigger scale and longer 
time has just been verified at March 2015 [141].  

4. SURGICAL, GENE AND CELL REPLACEMENT 
THERAPIES FOR PARKINSON’S DISEASE  

4.1. Deep Brain Stimulation (DBS) 
 DBS has generally been accepted as an alternative 
therapy for PD. Subthalamic nucleus (STN) and globus 
pallidus internus (GPi), two most hyperactive regions during 
PD progression, are usually used as targets for DBS. The 
underlying mechanism for DBS still remains poorly 
understood. Recently, the “disruption hypothesis”, which 
declares DBS dissociates both input and output information 
and blocks unusual signals through the cortico-basal ganglia 
loop, seems to be more and more accepted [164]. After long-
term observation, both STN and GPi-DBS showed 
significant improvement in “on-off” conditions, dyskinesias, 
and motor fluctuations [165, 166]. Although the efficiency of 
STN and GPi-DBS shows no difference in primary outcome, 
STN-DBS could be preferred in advanced PD stage due  
to the big improvements in off time [167]. Recently, low 
frequency around 60 Hz of DBS shows a promising 
application potential to improve swallowing, gait freezing, 
and axial motor signs, almost overall motor signs of PD 
[168, 169]. Additionally, a new approach, directional 
steering of DBS, brings more potential benefits via widened 
therapeutic window and increased effectiveness [170]. 
However, the effects of DBS on cognitive and psychiatric 
symptoms of PD have been controversial. A progressive 
worsening of neuropsychological performance is observed in 
a follow-up study of DBS [171]. Some scholars consider that 
the impairment of neurocognition may attribute to the 
disease progress and medication reduction, not the DBS 
itself [166, 172, 173]. Interestingly, in preclinical studies, 
there is an improvement of DAergic neurons survival and an 
increase of BDNF level in the SN and primary motor cortex 
after STN-DBS exposure, suggesting the neuroprotective 
effects of DBS [174, 175]. 

4.2. Gene Therapy  
 In general, gene therapy requires a vector and a carried 
gene. The latter includes glutamic acid decarboxylase 
(GAD), aromatic L-amino acid decarboxylase (AADC), 
neurturin, neurotrophic factors and others. A recent phase 
1/2 trial with one-year follow-up of ProSavin has shown that 
ProSavin therapy can result in a significant improvement  
in UPDES III scores without serious side effects [176]. 
Transfer of GAD with adeno-associated virus type 2 (AAV2) 
can modulate GABA production with a great improvement 
of UPDRS scores over 6 months as well [177]. Others like 
AAV2-hAADC and AAV2-neurturin (CERE-120) also show 
similar therapeutic effects and safety profiles [178-180]. 
Moreover, novel vectors are developed constantly. Tropism-
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modified Ad5 vectors are just synthesized, which have 
neuron-selective targeting property to enhance gene delivery 
efficiency [181]. Besides, angiopep-conjugated nanoparticles 
for cellular uptake and gene expression can carry specific 
genes without viral vector [182]. 

4.3. Cell Transplantation 

 Cell transplantation has been used for decades and 
several clinical trials have shown therapeutic effects of stem 
cell transplantation, such as improvement of motor signs or 
reducing medicine dosage [183, 184]. Transplantation of 
stem cells-derived DAergic neuron can alleviate motor 
deficiencies of PD, but whether it would result in 
uncontrolled cell proliferation still remains concern. To 
avoid tumor formation, Acquarone et al. pretreated 
undifferentiated mouse embryonic stem cells (mESCs) with 
mitomycin, then injected into striatum in nude mice. After 
15 months follow-up, it is found that DNA alkylating agent 
mitomycin-treated mESCs can alleviate motor functions 
dramatically without unlimited cell proliferation that would 
be a novel replacement therapy for PD [185]. Besides, 
reprogrammed neurons, such as combination of new 
transcriptional therapy may decrease the tumorigenic 
potential [186]. Using human unfertilized cell or pluripotent 
stem cells (iPS cells) also offers an unlimited supply for 
transplantation. Several animal experiments confirm its 
safety and efficiency on motor symptoms [187, 188]. In a long-
term 14-year observation after DAergic neuron transplantation, 
it is reported that the majority of transplanted neurons 
maintain healthy and functional, as shown by persistent 
expression of DA transporters and normal mitochondrial 
morphologies, which proves the rationality and feasibility of 
cell transplantation in PD treatment [189].  

