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Abstract

We observed that teneral adults (<1 h post-molt) of Cimex lectularius L. appeared more

adept at climbing a smooth surface compared to sclerotized adults. Differences in climbing

ability on a smooth surface based on sclerotization status were quantified by measuring the

height to which bed bugs climbed when confined within a glass vial. The average maximum

height climbed by teneral (T) bed bugs (n = 30, height climbed = 4.69 cm) differed signifi-

cantly (P< 0.01) from recently sclerotized (RS) bed bugs (n = 30, height climbed = 1.73 cm

at ~48 h post molt), sclerotized group 1 (S1) bed bugs (n = 30, S1 = 2.42 cm at >72 h), and

sclerotized group 2 (S2) bed bugs (n = 30, height climbed = 2.64 cm at >72 h post molt).

When heights from all climbing events were summed, teneral bed bugs (650.8 cm climbed)

differed significantly (P< 0.01) from recently sclerotized (82 cm climbed) and sclerotized

(group 1 = 104.6 cm climbed, group 2 = 107.8 cm climbed) bed bugs. These findings sug-

gested that the external surface of teneral bed bug exoskeletons possess an adhesive prop-

erty. Using atomic force microscopy (AFM), we found that adhesion force of an exoskeletal

(presumably molting) fluid decreased almost five-fold from 88 to 17 nN within an hour of

molting. Our findings may have implications for laboratory safety and the effectiveness of

bed bug traps, barriers, and biomimetic-based adhesives.

Introduction

The common bed bug (Cimex lectularius L.) has been a blood-feeding ectoparasite of humans

for at least 4,000 years [1]. Despite this long-association, bed bugs were almost eliminated

from the developed world in the mid-20th century due to the development and widespread use

of DDT [2]. However, beginning in the early 1990s, pest management professionals began see-

ing an increasing number of bed bug infestations throughout the country [3]. The cause of this
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increase is not known, but has been attributed to increased international travel, reduced use of

residual insecticides indoors, insecticide resistance [4–6], lack of awareness among the general

public [7], and the secondhand furniture trade [8]. Because of their cryptic nature, blood-feed-

ing habits, and widespread insecticide resistance, bed bugs are again considered one of the

most unwanted urban pests and one of the most difficult to control.

Bed bugs are unable to fly; infestations result from their hitchhiking on hosts or host items

and active dispersal via crawling [9]. The ability of bed bugs to navigate their environment

through active dispersal has not been well documented, particularly their ability to navigate

smooth, vertical surfaces. An improved understanding of the ability of bed bugs to climb

smooth surfaces could have implications for the development of effective bed bug barriers and

interception devices, which are commonly used to help detect and control bed bug infestations

[10, 11]. Climbing ability of bed bugs on smooth surfaces also has potential implications for

laboratory safety if open-topped or poorly enclosed arenas are used for insecticide or behavior

assays. Unveiling the mechanism by which bed bug tarsal or tibial structures cling to smooth

surfaces also could benefit the growing field of biomimetic-based adhesives.

Our interest in bed bug climbing ability began when we observed differences in climbing

ability based on the sclerotization status of individual bed bugs. Sclerotization is the hardening

and stabilization of insect cuticle through the incorporation of phenolic compounds [12]. As

bed bugs mature, they proceed through five instars before becoming an adult. As with all

insects, proceeding to the next instar requires bed bugs to molt, or shed their exoskeleton [13].

Teneral insects are pale and soft bodied after molting, but their exoskeletons harden and

darken during the sclerotization process [14]. Based on our experience with laboratory colo-

nies, sclerotized bed bugs are more common at any given moment than are teneral bed bugs.

We observed that teneral adult bed bugs (observed as being white to light yellow), although

present in lower numbers, are more adept at climbing the sides of the container compared to

sclerotized late instars and adults. Teneral individuals in an uncovered metal dish had to be

placed in capped glass vials to prevent their escape. Teneral adults continued to climb profi-

ciently when placed in vials.

We were unable to find references to the climbing ability of any insect based on sclerotiza-

tion status. Kim et al. [15] and Hottel et al. [16] are the only other authors to evaluate bed bug

climbing ability. Kim et al. [15] assessed the climbing ability of Cimex hemipterus (F.) and C.

lectularius and found that adults of C. hemipterus were more effective climbers, presumably

due to a greater number of tenant hairs on the tibial pad. Hottel et al. [16] evaluated differences

in pulling forces of C. lectularius on various surfaces and their ability to climb a 45˚ glass sur-

face. Studies by Kim et al. [15] and Hottel et al. [16], however, cannot explain differences in

the climbing ability of bed bugs based on their sclerotization status. Tarsal structures do not

change within a life stage. We, therefore, concluded that another characteristic of the teneral

bed bug exoskeleton confers an adhesive property. Atomic force microscopy is one method

capable of quantifying adhesive forces on such a small scale.