5. COMPLEMENTARY & ALTERNATIVE MANAGE- 
MENT OF PD 

 Complementary and alternative management of PD 
means a group of therapies or products, other than the 
classical and well-accepted therapies, that can assist the 
treatment of PD. The variety of alternative management is 
increasing yearly, mainly including Tai chi, Qi gong, yoga, 
massage, acupuncture, dance, traditional herbs, molecular 
targeted therapies and near-infrared light (NIr). 

5.1. Exercise 

 In the last two decades, exercise, as a supplementary 
approach for PD treatment, has caused clinical interests due 
to the amelioration of both motor and non-motor symptoms 
and its neuroprotective effect. It alleviates motor deficits 
through increasing mitochondrial respiration and stimulating 
neuroplasticity [190]. Moreover, the latest study claims the 
recovery of DA and glutamate transporters, plus suppression 
of inflammation may be involved in the mechanisms as well 
[191]. Exercise is an effective complimentary therapy that 
shows promise, but it needs more long-term and follow-up 
studies to evaluate its effectiveness. 

5.1.1. Conventional Physical Exercises 

 Recent clinical trials have suggested aerobic exercise 
including aerobic walking and stretching could ameliorate 

motor functions such as gait, balance, physical performance, 
and non-motor functions such as fatigue, depression and 
cognition, but not for fall prevention in PD patients  
[192, 193]. It has been reported that intensive training 
modalities could improve muscle strength and mobility [194, 
195].  

5.1.2. Tai Chi and Qi Gong 

 Compared with conventional physical exercises, Tai Chi, 
a traditional Chinese exercise combining with deep breath 
and slow movements, has been proved effective in reducing 
balance impairment and falls [196, 197]. According to the 
recent meta-analysis, Tai Chi shows positive effects in motor 
function and balance, but not in gait velocity, step length and 
gait endurance improvements [198]. Tai Chi is a safe and 
feasible exercise that improves quality of life, and it could be 
a good exercise strategy for PD patients with mild to 
moderate severity. 

 Qi Gong is a traditional exercise like Tai Chi but focuses 
on the transfer of internal energy. One RCT has suggested 
that Qi Gong could improve UPDRS-III scores, together 
with several non-motor symptoms amelioration [199]. But 
another small-scale RCT demonstrates that there is no 
significant motor benefit in Qi Gong [200]. Therefore, it still 
needs more studies to explore whether Qi Gong is beneficial 
to PD or not. 

5.1.3. Yoga 

 Yoga is a popular discipline that origins from India. It 
significantly improves flexibility, strength, gait and quality 
of life. One pilot study has shown that yoga improves 
UPDRS scores, immediate tremor and some physiological 
functions [201]. Another pilot study demonstrates that after 
an 8-week yoga program, some texts such as sit-and-reach 
text, single-leg balance text are improved significantly, and 
depression is alleviated to some extent [202]. Until now, 
there is still no big-scale RCT about yoga in PD treatment. It 
requires larger population of individuals to participate in the 
clinical trial in order to ascertain the efficiency of yoga for 
PD patients.  

5.1.4. Dance 

 Dance as an intervention for PD patients could improve 
both motor and non-motor symptoms. The recent meta-
analysis suggests that short-term dance significantly 
improves UPDRS scores, balance and gait as compared with 
no intervention [203]. Dance, especially Tango, has been 
reported to alleviate motor function and balance, as 
compared with common exercise [204]. 

5.2. Massage and Acupuncture  
 Massage is one common complementary therapy for PD. 
According to a small scale study with 10 patients treated 
with Japanese massage for 2 months, it shows a positive 
effect in various symptoms, such as shoulder stiffness, 
muscle pain and fatigue [205]. Another study also suggests 
that after 40-minute Anma massage, patients’ movement 
difficulties are generally improved [206].  
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 Acupuncture has been a vital part of Chinese medicine 
for thousand years. Bee venom acupuncture is popular 
recently to treat pain and arthritis, which may attribute to 
anti-inflammatory effect. A recent randomized trial has 
demonstrated that after 8-week intervention, both 
acupuncture and bee venom acupuncture could improve 
UPDRS scores of PD patients [207]. In another randomized 
trial, patients are divided into acupuncture, covert placebo 
and overt placebo groups to evaluate the effect of 
acupuncture and placebo and found that acupuncture brought 
significant improvement of motor function with putamen and 
primary motor cortex activation [208]. Placebo could also 
activate some brain regions that are not vital for basal 
ganglia-thalamocortical circuit. Acupuncture seems to be a 
promise alternative therapy for PD. 