Atomic force microscopy (AFM) is based on the detection of small deflections of a flexible

cantilever caused by the topography of a sample. Although AFM has been used to examine cell

microelasticity [17,18], biomechanics [19], microrheology [20, 21], and to map cell ligands

and surface receptors [22], few papers have used this method to study insects. AFM was used

to study nano-physiology of the coccinellid beetle Hippodamia convergens, including the detec-

tion of heart beat and muscle movement [23]. Coccinellid beetles were also stimulated with

light, and their responses were recorded using AFM [24]. The formation of calcium silicate

and calcium phosphate nanoparticles on the body of the honeybee Apis dorsata Fabricius were

detected [25], and Drosophila melanogaster Meigen wing membranes were examined for local

elasticity and adhesion [26].

Assessing bed bug climbing using behavioral assays and atomic force microscopy
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We developed a behavior assay that assessed the disparate climbing abilities of teneral and

sclerotized adult bed bugs on a glass surface. Using atomic force microscopy, we quantified

and elucidated the mechanism of the adhesive properties of their exoskeletons.

Materials and methods

Behavior assay

Fifth instars and adults of the “Jersey City” bed bug strain were used in this experiment. The

Jersey-city strain is a moderately pyrethroid-resistant strain originally collected from Jersey

City, NJ, and provided by North Carolina State University. All bed bugs were housed and fed

in eight-dram vials and supplied with one strip of 1 cm x 0.5 cm manila envelope paper for

harborage. Twenty, fifth-instar nymphs were housed in each of six vials, and twenty adults

were housed in each of six vials. Bed bugs were not selected by sex so that an accurate represen-

tation of the population could be obtained. All vials were fitted with mesh tops secured with

rubber bands to allow bed bugs to feed through the mesh on an artificial feeding system (devel-

oped by Garcia et al. [27] and modified by Montes et al. [28]). All bed bugs were allowed to

feed to repletion on defribinated rabbit blood (Hemostat Laboratories, Dixon, CA) by expos-

ing vials containing bed bugs to the artificial feeding system for ~30 minutes. All vials were

maintained in a rearing room under a reversed 12:12 (L:D) photoperiod at ~40% RH and

~25˚C.

All behavioral assays were conducted in the bed bug rearing room under interior, daytime

fluorescent lighting, which was used for the diurnal cycle of our reversed 12:12 (L:D) photope-

riod. Bed bug behavior was examined at the same humidity and temperature used in our rear-

ing room for colony maintenance (~40% RH and ~25˚C). Fifth-instar nymphs eclosed to the

adult stage ~132–144 hours post-feeding. A small paintbrush was then used to transfer 10 ten-

eral (<1 h post-molt) bed bugs to an eight-dram vial that had been washed with warm, soapy

water and dried with paper towels. The exterior of this vial bore a transparent sticker ruler that

spanned the height of the vial. The ruler ranged 0–7 cm from the base to the top of the vial.

Once ten teneral bed bugs were transferred to the vial, climbing heights were recorded for 10

minutes. After 10 minutes of recording, vials were lightly swirled by hand for 10 seconds to re-

induce activity and climbing behavior. Climbing heights were recorded for an additional 10

minutes. Climbing heights were recorded in mm, and were designated as the highest point

reached by the anterior margin of the head before bed bugs fell to the bottom of the vial. Fre-

quencies of each climbing height attained were also recorded. Bed bugs frequently climbed on

the backs of others while attempting to scale the inner surface of the vial; therefore, all heights

of one cm or less were not analyzed.

A total of six climbing trials were performed for the first half of each behavior assay. The

first half of the behavior assay alternated between using 10 teneral adult bed bugs (referred to

as T) and 10 sclerotized adult bed bugs (>72 h post-molt, referred to as S1). Therefore, the first

half of an assay consisted of six trials in the order of T, S1, T, S1, T, and S1. Vials were washed

with warm, soapy water and dried between each 20-minute, 10-second trial. The second half

of each assay was conducted approximately 48 hours later using the same bed bugs from the

first trial. New bed bugs were not used to assure that climbing ability based on sclerotization

status was the factor being examined, rather than differences in climbing ability based on a

particular sample of bed bugs. During this 48 hour period, bed bugs were maintained in eight-

dram vials and supplied with one strip of 1 cm x 0.5 cm manila envelope paper for harborage.

Bed bugs previously referred to as T had significantly sclerotized by this time, and were desig-

nated recently sclerotized (48 h post-molt, referred to as RS). All bed bugs previously referred

to as S1 were then designated S2 (>120 h post-molt). The aforementioned materials and
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methods were then used to record climbing abilities of RS, S2, RS, S2, RS, and S2. This entire

procedure was replicated three times, using new groups of bed bugs for each replicate. All

trials were recorded using a JVC (JVC: Yokohama, Japan) Hard Disk Camcorder (model

GZ-G360BU). The minimum, average, and maximum height obtained for each of the 36 (20

minute, 10 second) climbing trials was recorded. Descriptive statistics were calculated for min-

imum, average, maximum, and sum height climbed for T, S1, RS, and S2. A model was devel-

oped to include an effect for treatment and trial. The model was Yij = μ + Trti + Trialj + εij

where Yij is the response (either the minimum, average, or maximum height obtained) in treat-

ment i and trial j, μ is the overall mean of the response, Trti is the effect of treatment i, Trialj is

the random effect of trial j, and εij is random error.

This model was analyzed to determine significance of treatment for any of the four charac-

teristics. All analyses were conducted using SAS 9.3. Bed bug voucher specimens are deposited

in the Clemson University Arthropod Collection and bear the label “Hinson dissertation,

Chapter 8”.

Results

Behavior assay

Frequencies of climbing heights in cm were totaled for all three replicates for T and S1 (Fig 1)

and RS and S2 (Fig 2). Centimeters climbed for all climbing events for T, S1, RS, and S2 were

also totaled (Fig 3).

ANOVA analyzed differences in minimum height, average height, maximum height, and

cumulative height for T, S1, RS, and S2 (Table 1). Averages of minimum height, average height,

maximum height, and cumulative sums were calculated, and comparisons of significant differ-

ences among molting statuses were also determined (Table 2). Comparisons between average

minimum values of heights climbed were not significantly different (α = 0.05, p-value =

0.5868) (Table 1). Differences between average height climbed approached significance when

comparing average values for RS and T, with T having the highest average height climbed

Fig 1. Frequencies of height climbed in cm for sclerotized adult bed bugs (S1) and teneral adult bed

bugs (T) totaled across all replicates. Data used to generate Fig 1 can be found in S1 Dataset.

https://doi.org/10.1371/journal.pone.0189215.g001
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among T, S1, S2, and RS (α = 0.05, p-value = 0.0932) (Tables 1 and 2). Average maximum val-

ues for height climbed were significantly different and higher for T compared to S1, RS, and

S2 (α = 0.05, p-value = 0.0083) (Tables 1 and 2). Comparisons between cumulative heights

climbed were also significantly different and higher for T compared to S1, RS, and S2 (α =

0.05, p-value = 0.0062) (Tables 1 and 2). The average maximum height climbed by teneral (T)

bed bugs was higher than the average maximum height climbed by all other bed bugs (RS, S1,

Fig 2. Frequencies of height climbed in cm for sclerotized adult bed bugs (S2) and recently

sclerotized adult bed bugs (RS) totaled across all replicates. Data used to generate Fig 2 can be found in

S1 Dataset.

https://doi.org/10.1371/journal.pone.0189215.g002

Fig 3. Cumulative height climbed in cm per sclerotization status totaled across all replicates. Data

used to generate Fig 3 can be found in S1 Dataset.

https://doi.org/10.1371/journal.pone.0189215.g003
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and S2), and teneral bed bugs had the highest number of total cm climbed. Given that sclero-

tized bed bugs attempted to climb glass vials throughout each trial but performed relatively

poorly, we hypothesized that something on the surface of the teneral bed bug exoskeleton

lends an adhesive property to the tibial pad or tarsi, and enables the bed bug to cling to

smoother surfaces. We therefore used atomic force microscopy (AFM) to investigate the adhe-

sive properties of bed bug exoskeletons based on sclerotization status.

Materials and methods

Atomic force microscopy

To assess the adhesive property of fluid on the exoskeleton, bed bugs were immobilized on

glass slides, using Scotch tape with a small opening in the tape to permit dorsal abdominal con-

tact for AFM measurements (Fig 4). Measurements were taken using an atomic force micro-

scope (Asylum BIO-MFP 3D) with silicon nitride Olympus TR400PB cantilevers (gold-coated,

pyramidal shaped tips with a nominal tip radius of 30 nm and a resonance frequency of 32

kHz). Cantilevers had a spring constant of ~0.09 N/m and were calibrated prior to measure-

ments of each bed bug. New cantilevers were used for each bed bug. To determine adhesive

properties, a series of force-distance curves were recorded in contact mode. Multiple curves

were recorded for each bed bug due to high rejection rate because of bed bug movement. The

rate of approach and retraction was chosen to be 1μm/s. A total of five bed bugs were used for

data analysis. In-house MatLAB code was used to analyze data.