5.3. Traditional Herbal Medicines  

 Herbal medicines have been used for thousand years, and 
recent studies have suggested some of them are able to 
alleviate PD symptoms. One pilot study reports that dietary 
extract rikkunshi-to could reduce gastroparesis in terms of 
shortening gastric emptying time in PD [209]. Yokukansan 
is another kind of herbal extract, which is efficient in 
ameliorating neuropsychiatric symptoms, such as 
hallucinations, anxiety and apathy, according to a small-scale 
exploratory trial [210]. Through evaluating neurotransmitters 
in the brain, Bushen huoxue formulas are found to enhance the 
levels of 5-HT, DA and HE, and to improve the depression 
of PD [211]. In another RCT about Bushen huoxue formulas, 
it could improve UPDRS scores and relieve muscle tension 
[212]. In addition, a multicenter RCT of 320 PD patients is 
recently underway in China to investigate the efficacy and 
safety of a Chinese herbal medicine, Xifeng Dingchuan Pill, 
which is thought to delay the progression of PD and improve 
quality of life [213]. 

5.4. Molecular Targeted Therapies 

 With the disclosing of more molecules that are involved 
in PD pathogenesis, regulation of these PD-related molecules 
seems to be attractive to provide novel disease-modifying 
strategies. Until now, a series of preclinical trials targeting 
kinases such as leucine-rich repeat kinase 2 (LRRK2), 
glycogen synthase kinase 3 beta (GSK-3β), cyclin-dependent 
kinase 5 (Cdk5), α-synuclein and transcription factors such 
as MEF2, nuclear factor erythroid-2-related factor 2 (Nrf2) 
and Nurr1 [214-220] have been demonstrated to be effective 
in PD treatment.  

 LRRK2 mutations are the common genetic cause of 
familial and sporadic PD. LRRK2 inhibitors have been 
actively investigated in recent decades and dozens of patent 
applications have been published [221]. Remarkably, there is 
only one clinical trial until now to apply LRRK2 inhibitor 
into human subjects [222], and the toxic tolerance and side 
effects of the LRRK2 inhibitors remains unknown [223]. In 
addition to LRRK2, GSK-3β is also involved in PD 
pathogenesis. It plays an important role in controlling 
neuroinflammation and neuronal apoptosis, and the inhibition 
of GSK-3β decreases the level of α-synuclein. Abundant 
evidence has shown that GSK-3β inhibitors could reduce the 
loss of DAergic neurons and the expression of pro-

inflammatory factors in PD animal models [224, 225]. GSK-
3β inhibitor tideglusib has been estimated in clinical trials 
for treating progressively supranuclear palsy [226]. We 
believe that it would not be far away from the clinical 
applications of GSK-3β inhibitors to treat PD. Besides, 
immune therapies targeting α-synuclein such as active and 
passive antibodies have shown good results in alleviating the 
pathological changes and behavioral symptoms in preclinical 
investigation [220]. Recently, several studies have suggested  
that transcriptional factor Nurr1 is a promising therapeutic 
target for PD. Nurr1 gene therapy and Nurr1 activating 
compounds have been tested in animal models of PD, 
showing their effective in protecting DAergic neurons and 
improving behavioral deficits  [219]. 

5.5. NIr 

 NIr has been applied in clinical practice mainly for 
treating tissue contusion for many years. Previous preclinical 
studies have demonstrated that NIr could improve behavior 
deficits and DAergic neurons survival in parkinsonian mice 
[227, 228]. Remarkably, a recent primate trial has further 
supported the notion that NIr may be neuroprotective 
without severe side effects, which brings a step closer to 
clinical translation [229]. 

6. CONCLUSION  

 Current pharmacotherapy mainly focuses on symptomatic 
and neuroprotective treatment. As we can see, PD is a complex 
disease and its pathogenesis involves many mechanisms, 
such as ROS, mitochondrial dysfunction, neuroinflammation, 
UPS, autophagy impairment and other unknown mechanisms. 
Classical drug treatments with the emerging new 
formulations and novel drugs with novel therapeutic targets 
may provide better strategy for PD treatment. Many clinical 
trials have been carried out to evaluate the safety and 
effectiveness of those new therapeutic candidates, some of 
which have shown a good application prospect.  

 Although neuroprotective treatment has been controversial 
for decades, only few of the neuroprotective drugs have been 
confirmed to be effective in recent phase 2 or 3 clinical 
trials. We believe that a better understanding of pathogenesis 
and mechanisms of the disease will facilitate the discovery 
and development of novel drugs to control motor and non-
motor symptoms and slow disease progress, and most 
importantly, to enhance the quality of life. In addition, non-
pharmaceutical therapies of PD, such as DBS, gene therapy 
and cell replacement therapies, as well as other complementary 
management, have been demonstrated to be able to benefit 
PD patients to some extent. It is proposed that these new 
therapies may bring promise for better management of this 
disease. 
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