Force-mapping approach also was used to capture representative images of bed bug adhe-

siveness. Acquisition of force curves can be automated when data are collected over a desig-

nated area. After generating a force map, we plotted an overlay of a 2D adhesion force map

over a 3D reconstruction of bed bug topography.

Results

Atomic force microscopy

Measurement of adhesive force was conducted for 48 hours (Fig 5). Newly molted bed bugs

showed high attractive forces toward the tip of the cantilever. Change in adhesion force was

Table 1. ANOVA output for cumulative sum and averages of minimum height, average height, and maximum height climbed in cm for T, S1, RS,

and S2 for all three replicates. Significant differences are indicated by asterisks(*). Data used to generate Table 1 can be found in S1 Dataset.

Treatment Df Sum sq Mean sq F value P Significance

minimum 3 .031 .01 .70 .587

average 3 .973 .324 3.42 .093

maximum 3 14.555 4.852 10.57 .008 *

cumul. sum 3 8499.107 2833.036 11.88 .006 *

https://doi.org/10.1371/journal.pone.0189215.t001

Table 2. Cumulative sum and averages of minimum height, average height, and maximum height climbed in cm for T, S1, RS, and S2 for all three

replicates. LS means with the same letter are not significantly different. Statistical comparisons are within columns only. Data used to generate Table 2 can

be found in S1 Dataset.

Molting status Minimum Average Maximum Cumulative sum

T 1.022A 2.089A 4.689A 650.8A

S1 1.044A 1.501AB 2.422B 104.6B

RS 1.156A 1.352B 1.733B 82B

S2 1.06666667A 1.4815751AB 2.64444444B 107.8B

https://doi.org/10.1371/journal.pone.0189215.t002
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most pronounced within the first hour of molting (Fig 5). In light of this, we determined aver-

age mean forces of adhesion within the first hour of molting. Adhesion force values were 88±9

nN for freshly molted bed bugs, 47±7 nN for ~30 min post molt bed bugs, and 17±6 nN for 1

Fig 4. Diagram displaying lateral and dorsolateral view of a bed bug fixed on a glass slide with Scotch

tape with an opening for adhesive property measurements.

https://doi.org/10.1371/journal.pone.0189215.g004
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hour post molt bed bugs (Fig 6). One-way ANOVA was used to confirm statistical significance

between group means. Acquisition of force curves are also displayed (Fig 7). Our overlay of a

2D adhesion force map over a 3D reconstruction of bed bug topography (Fig 8) demonstrated

that adhesion forces were fairly constant on the outer parts of the bed bug and slightly higher

in the caverns, where it took longer for fluid to solidify.

Discussion

Teneral bed bugs differed significantly in maximum and cumulative height climbed, and

approached significance for average height climbed when compared with sclerotized bed bugs.

As RS performed similarly to S1 and S2, teneral bed bugs demonstrated superior climbing abil-

ities. Although bed bugs are generally inefficient climbers, teneral bed bugs might possess

Fig 5. Change in adhesion force in nN measured over time after molting to adulthood. Error bars represent standard deviation.

https://doi.org/10.1371/journal.pone.0189215.g005
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Fig 6. Adhesiveness of exoskeletal fluid measured in nN of force required to pull the probe cantilever from the surface of the

bed bug exoskeleton. Error bars represent standard deviation. Comparisons significant at the 0.05 level are indicated by (*).

https://doi.org/10.1371/journal.pone.0189215.g006

Fig 7. Maps generated from measurements taken of the teneral bed bug exoskeleton. The left image

displays topography; the right image displays adhesion forces. Data used to generate Fig 7 can be found in

S2 Dataset.

https://doi.org/10.1371/journal.pone.0189215.g007
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softer and more pliable tarsal or tibial structures that could aid in climbing. The structures

used by C. lectularius when climbing smooth surfaces have not been conclusively demon-

strated. Although Wigglesworth [29] claimed that the tibial pad is not used by C. lectularius,
Kim et al. [15] reported that C. lectularius and C. hemipterus use the tibial pad.

Regardless of the tibial or tarsal structures used, we suggest that an exoskeletal fluid enables

teneral bed bugs to cling to smoother surfaces. We suggest that this fluid probably is residual

molting fluid. The release of molting fluid between the insect epidermis and the old exoskele-

ton prior to molting supports our hypothesis. Molting fluid contains enzymes that digest the

old endocuticle but does not affect the old exo- or epicuticle [14]. The digestive products are

then resorbed into the body as the new cuticle is being deposited [14]. The surface of this new

cuticle might contain residual digestive products (molting fluid and/or degraded cuticle) that

give tarsal or tibial structures an adhesive quality. The possibility that this fluid has adhesive

properties is supported by the biochemical composition of insect cuticle, which consists of chi-

tin embedded in a protein matrix. Chitin is primarily composed of monomers of the sugar N-

acetylglucosamine [14]. Chitin is reduced to N-acetylglucosamine via chitose and chitobiose,

which is present in molting fluid [30]. The sugar N-acetylglucosamine may lend an adhesive

property to the exoskeleton, which diminishes as the water component of the fluid evaporates

from the surface of the exoskeleton. Cement and/or wax layers may have some role in adhe-

sion, but regionalized pooling of fluids observed in this study is more indicative of a liquid.

Although the adhesive property of this fluid is significantly less soon after molting, it is

unknown whether this translates to a loss in climbing ability. Future researchers might exam-

ine the chemical composition of this adhesive fluid and determine if bed bugs lose climbing

ability in less than 48 hours.

The ability of sclerotized bed bugs to climb glass, and the tendency for teneral bed bugs

to climb to greater heights, suggests that caution needs to be taken when working with bed

bugs in an open environment or designing experiments that house bed bugs in seemingly in-

escapable containers. The need for more secure enclosures may be particularly important if

repellency testing is involved; such testing might allow recently molted bed bugs to escape con-

tainers. These findings might also have implications for the design of intercept traps and bed

bug monitors. If products are designed to retain bed bugs or prevent them from crossing a bar-

rier, such products may not be entirely effective if they are based on the assumption that bed

bugs cannot climb smooth surfaces.

Fig 8. An overlay of 2D force map over 3D topography image performed on a teneral bed bug. The

color scale bar displays adhesion forces. Data used to generate Fig 8 can be found in S2 Dataset.

https://doi.org/10.1371/journal.pone.0189215.g008
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Our study evaluated the climbing ability of teneral and sclerotized bed bugs in a glass vial.

Under natural ecological conditions (within mattress seams, bed frames, etc.) teneral bed bugs

may avoid other bed bugs and remain quiescent until sclerotization is complete. Nonetheless,

we have observed intercept traps containing many more exuviae than adult bed bugs. Bed

bugs temporarily captured by such devices are also in an unnatural ecological condition,

where hungry, sclerotized bed bugs may repeatedly attempt to escape interception devices. As

shown in our experiments with glass vials, the activity of sclerotized bed bugs may disrupt the

quiescent behavior of teneral bed bugs and encourage climbing. Our observation of unusual

numbers of exuvia present in interception devices is only anecdotal evidence of their capacity

to escape such devices in a field setting, therefore, further quantifiable observations of teneral

bed bug behavior in the field is necessary to determine whether sclerotization status affects bed

bug barrier or interception device efficacy. If it can be demonstrated that teneral bed bugs pose

a threat to interception device efficacy, examining the climbing ability of teneral bed bugs in

the presence of a desiccant might reveal that climbing can be inhibited by interfering with the

adhesive nature of the teneral bed bug exoskeleton.

We have presented a novel use of AFM technology by examining adhesive fluids on the bed

bug exoskeleton, but this new application did not come without some unexpected difficulties.

As forces were measured on a nano scale, slight movements of the object examined (in this

case, a living insect) interfered with measurements. Keeping a living insect stationary for mea-

surements proved difficult for force mapping, which requires extended time to collect data.

Although we observed molting fluid on the tarsi of bed bugs and preferred to evaluate the

adhesive properties of this structure over time, bed bug tarsi moved too frequently to permit

reliable measurements over time. Even when evaluating the adhesive nature of the bed bug

dorsum, many trials had to be abandoned once it became clear that bed bugs were ineffectively

restrained and generating erratic measurements. Although the methods we used to restrain

bed bugs represented improvements, more effective methods might be devised. Future re-

searchers may choose to experiment with alternatives, such as exposing insects to low-oxygen

environments to reduce activity and facilitate nanoscale measurements.

More than 1,000,000 species of insects have been described [31]. Thus, it is surprising that

no other research based on molting status has been conducted on insect climbing ability. Our

findings potentially extend to other taxa, including other species of economic importance.

Researchers might investigate whether this phenomenon is present across juvenile stages or

differs between males and females. Additional studies may examine the exact structures used

by C. lectularius when climbing smooth and rough surfaces, how rapidly these structures scler-

otize, and whether the removal of exoskeletal fluid affects climbing ability.
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